
Gisselquist
Technology, LLC

Lessons Learned

while Verifying the

ZipCPU

Daniel E. Gisselquist, Ph.D.

Overview

Ź Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

2 / 28

˝ What is formal verification?
˝ My expectations before starting
˝ Initial Formal Properties / Lessons Learned

– Verifying the cache(s)
– Instruction Decoder
– Debug Port
– Abstraction and the Multiplier
– Aggregation
– Multi-Pass Verification

˝ Bugs found and fixed

We’ll be discussing lessons learned along the way

Formal Properties

Overview

Ź

Formal
Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

3 / 28

Three types of properties:

1. assume(): Limits the search space
2. assert(): Should never happen

The solver wins if it can find a way to break an assertion
A trace is created if an assertion can be made to fail

3. cover(): Prove something can happen
A trace is provided with every success

Given that my assumptions hold, prove that my assertions hold

“The solver is quite a bastard isn’t he?” Yes he is.
For reasoning with time

˝ $past(X): Value of X one clock ago

Formal Properties

Overview

Ź

Formal
Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

3 / 28

Three types of properties:

1. assume(): Limits the search space
2. assert(): Should never happen

The solver wins if it can find a way to break an assertion
A trace is created if an assertion can be made to fail

3. cover(): Prove something can happen
A trace is provided with every success

Given that my assumptions hold, prove that my assertions hold
“The solver is quite a bastard isn’t he?” Yes he is.

For reasoning with time

˝ $past(X): Value of X one clock ago

Formal Properties

Overview

Ź

Formal
Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

3 / 28

Three types of properties:

1. assume(): Limits the search space
2. assert(): Should never happen

The solver wins if it can find a way to break an assertion
A trace is created if an assertion can be made to fail

3. cover(): Prove something can happen
A trace is provided with every success

Given that my assumptions hold, prove that my assertions hold
“The solver is quite a bastard isn’t he?” Yes he is.
For reasoning with time

˝ $past(X): Value of X one clock ago

Formal Tools

Overview

Formal Properties

Ź Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

4 / 28

BMC vs Induction

˝ BMC, the base case for induction

˝ Induction step

BMC Induction

Simple Properties Invasive properties
Black Box possible White Box

Riscv-formal Specialized (ZipCPU) proof
Finds failures Proves success

Formal Tools

Overview

Formal Properties

Ź Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

4 / 28

BMC vs Induction

˝ BMC, the base case for induction

˝ Induction step

BMC Induction

Simple Properties Invasive properties
Black Box possible White Box

Riscv-formal Specialized (ZipCPU) proof
Finds failures Proves success

Expectations

Overview

Formal Properties

Formal Tools

Ź Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

5 / 28

Before starting

˝ Formally verified all the components

– Core: Prefetch, I-cache, Decoder, ALU, divide, memory
unit

– Peripherals: timer, counter, interrupt controller
– Others: bus arbiter(s), delay, etc.

˝ Only the top level remained

Initially, concerned with pipeline bugs

˝ Vanishing instructions
˝ Duplicated instructions
˝ Register forwarding bugs

Properties

Overview

Formal Properties

Formal Tools

Expectations

Ź Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

6 / 28

4 Exectution units (ALU, MPY, DIV, MEM, DBG)

Expectations

Overview

Formal Properties

Formal Tools

Expectations

Ź Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

7 / 28

4 Exectution units (ALU, MPY, DIV, MEM, DBG)

˝ Only one write to register file at a time

wire [2 : 0] valid_wires ;
ass ign valid_wires = { alu_valid ,

div_valid , mem_valid } ;
always @ (∗)

as se r t ((valid_wires == 0)
| | ($onehot (valid_wires))) ;

Properties

Overview

Formal Properties

Formal Tools

Expectations

Ź Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

8 / 28

4 Exectution units (ALU, MPY, DIV, MEM, DBG)

˝ Only write to register file at a time
˝ Memory operations cannot be rolled back

always @ (∗)
i f (mem_rdbusy)

// No branche s a l l owed
// No t r a p s a l l owed
as se r t (! new_pc) ;

Properties

Overview

Formal Properties

Formal Tools

Expectations

Ź Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

9 / 28

4 Exectution units (ALU, MPY, DIV, MEM, DBG)

˝ Only write to register file at a time
˝ Memory operations cannot be rolled back
˝ Operands going into the execute units must match the

current register state
˝ Wishbone interactions must follow interface properties
˝ Instructions from PF are constant until accepted

always @ (posedge i_clk)
i f ((f_past_valid)&&($past (pf_valid))

&&($past (dcd_stalled)))
as se r t (($stab le (pf_valid))

&&($stab le (pf_instruction))) ;

This was a common criteria for several stages

Instruction Cache

Overview

Formal Properties

Formal Tools

Expectations

Properties

Ź

Instruction
Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

10 / 28

Three necessary properties

˝ Pick an arbitrary address and its value

(∗ anyconst ∗) reg [3 1 : 0] f_addr , f_data ;

1. assume() the bus response

always @ (∗)
i f ((i_wb_ack)&&(returned_address == f_addr))

assume (i_wb_data == f_data) ;

2. assert() the cache holds the correct value

always @ (∗)
i f (address_is_in_the_cache)

as se r t (cache [f_addr [CS ´1 : 0]] == f_data) ;

Instruction Cache

Overview

Formal Properties

Formal Tools

Expectations

Properties

Ź

Instruction
Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

10 / 28

Three necessary properties

˝ Pick an arbitrary address and its value

(∗ anyconst ∗) reg [3 1 : 0] f_addr , f_data ;

1. assume() the bus response

always @ (∗)
i f ((i_wb_ack)&&(returned_address == f_addr))

assume (i_wb_data == f_data) ;

2. assert() the cache holds the correct value

always @ (∗)
i f (address_is_in_the_cache)

as se r t (cache [f_addr [CS ´1 : 0]] == f_data) ;

Instruction Cache

Overview

Formal Properties

Formal Tools

Expectations

Properties

Ź

Instruction
Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

10 / 28

Three necessary properties

˝ Pick an arbitrary address and its value

(∗ anyconst ∗) reg [3 1 : 0] f_addr , f_data ;

1. assume() the bus response

always @ (∗)
i f ((i_wb_ack)&&(returned_address == f_addr))

assume (i_wb_data == f_data) ;

2. assert() the cache holds the correct value

always @ (∗)
i f (address_is_in_the_cache)

as se r t (cache [f_addr [CS ´1 : 0]] == f_data) ;

Instruction Cache

Overview

Formal Properties

Formal Tools

Expectations

Properties

Ź

Instruction
Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

11 / 28

Three necessary properties

˝ Pick an arbitrary address and its value

(∗ anyconst ∗) reg [3 1 : 0] f_addr , f_data ;

1. assume() the bus response
2. assert() the cache holds the correct value
3. assert() the cache return

always @ (∗)
i f ((pf_valid)&&(pf_instruction_pc == f_addr))

as se r t (pf_instruction == f_data) ;

Lesson learned:

˝ Verifying cache components is really easy!
˝ Easier than building the cache in the first place

Instruction Cache

Overview

Formal Properties

Formal Tools

Expectations

Properties

Ź

Instruction
Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

11 / 28

Three necessary properties

˝ Pick an arbitrary address and its value

(∗ anyconst ∗) reg [3 1 : 0] f_addr , f_data ;

1. assume() the bus response
2. assert() the cache holds the correct value
3. assert() the cache return

always @ (∗)
i f ((pf_valid)&&(pf_instruction_pc == f_addr))

as se r t (pf_instruction == f_data) ;

Lesson learned:

˝ Verifying cache components is really easy!

˝ Easier than building the cache in the first place

Instruction Cache

Overview

Formal Properties

Formal Tools

Expectations

Properties

Ź

Instruction
Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

11 / 28

Three necessary properties

˝ Pick an arbitrary address and its value

(∗ anyconst ∗) reg [3 1 : 0] f_addr , f_data ;

1. assume() the bus response
2. assert() the cache holds the correct value
3. assert() the cache return

always @ (∗)
i f ((pf_valid)&&(pf_instruction_pc == f_addr))

as se r t (pf_instruction == f_data) ;

Lesson learned:

˝ Verifying cache components is really easy!
˝ Easier than building the cache in the first place

Instruction Cache

Overview

Formal Properties

Formal Tools

Expectations

Properties

Ź

Instruction
Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

12 / 28

The cover() statement is very powerful

always @ (posedge i_clk)
cover (pf_valid) ;

What must happen to make this true?

˝ Reset
˝ Instruction Request
˝ Cache miss
˝ Fill the cache line
˝ Return a value from the cache

All returned in a trace.

Data Cache

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Ź Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

13 / 28

Applied the same methods to the data cache

˝ Developed using Formal Methods
˝ Still had one bug in simulation
˝ . . . but only one bug

Lesson learned:

˝ Formal methods find the most bugs
˝ Tools can return quickly
˝ Resulting trace points directly to bug
˝ Minimum number of logic steps necessary
˝ Still needed simulation

Data Cache

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Ź Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

13 / 28

Applied the same methods to the data cache

˝ Developed using Formal Methods
˝ Still had one bug in simulation
˝ . . . but only one bug

Lesson learned:

˝ Formal methods find the most bugs
˝ Tools can return quickly
˝ Resulting trace points directly to bug
˝ Minimum number of logic steps necessary
˝ Still needed simulation

Instruction Decoder

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Ź Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

14 / 28

Mistake:

˝ Only tested the transitions

always @ (posedge i_clk)
i f ((f_past_valid)&&($past (dcd_ce)))

as se r t (o_dcdR == $past (insn [3 0 : 2 5])) ;

as se r t property (@ (posedge i_clk)
dcd_ce

|=> o_dcdR == $past (insn [3 0 : 2 5])) ;

˝ The check doesn’t apply when the pipeline is stalled
˝ Invalid states not caught during induction

– Ex: Might decode into divide and ALU op

Instruction Decoder

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Ź Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

15 / 28

Lesson learned:

˝ Should have verified the outputs instead of the transitions

always @ (posedge i_clk)
i f (dcd_ce)

f_last_insn <= pf_insn ;

always @ (∗)
i f (dcd_valid)

as se r t (o_dcdR == f_last_insn [3 0 : 2 5]) ;

˝ This check is applied at all times
˝ Even when the pipeline is stalled

Debug Port

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Ź Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

16 / 28

The ZipCPU has a debugging port

˝ Reset/halt CPU
˝ Read/set registers within the CPU

This simple interface caused no end of problems!

˝ At one time, I assumed no debug access just to keep focused
˝ Problem was the pipeline
˝ Solution was to reload the pipeline on any debug write

Lesson learned:

˝ Simple things aren’t

Debug Port

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Ź Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

16 / 28

The ZipCPU has a debugging port

˝ Reset/halt CPU
˝ Read/set registers within the CPU

This simple interface caused no end of problems!

˝ At one time, I assumed no debug access just to keep focused
˝ Problem was the pipeline
˝ Solution was to reload the pipeline on any debug write

Lesson learned:

˝ Simple things aren’t

Debug Port

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Ź Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

16 / 28

The ZipCPU has a debugging port

˝ Reset/halt CPU
˝ Read/set registers within the CPU

This simple interface caused no end of problems!

˝ At one time, I assumed no debug access just to keep focused
˝ Problem was the pipeline
˝ Solution was to reload the pipeline on any debug write

Lesson learned:

˝ Simple things aren’t

Abstraction

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Ź Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

17 / 28

Ex: Multiply

˝ Returns an arbitrary value

module abs_mpy (i_a , i_b , o_r) ;
(∗ anyseq ∗) wire [W´1:0] result ;
always @ (∗)

i f ((i_a == 0) | | (i_b == 0))
assume (result == 0) ;

e l s e

assume (result != 0) ;
ass ign o_r = result ;

˝ Solver picks result
˝ Require: maintains signaling
˝ Prove CPU logic works

Abstraction

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Ź Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

18 / 28

Ex: Multiply

˝ Returns an arbitrary value
˝ Solver picks result
˝ Require: maintains signaling
˝ Prove CPU logic works

Reality:

˝ Top level CPU worked and proven
˝ Missed a bug in the actual multiplier

Lesson Learned:

˝ Create a property file for each interface

– Prefetch, decoder, ALU, memory unit

Aggregation

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Ź Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

19 / 28

Prove every component before beginning

Aggregation

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Ź Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

20 / 28

˝ Swap component assertions with assumptions
˝ Whole new set of CPU properties

Aggregation

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Ź Aggregation

Multi-Pass

Bugs

Lessons

Next time

Backups

21 / 28

Lesson learned:

˝ Sub-module assumptions aren’t given
˝ The need to be proven

Multi-Pass Verification

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Ź Multi-Pass

Bugs

Lessons

Next time

Backups

22 / 28

Anything you’ve proved, . . .

˝ . . . can become assumptions to prove something more

Must be done in order

˝ You can’t assume stage #1 until you’ve first proven it via
assertions.

˝ Any logic change will send you back to the beginning

Multi-Pass Verification

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Ź Multi-Pass

Bugs

Lessons

Next time

Backups

22 / 28

Anything you’ve proved, . . .

˝ . . . can become assumptions to prove something more

Must be done in order

˝ You can’t assume stage #1 until you’ve first proven it via
assertions.

˝ Any logic change will send you back to the beginning

Multi-Pass Verification

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Ź Multi-Pass

Bugs

Lessons

Next time

Backups

22 / 28

Anything you’ve proved, . . .

˝ . . . can become assumptions to prove something more

Must be done in order

˝ You can’t assume stage #1 until you’ve first proven it via
assertions.

˝ Any logic change will send you back to the beginning

Two-Pass Verification

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Ź Multi-Pass

Bugs

Lessons

Next time

Backups

23 / 28

First pass

˝ Prove component assumptions
˝ Ad-hoc assertions
˝ Pipeline assertions

Second pass

˝ Assume a known instruction
˝ Verify its implementation

Lesson Learned:

˝ Assuming a known instruction was a waste of time
˝ First pass assertions were not trivial
˝ Most logic proved on the first pass
˝ One pass would’ve been easier and simpler

Two-Pass Verification

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Ź Multi-Pass

Bugs

Lessons

Next time

Backups

23 / 28

First pass

˝ Prove component assumptions
˝ Ad-hoc assertions
˝ Pipeline assertions

Second pass

˝ Assume a known instruction
˝ Verify its implementation

Lesson Learned:

˝ Assuming a known instruction was a waste of time
˝ First pass assertions were not trivial
˝ Most logic proved on the first pass
˝ One pass would’ve been easier and simpler

ZipCPU Bugs Fixed

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Ź Bugs

Lessons

Next time

Backups

24 / 28

˝ Bus error on instruction read might not halt CPU
˝ Memory reads into the program counter didn’t stall the

pipeline
˝ Interrupts might break compressed instruction words
˝ Debug register writes broke register values in the pipeline
˝ CPU might halt mid-compressed instruction pair
˝ Multicycle ALU operations (i.e. MPY’s) set the wrong flags
˝ Divides would start before multiplies were finished
˝ Break instructions might get ignored
˝ Memory instructions might still be issued while an illegal

instruction exception was pending
˝ Memory FIFO had no overflow protection
˝ CPU would switch to an interrupt state before completing

memory operations

I was very glad I did it!

Lesson Learned

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Ź Lessons

Next time

Backups

25 / 28

Before using formal methods

˝ Simulated many programs on the ZipCPU
˝ Applied the CPU to many FPGA Boards
˝ Debugging on an FPGA is difficult
˝ Simulation requires GB+ traces

With formal

˝ Simulation alone didn’t cut it
˝ Even an incomplete proof is valuable
˝ What you don’t prove, will surprise you
˝ Simulation requires GB of trace, formal 20-60kB
˝ Still needed simulation
˝ Can take a simulation symptom, and recreate it to fix it

Lesson Learned

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Ź Lessons

Next time

Backups

25 / 28

Before using formal methods

˝ Simulated many programs on the ZipCPU
˝ Applied the CPU to many FPGA Boards
˝ Debugging on an FPGA is difficult
˝ Simulation requires GB+ traces

With formal

˝ Simulation alone didn’t cut it
˝ Even an incomplete proof is valuable
˝ What you don’t prove, will surprise you
˝ Simulation requires GB of trace, formal 20-60kB
˝ Still needed simulation
˝ Can take a simulation symptom, and recreate it to fix it

Next time

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Ź Next time

Backups

26 / 28

If I had to do it over . . .

˝ I’d start with formal verification
˝ . . . even before Simulation
˝ . . . definitely before code bloat

Gisselquist
Technology, LLC

In all labour there is profit . . .

Prov 14:23a

CPU Survey

Overview

Formal Properties

Formal Tools

Expectations

Properties

Instruction Cache

Data Cache

Decoder

Debug Port

Abstraction

Aggregation

Multi-Pass

Bugs

Lessons

Next time

Ź Backups

28 / 28

Feature NiOS µBlaze ECO–32 RISC-V OpenRISC LM32 ZipCPU

Open Architecture? No Yes

Number of Instructions 86 129 61 50+ 48+ 62 28+

OpCode Bits 6–17 6–11 6 10 6–32 6 5

Interrupt/Exception Vectors 1 6 2 9+ 14 32 None

Register Indirect plus displacement (bits) 16 12 16 14

Immediate direct addressing (bits) 16, using R0=0 18

Relative branching (bits) 16 26 (28) 21 26 21 18

Conditional branching (bits) 16 16 (18) 13 26 16 18

Register Size (bits) 32 32 (Opt. 64 Exts.) 32 32-bits

Special Purpose Registers 6 25 6 66+ 65+ 10 1 (x2)

General Purpose Registers 32 (but R0=0, others are unusable, . . . 24) 14 (x2)

8–bit data Yes Yes

16–bit data Yes Yes

32–bit data Yes Yes

64–bit data No Yes, by extension No Yes

32–bit floats Optional No Yes, by extension No Yes, not native

MMU Yes, but optional Verified

Instruction Cache Yes, configurable Optional

Data Cache Yes, configurable Optional

	
	Overview
	Formal Properties
	Formal Tools
	Expectations
	Properties
	Instruction Cache
	Data Cache
	Decoder
	Debug Port
	Abstraction
	Aggregation
	Multi-Pass Verification
	ZipCPU Bugs Fixed
	Lesson Learned
	Next time
	

