
Gisselquist
Technology, LLC

ZIPCPU

SPECIFICATION

Dan Gisselquist, Ph.D.
dgisselq (at) ieee.org

December 21, 2018

Gisselquist Technology, LLC Specification 2018/12/21

Copyright (C) 2018, Gisselquist Technology, LLC
This project is free software (firmware): you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTIBILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see <http://www.gnu.org/licenses/> for a copy.

www.opencores.com Rev. 1.1 ii

Gisselquist Technology, LLC Specification 2018/12/21

Revision History
Rev. Date Author Description

2.0 1/18/2017 Gisselquist Switched from 32–bit to 8–bit bytes.
1.1 11/28/2016 Gisselquist Moved the ZipSystem address to 0xff000000

base.
1.0 11/4/2016 Gisselquist Major rewrite, includes compiler info
0.91 7/16/2016 Gisselquist Described three more CC bits
0.9 4/20/2016 Gisselquist Modified ISA: LDIHI replaced with MPY,

MPYU and MPYS replaced with MPYUHI, and
MPYSHI respectively. LOCK instruction now
permits an intermediate ALU operation.

0.8 1/28/2016 Gisselquist Reduced complexity early branching
0.7 12/22/2015 Gisselquist New Instruction Set Architecture
0.6 11/17/2015 Gisselquist Added graphics to illustrate pipeline discussion.
0.5 9/29/2015 Gisselquist Added pipelined memory access discussion.
0.4 9/19/2015 Gisselquist Added DMA controller, improved stall informa-

tion, and self–assessment info.
0.3 8/22/2015 Gisselquist First completed draft
0.2 8/19/2015 Gisselquist Still Draft, more complete
0.1 8/17/2015 Gisselquist Incomplete First Draft

www.opencores.com Rev. 1.1 iii

Gisselquist Technology, LLC Specification 2018/12/21

Contents

Page

1 Introduction . 1
1.1 Characteristics of a SwiC . 1
1.2 Scope . 3

2 CPU Architecture . 4
2.1 Build Options/defines . 4
2.2 Internal Architecture . 7

2.2.1 Register Set . 7
2.2.2 The Status Register, CC . 8
2.2.3 Instruction Format . 11
2.2.4 Instruction OpCodes . 11
2.2.5 Conditional Instructions . 11
2.2.6 Modifying Conditions . 14
2.2.7 Operand B . 14
2.2.8 Address Modes . 15
2.2.9 Move Operands . 15
2.2.10 Multiply Operations . 15
2.2.11 Divide Unit . 15

2.3 CIS Instructions . 16
2.3.1 BREAK, Bus LOCK, SIM, and NOOP Instructions 17
2.3.2 Floating Point . 18
2.3.3 Derived Instructions . 18
2.3.4 Interrupt Handling . 18
2.3.5 Pipeline Stages . 18
2.3.6 Pipeline Stalls . 23

2.4 External Architecture . 28
2.4.1 Simplified Wishbone Bus . 28
2.4.2 Memory Model . 29
2.4.3 ZipSystem . 29

2.5 Debug Interface . 32

3 Application Binary Interface . 34
3.1 Executable File Format . 34
3.2 Stack . 34
3.3 Relocations . 35
3.4 Call format . 35
3.5 Built-ins . 35
3.6 Linker Scripts . 36

3.6.1 Memory Types . 36
3.6.2 The Entry Function . 37
3.6.3 Bootloader Tags . 37
3.6.4 Other required linker symbols . 38

3.7 Loading ZipCPU Programs . 38
3.8 Starting a ZipCPU program . 39

3.8.1 CRT0 . 39
3.8.2 The Bootloader . 39
3.8.3 Kernel Entry . 40
3.8.4 Kernel Main . 40

www.opencores.com Rev. 1.1 iv

Gisselquist Technology, LLC Specification 2018/12/21

4 Operation . 41
4.1 CRT0 . 41
4.2 System High . 41
4.3 A Programmable Delay . 43
4.4 Traditional Interrupt Handling . 44
4.5 Idle Task . 46
4.6 Memory Copy . 47
4.7 Memset . 50
4.8 Context Switch . 53

5 Registers . 56
5.1 ZipSystem Peripheral Registers . 56

5.1.1 Interrupt Controller(s) . 57
5.1.2 Timer Register . 58
5.1.3 Jiffies . 58
5.1.4 Performance Counters . 59
5.1.5 DMA Controller . 59

5.2 Debug Port Registers . 60

6 Wishbone Datasheets . 63

7 Clocks . 66

8 I/O Ports . 67

9 Initial Assessment . 69
9.1 The Good . 69
9.2 The Not so Good . 70
9.3 The Next Generation . 71

www.opencores.com Rev. 1.1 v

Gisselquist Technology, LLC Specification 2018/12/21

Figures

Figure Page

1.1. ZipCPU internal pipeline architecture . 2

2.1. ZipCPU Register File . 7
2.2. Zip Instruction Set Format . 11
2.3. Zip Compressed Instruction Set (CIS) Format . 16
2.4. NOOP/Break/LOCK Instruction Format . 17
2.5. A conditional branch generates 4 stall cycles . 24
2.6. An expedited branch costs a single stall cycle . 24
2.7. Pipeline handling of a load instruction . 26
2.8. Pipeline handling of a store instruction . 27
2.9. Pipeline handling of a store followed by a load instruction 28
2.10. ZipSystem Peripherals . 30

www.opencores.com Rev. 1.1 vi

Gisselquist Technology, LLC Specification 2018/12/21

Tables

Table Page

2.1. Condition Code Register Bit Assignment . 8
2.2. ZipCPU OpCodes . 12
2.3. Conditions for conditional operand execution . 13
2.4. An example of a double conditional . 13
2.5. Modifying conditions . 14
2.6. Bit allocation for Operand B . 15
2.7. CIS OpCodes . 16
2.8. Derived Instructions . 19
2.9. Derived Instructions, continued . 20
2.10. Derived Instructions, continued . 21
2.11. Derived Instructions, continued . 22

4.1. Setting up a stack frame and starting the CPU . 42
4.2. Executing an idle from supervisor mode . 43
4.3. Waiting on a timer . 44
4.4. Traditional Interrupt handling . 45
4.5. Example Idle Task in Assembly . 46
4.6. Example Idle Task in C . 47
4.7. Example Memory Copy code in C . 47
4.8. Example Memory Copy code in Zip Assembly, Unoptimized 48
4.9. Example Memory Copy code in Zip Assembly, Hand Optimized 49
4.10. Example Memory Copy code using the DMA . 50
4.11. Example Memset code . 50
4.12. Example Memset code, minimally optimized . 51
4.13. Example Memset after loop unrolling, using pipelined memory ops 51
4.14. Example Memset code, only this time with the DMA 52
4.15. Checking for whether the user task needs our attention 53
4.16. Example Storing User Task Context . 54
4.17. Example Restoring User Task Context . 55

5.1. ZipSystem Internal/Peripheral Registers . 56
5.2. Interrupt Controller Register Bits . 57
5.3. Timer Register Bits . 58
5.4. Jiffies Register Bits . 58
5.5. Counter Register Bits . 59
5.6. DMA Control Register Bits . 60
5.7. ZipSystem Debug Registers . 60
5.8. Debug Control Register Bits . 61
5.9. Debug Register Addresses . 62

6.1. Wishbone Datasheet for the Debug Interface . 63
6.2. Wishbone Datasheet for the CPU as Master . 64

7.1. List of Clocks . 66

8.1. CPU Master Wishbone I/O Ports . 68

www.opencores.com Rev. 1.1 vii

Gisselquist Technology, LLC Specification 2018/12/21

8.2. CPU Debug Wishbone I/O Ports . 68
8.3. I/O Ports . 68

www.opencores.com Rev. 1.1 viii

Gisselquist Technology, LLC Specification 2018/12/21

Preface

Many people have asked me why I am building the ZipCPU. ARM processors are good and effective.
Xilinx makes and markets Microblaze, Altera Nios, and both have better toolsets than the ZipCPU
will ever have. OpenRISC is also available, RISC–V may be replacing it. Why build a new processor?

The easiest, most obvious answer is the simple one: Because I can.
There’s more to it though. There’s a lot of things that I would like to do with a processor, and I

want to be able to do them in a vendor independent fashion. First, I would like to be able to place
this processor inside an FPGA. Without paying royalties, ARM is out of the question. I would then
like to be able to generate Verilog code, both for the processor and the system it sits within, that
can run equivalently on both Xilinx, Altera, and Lattice chips, and that can be easily ported from
one manufacturer’s chipsets to another. Even more, before purchasing a chip or a board, I would
like to know that my soft core works. I would like to build a test bench to test components with,
and Verilator is my chosen test bench. This forces me to use all Verilog, and it prevents me from
using any proprietary cores. For this reason, Microblaze and Nios are out of the question.

Why not OpenRISC? Because the ZipCPU has different goals. OpenRISC is designed to be a full
featured CPU. The ZipCPU was designed to be a simple, resource friendly, CPU. The result is that
it is easy to get a ZipCPU program running on bare hardware for a special purpose application–such
as what FPGAs were designed for, but getting a full featured Linux distribution running on the
ZipCPU may just be beyond my grasp. Further, the OpenRISC ISA is very complex, defining over
200 instructions–even though it has never been fully implemented. The ZipCPU on the other hand
has only a small handful of instructions, and all but the Floating Point instructions have already
been fully implemented.

My final reason is that I’m building the ZipCPU as a learning experience. The ZipCPU has
allowed me to learn a lot about how CPUs work on a very micro level. For the first time, I am
beginning to understand many of the Computer Architecture lessons from years ago.

To summarize: Because I can, because it is open source, because it is light weight, and as an
exercise in learning.

Dan Gisselquist, Ph.D.

www.opencores.com Rev. 1.1 ix

Gisselquist Technology, LLC Specification 2018/12/21

1.

Introduction

The goal of the ZipCPU was to be a very simple CPU. You might think of it as a poor man’s
alternative to the OpenRISC architecture. You might also think of it as an Open Source microcon-
troller. For this reason, all instructions have been designed to be as simple as possible, and the base
instructions are all designed to be executed in one instruction cycle per instruction, barring pipeline
stalls.1 Indeed, even the bus has been simplified to a constant 32-bit width, with no option for
more or less. This has resulted in the choice to drop push and pop instructions, pre-increment and
post-decrement addressing modes, the integrated memory management unit (MMU), and more.2

For those who like buzz words, the ZipCPU is:

• A 32-bit CPU: All registers are 32-bits, addresses are 32-bits, instructions are 32-bits wide,
etc.

• A RISC CPU. There is no microcode for executing instructions. All instructions are designed
to be completed in one clock cycle.

• A Load/Store architecture. (Only load and store instructions can access memory.)

• Wishbone compliant. All peripherals are accessed just like memory across this bus.

• A Von-Neumann architecture. The instructions and data share a common bus.

• A pipelined architecture, having stages for Prefetch, Decode, Read-Operand, a combined
stage containing the ALU, Memory, Divide, and Floating Point units, and then the final
Write-back stage. See Fig. 1.1 for a diagram of this structure.

• Completely open source, licensed under the GPL.3

The ZipCPU also has one very unique feature: the ability to do pipelined loads and stores. This
allows the CPU to access on-chip memory at one access per clock, minus any stalls for the initial
access.

1.1 Characteristics of a SwiC

This section might also be called the ZipCPU philosophy. It discusses the basis for the ZipCPU
design decisions, and why a low logic count CPU is or can be a good thing.

1The exceptions to this rule are the multiply, divide, and load/store instructions. Once the floating point unit is
built, I anticipate these will also be exceptions to this rule.

2A not–so integrated MMU is currently under development.
3Should you need a copy of the ZipCPU licensed under other terms, please contact me.

www.opencores.com Rev. 1.1 1

Gisselquist Technology, LLC Specification 2018/12/21

Figure 1.1: ZipCPU internal pipeline architecture

Many other FPGA processors have been defined to be good Systems on a Chip, or SoC’s. The
entire goal of such designs, then, is to provide an interface to the processor and its external environ-
ment. This is not the case with the ZipCPU. Instead, we shall define a new concept, that of a soft
core internal to an FPGA, as a “System within a Chip,” or a SwiC. SwiCs have some very unique
properties internal to them that have influenced the design of the ZipCPU. Among these are the
bus, memory, and available peripherals.

Many other approaches to soft core CPU’s employ a Harvard architecture. This allows these
other CPU’s to have two separate bus structures: one for the program fetch, and the other for the
memory. Indeed, Xilinx’s proprietary Microblaze processor goes so far as to support four busses:
two for cacheable memory, and two for peripherals, with each of those split between instructions
and data. The ZipCPU on the other hand is fairly unique in its approach because it uses a Von
Neumann architecture, requiring only one bus within any FPGA. This structure was chosen for its
simplicity. Having only the one bus helps to minimize real-estate, logic, and the number of wires
that need to be passed back and forth, while maintaining a high clock speed. The disadvantage is
that both prefetch and memory access units need to contend for time on the same bus.

Soft core’s within an FPGA have an additional characteristic regarding memory access: it is
slow. While memory on chip may be accessed at a single cycle per access, small FPGA’s often have
only a limited amount of memory on chip. Going off chip, however, is expensive. Two examples
will prove this point. On the XuLA2 board, Flash can be accessed at 128 cycles per 32–bit word,
or 64 cycles per subsequent word in a pipelined architecture. Likewise, the SDRAM chip on the
XuLA2 board allows a 6 cycle access for a write, 10 cycles per read, and 2 cycles for any subsequent
pipelined access read or write. Either way you look at it, this memory access will be slow and this
doesn’t account for any logic delays should the bus implementation logic get complicated.

As may be noticed from the above discussion about memory speed, a second characteristic of
memory is sequential memory accesses may be optimized for minimal delays (pipelined), and that

www.opencores.com Rev. 1.1 2

Gisselquist Technology, LLC Specification 2018/12/21

pipelined memory access is faster than non–pipelined access. Therefore, a SwiC soft core should
support pipelined operations, but it should also allow a higher priority subsystem to get access to
the bus (no starvation).

As a further characteristic of SwiC memory options, on-chip cache’s are expensive. If you want
to have a minimum of logic, cache logic may not be the highest on the priority list. Any SwiC
capable processor must be able to either be built without caches, or to scale up or down the logic
required by any cache.

In sum, memory is slow. While one processor on one FPGA may be able to fill its pipeline, the
same processor on another FPGA may struggle to get more than one instruction at a time into the
pipeline. Any SwiC must be able to deal with both cases: fast and slow memories.

A final characteristic of SwiC’s within FPGA’s is the peripherals. Specifically, FPGA’s are highly
reconfigurable. Soft peripherals can easily be created on chip to support the SwiC if necessary. As
an example, a simple 30-bit peripheral could easily support reversing 30-bit numbers: a read from
the peripheral returns its bit–reversed address. This is cheap within an FPGA, but expensive in
instructions. Reading from another 16–bit peripheral might calculate a sine function, where the
16–bit address internal to the peripheral was the angle of the sine wave.

Indeed, anything that must be done fast within an FPGA is likely to already be done–elsewhere
in the fabric. Further, the application designer gets to choose what tasks are so important they need
fabric dedicated to them, and which ones can be done more slowly in a CPU. This leaves the CPU
with the simple role of solely handling sequential tasks, and tasks that need a lot of state.

This means that the SwiC needs to live within a very unique environment, separate and different
from the traditional SoC. That isn’t to say that a SwiC cannot be turned into a SoC, just that this
SwiC has not been designed for that purpose. Indeed, some of the best examples of the ZipCPU are
System on a Chip examples.

1.2 Scope

The ZipCPU is itself nothing more than a CPU that can be placed within a larger design. It is not
a System on a Chip, but it can be used to create a system on a chip. As a result, this document
will not discuss more than a small handful of CPU–related peripherals, as the actual peripherals
used within a design will vary from one design to the next. Further, because control access will vary
from one environment to the next, this document will not discuss any host control programs, leaving
those to be discussed and defined together with the environments the ZipCPU is placed within.

www.opencores.com Rev. 1.1 3

Gisselquist Technology, LLC Specification 2018/12/21

2.

CPU Architecture

This chapter describes the general architecture of the ZipCPU. It first discusses the configuration
options to the CPU and then breaks into two threads. These last two threads are a discussion of the
internals of the ZipCPU, such as its instruction set architecture and the details and consequences of
it, and then the external architecture describing how the ZipCPU fits into the systems surrounding
it, and what those systems must do to support it. Specifically, the external architecture section will
discuss both the ZipSystem, the peripherals provided by it, as well as the debug interface.

2.1 Build Options/defines

One problem with a simple goal such as being light on logic, is that some architectures have some
needs, others have other needs. What is light logic in some architectures might consume all the
available logic in others. As an example, the CMod S6 board built by Digilent uses a very spare
Xilinx Spartan 6 LX4 FPGA. This FPGA doesn’t have enough look up tables (LUTs) to support
pipelined mode, whereas another project running on a XuLA2 LX25 board made by Xess, having a
Spartan 6 LX25 on board, has more than enough logic to support a pipelined mode. Very quickly
it becomes clear that LUTs can be traded for performance.

To make this possible, the ZipCPU has both a configuration file as well as a set of parameters
that it can be built with. Often, those parameters can override the configuration file, but not all
configuration file changes can be overridden. Several options are available within the configuration
file, such as making the Zip CPU pipelined or not, able to handle a faster clock with more stalls or
a slower clock with no stalls, etc.

The cpudefs.v file encapsulates those control options. It contains a series of ‘define statements
that can either be commented or left active. If active, the option is considered to be in effect. The
number of LUTs the Zip CPU uses varies dramatically with the options defined in this file. This
section will outline the various configuration options captured by this file.

The first couple of options control the Zip CPU instruction set, and how it handles various
instructions within the set:

OPT MULTIPLY controls whether or not the multiply is built and included in the ALU by default,
and if it is which of several multiply options is selected. Unlike many of the defines that follow
within cpudefs.v that are either defined or not, this option requires a value. A value of zero means
no multiply support, whereas a value of one, two, or three, means that a multiply will be included
that takes one, two, or three clock cycles to complete. The option, however, only controls the
default value that the IMPLEMENT MPY parameter to the CPU, having the same interpretation, is
given. Because this is just the default value, it can easily be overridden upon instantiation. If the

www.opencores.com Rev. 1.1 4

Gisselquist Technology, LLC Specification 2018/12/21

IMPLEMENT MPY parameter is set to zero, then any attempt to execute a multiply instruction will
cause an illegal instruction exception.

OPT DIVIDE controls whether or not the divide instruction is built and included into the ZipCPU
by default. Set this option and the IMPLEMENT DIVIDE parameter will have a default value of one,
meaning that unless it is overridden with zero, the divide unit will be included. If the divide is not
included, then any attempt to use a divide instruction will create an illegal instruction exception
that will send the CPU into supervisor mode.

OPT IMPLEMENT FPU will (one day) control whether or not the floating point unit (once I have one)
is built and included into the ZipCPU by default. This option sets the IMPLEMENT FPU parameter
to one, so alternatively it can be set and adjusted upon instantiation. If the floating point unit is
not included then, as with the multiply and divide, any floating point instruction will result in an
illegal instruction exception that will send the CPU into supervisor mode.

OPT SINGLE FETCH controls whether or not the prefetch has a cache, and whether or not it can
issue one instruction per clock. When set, the prefetch has no cache, and only one instruction is
fetched at any given time. This effectively sets the CPU so that only one instruction is ever in the
pipeline at a time, and hence you may think of this as a “no pipeline” option. However, since the
pipeline uses so much area on the FPGA, this is an important option to use in trimming down used
logic if necessary. Hence, it needs to be maintained for that purpose. Be aware, though, setting this
option will disable all pipelining, and therefore will drop your performance by a factor of 8x or even
more.

I recommend only defining or enabling this option if you need to, such as if area is tight and
speed isn’t as important. Otherwise, leave the option undefined since the pipelined options have a
much better speed performance.

The next several options are pipeline optimization options. They make no sense in a single
instruction fetch mode, hence they are all disabled if OPT SINGLE FETCH is defined.

OPT PIPELINED is the natural result and opposite of using the single instruction fetch unit. It
is an internal parameter that doesn’t need user adjustment, but if you look through the cpudefs.v
file you may see and notice it. If you have not set the OPT SINGLE FETCH parameter, cpudefs.v will
set the OPT PIPELINED option. This is more for readability than anything else, since OPT PIPELINED

makes more intuitive readability sense than OPT SINGLE FETCH. In other words, define or comment
out OPT SINGLE FETCH, and let OPT PIPELINED be taken care of automatically.

Assuming you have chosen not to define OPT SINGLE FETCH, OPT TRADITIONAL PFCACHE allows
you to switch between one of two prefetch cache modules. If enabled (recommended), a more
traditional cache will be implemented in the CPU. This more traditional cache reduces the stall
count tremendously over the alternative pipeline cache, and its LUT usage is quite competitive. As
there is little downside to defining this option if pipelining is enabled, I would recommend including
it.

The alternative prefetch and cache, sometimes called the pipeline cache, tries to read instructions
ahead of where they are needed, while maintaining what it has read in a cache. That cache is cleared
anytime you jump outside of its window, and it often competes with the CPU for access to the bus.
These two characteristics make this alternative bus often less than optimal.

OPT EARLY BRANCHING is an attempt to execute a BRA (branch or jump) statement as early in
the pipeline as possible, to avoid as many pipeline stalls on a branch as possible. As an example, if
you have OPT TRADITIONAL PFCACHE defined as well, then branches within the cache will only cost
a single stall cycle. Indeed, using early branching, a BRA instruction can be used as the compiler’s
branch prediction optimizer: BRA’s barely stall, while branches on conditions will always suffer about

www.opencores.com Rev. 1.1 5

Gisselquist Technology, LLC Specification 2018/12/21

6 stall cycles. Setting this option causes the parameter, EARLY BRANCHING, to be set to one, so it
can be overridden upon instantiation.

Given the performance benefits achieved by early branching, setting this flag is highly recom-
mended.

OPT PIPELINED BUS ACCESS controls whether or not memory instructions can take advantage of
the pipelined wishbone bus. To be eligible, the operations to be pipelined must be adjacent, must be
all loads or all stores, and the addresses must all use the same base address register and either have
identical immediate offsets, or immediate offsets that increase by one for each instruction. Further,
the string of load (or store) instructions must all have the same conditional (if any). Currently, this
approach and benefit is most effectively used when saving registers to or restoring registers from the
stack at the beginning/end of a procedure, when using assembly optimized programs, or when doing
a context swap.

I recommend setting this flag, for performance reasons, especially if your wishbone bus im-
plementation can handle pipelined bus accesses. The logic impact of this setting is minimal, the
performance impact can be significant.

OPT CIS includes within the instruction set the Very Long Instruction Word packing, which packs
up to two instructions within each instruction word. Non–packed instructions will still execute as
normal, this just enables the decoding and running of packed instructions.

The two next options, INCLUDE DMA CONTROLLER and INCLUDE ACCOUNTING COUNTERS control
whether the DMA controller is included in the ZipSystem, and whether or not the eight accounting
timers are also included. Set these to include the respective peripherals, comment them out not to.
These only affect the ZipSystem implementation, and not any ZipBones implementations.

Finally, if you find yourself needing to debug the core and specifically needing to get a trace from
the core to find out why something specifically failed, you may find it useful to define DEBUG SCOPE.
This will add a 32–bit debug output from the core, as the last argument to the core, to the ZipSystem,
or even to ZipBones. The actual definition and composition of this debugging bit–field changes from
one implementation to the next, depending upon needs and necessities, so please look at the code
at the bottom of zipcpu.v for more details.

That ends our discussion of CPU options, but there remain several implementation parameters
that can be defined with the CPU as well. Some of these, such as IMPLEMENT MPY, IMPLEMENT DIVIDE,
IMPLEMENT FPU, and EARLY BRANCHING have already been discussed. The remainder shall be dis-
cussed quickly here.

The RESET ADDRESS parameter controls what address the CPU attempts to fetch its first instruc-
tion from upon any CPU reset. The default value is not likely to be particularly useful, so overriding
the default is recommended for every implementation.

The ADDRESS WIDTH parameter can be used to trim down the width of addresses used by the
CPU. For example, although the Wishbone Bus definition used by the CPU has 30–address lines,
particular implementations may have fewer. By setting this value to the actual number of wires
in the address bus, some logic can be spared within the CPU. The default is also the maximum, a
30–bit address width. Two additional bits are used internally by the CPU to create the appearance
of an 8–bit bus, by using the wishbone select lines.

The LGICACHE parameter specifies the log base two of the instruction cache size. If no instruction
cache is used, this option has no effect. Otherwise it sets the size of the instruction cache to be
2LGICACHE words. The traditional prefetch cache, if used, will split this cache size into up to thirty two
separate cache lines.

www.opencores.com Rev. 1.1 6

Gisselquist Technology, LLC Specification 2018/12/21

Supervisor Register Set User Register Set
#’s 0-15 #’s 16-31

sR0(LR) sR8 uR0(LR) uR8
sR1 sR9 uR1 uR9
sR2 sR10 uR2 uR10
sR3 sR11 uR3 uR11
sR4 sR12(FP) uR4 uR12(FP)
sR5 sSP uR5 uSP
sR6 sCC uR6 uCC
sR7 sPC uR7 uPC

Interrupts Disabled Interrupts Enabled

Figure 2.1: ZipCPU Register File

The IMPLEMENT LOCK parameter controls whether or not the LOCK instruction is implemented.
If set to zero, the LOCK instruction will cause an illegal instruction exception, otherwise it will be
implemented if pipelining is enabled.

Other parameters are defined within the ZipSystem parent module, and affect the performance
of the system as a whole.

The START HALTED parameter, if set to non–zero, will cause the CPU to be halted upon startup.
This is useful for debugging, since it prevents the CPU from doing anything without supervision.
Of course, once all pieces of your design are in place and proven, you’ll probably want to set this to
zero, so that the CPU will then start up immediately upon power up.

The EXTERNAL INTERRUPTS parameter controls the number of interrupt wires coming into the
CPU. This number must be between one and sixteen, or if the performance counters are disabled,
between one and twenty four.

2.2 Internal Architecture

This section discusses the general architecture of the CPU itself, separated from its environment.
As such, it focuses on the instruction set layout and how those instructions are implemented.

2.2.1 Register Set

Fundamental to the understanding of the ZipCPU is its register set, and the performance model
associated with it. The ZipCPU register set contains two sets of sixteen 32-bit registers, a supervisor
and a user set as shown in Fig. 2.1. The supervisor set is used when interrupts are disabled, whereas
the user set is used any time interrupts are enabled. This choice makes it easy to set up a working
context upon any interrupt, as the supervisor register set remains what it was when interrupts were
enabled. This sets up one of two modes the CPU can run within: a supervisor mode, which runs
with interrupts disabled using the supervisor register set, and user mode, which runs with interrupts
enabled using the user register set.

www.opencores.com Rev. 1.1 7

Gisselquist Technology, LLC Specification 2018/12/21

Bit # Access Description

31. . . 23 R Reserved for future uses
22. . . 16 R/W Reserved for future uses
15 R Reserved for MMU exceptions
14 W Clear I-Cache command, always reads zero
13 R CIS instruction phase (1 for first half)
12 R (Reserved for) Floating Point Exception
11 R Division by Zero Exception
10 R Bus-Error Flag
9 R Trap Flag (or user interrupt). Cleared on return to userspace.
8 R Illegal Instruction Flag
7 R/W Break–Enable (sCC), or user break (uCC)
6 R/W Step
5 R/W Global Interrupt Enable (GIE)
4 R/W Sleep. When GIE is also set, the CPU waits for an interrupt.
3 R/W Overflow
2 R/W Negative. The sign bit was set as a result of the last ALU in-

struction.
1 R/W Carry
0 R/W Zero. The last ALU operation produced a zero.

Table 2.1: Condition Code Register Bit Assignment

This separation is so fundamental to the CPU that it is impossible to enable interrupts without
switching to the user register set. Further, on any interrupt, exception, or trap, the CPU simply
clears the pipeline and switches instruction sets.

In each register set, the Program Counter (PC) is register 15, whereas the status register (SR)
or condition code register (CC) is register 14. All other registers are identical in their hardware
functionality.1 By convention, the stack pointer is register 13 and noted as (SP). Beyond this con-
vention, word accesses to offsets of the stack pointer are compressed when using the CIS instruction
set. Also by convention, if the compiler needs a frame pointer it will be placed into register 12,
and may be abbreviated by FP. Finally, by convention, R0 will hold a subroutine’s return address,
sometimes called the link register (LR).

When the CPU is in supervisor mode, instructions can access both register sets via the MOV

instruction, whereas when the CPU is in user mode, MOV instructions will only offer access to user
registers. We’ll discuss this further in subsection. 2.2.9.

2.2.2 The Status Register, CC

The status register (CC) is special, and bears further mention. As shown in Fig. 2.1, the lower
sixteen bits of the status register form a set of CPU state and condition codes. The other bits are
reserved for future uses.

1Jumps to R0, an instruction used to implement a return from a subroutine, may be optimized in the future within
the early branch logic.

www.opencores.com Rev. 1.1 8

Gisselquist Technology, LLC Specification 2018/12/21

Of the condition codes, the bottom four bits are the current flags: Zero (Z), Carry (C), Negative
(N), and Overflow (V). These flags maintain their usual definition from other CPUs that use them,
for all but the shift right instructions. On those instructions that set the flags, these flags will be
set based upon the output of certain instructions. If the result is zero, the Z (zero) flag will be
set. If the high order bit is set, the N (negative) flag will be set. If the instruction caused a bit to
fall off the end, the carry bit will be set. In comparisons, this is equivalent to a less–than unsigned
comparison. Finally, if the instruction causes a signed integer overflow, the V (overflow) flag will be
set afterwards.

We’ll walk through the next many bits of the status register in order from least significant to
most significant.

4. The next bit is a sleep bit. Set this bit to one to disable instruction execution and place the
CPU to sleep, or to zero to keep the pipeline running. Setting this bit will cause the CPU
to wait for an interrupt (if interrupts are enabled), or to completely halt (if interrupts are
disabled). This leads to the WAIT and HALT opcodes which will be discussed more later. In
order to prevent users from halting the CPU, only the supervisor is allowed to both put the
CPU to sleep and disable interrupts. Any user attempt to do so will simply result in a switch
to supervisor mode.

5. The sixth bit is a global interrupt enable bit (GIE). This bit also forms the top, or fifth, bit
of any register address. When this sixth bit is a ‘1’ interrupts will be enabled, else disabled.
When interrupts are disabled, the CPU will be in supervisor mode, otherwise it is in user
mode. Thus, to execute a context switch, one only need enable or disable interrupts. (When
an interrupt line goes high, interrupts will automatically be disabled, as the CPU goes and
deals with its context switch.) Special logic has been added to keep the user mode from setting
the sleep register and clearing the GIE register at the same time, with clearing the GIE register
taking precedence.

Whenever read, the supervisor CC register will always have this bit cleared, whereas the user
CC register will always have this bit set.

6. The seventh bit is a step bit in the user CC register, and zero in the supervisor CC director.
This bit can only be set from supervisor mode. After setting this bit, should the supervisor
mode process switch to user mode, it would then accomplish one instruction in user mode
before returning to supervisor mode. This bit has no effect on the CPU while in supervisor
mode.

This functionality was added to enable a userspace debugger functionality on a user process,
working through supervisor mode of course.

The CPU can be stepped in supervisor mode. Doing so requires the CPU debug functionality,
not the step bit.

7. The eighth bit is a break enable bit. When applied to the supervisor CC register, this controls
whether a break instruction in user mode will halt the processor for an external debugger
(break enabled), or whether the break instruction will simply send send the CPU into interrupt
mode. This bit can only be set within supervisor mode. However, when applied to the user CC
register, from supervisor mode, this bit will indicate whether or not the reason the CPU entered
supervisor mode was from a break instruction or not. This break reason bit is automatically

www.opencores.com Rev. 1.1 9

Gisselquist Technology, LLC Specification 2018/12/21

cleared upon any transition to user mode, although it can also be cleared by the supervisor
writing to the user CC register.

Encountering a break in supervisor mode will halt the CPU independent of the break enable
bit.

This functionality was added to enable a debugger to set and manage breakpoints in a user
mode process.

8. The ninth bit is an illegal instruction bit. When the CPU tries to execute either a non-existent
instruction, or an instruction from an address that produces a bus error, the CPU will (if
implemented) switch to supervisor mode while setting this bit. The bit will automatically be
cleared upon any return to user mode.

9. The tenth bit is a trap bit. It is set whenever the user requests a soft interrupt, and cleared
on any return to userspace command. This allows the supervisor, in supervisor mode, to
determine whether it got to supervisor mode from a trap, from an external interrupt or both.

10. The eleventh bit is a bus error flag. If the user program encountered a bus error, this bit will
be set in the user CC register and the CPU will switch to supervisor mode. The bit may be
cleared by the supervisor, otherwise it is automatically cleared upon any return to user mode.
If the supervisor encounters a bus error, this bit will be set in the supervisor CC register and
the CPU will halt. In that case, either a CPU reset or a write to the supervisor CC register
will clear this register.

11. The twelfth bit is a division by zero exception flag. This operates in a fashion similar to the
bus error flag. If the user attempts to use the divide instruction with a zero denominator,
the system will switch to supervisor mode and set this bit in the user CC register. The bit is
automatically cleared upon any return to user mode, although it can also be manually cleared
by the supervisor. In a similar fashion, if the supervisor attempts to execute a divide by zero,
the CPU will halt and set the zero exception flag in the supervisor’s CC register. This will
automatically be cleared upon any CPU reset, or it may be manually cleared by the external
debugger writing to this register.

12. The thirteenth bit will operate in a similar fashion to both the bus error and division by zero
flags, only it will be set upon a (yet to be determined) floating point error.

13. In the case of CIS instructions, if an exception occurs after the first instruction but before
the second, the fourteenth bit of the CC register will be set to indicate this fact. This can be
combined with the user PC to the address of the half-word where the fault occurred.

14. The fifteenth bit references a clear cache bit. The supervisor may write a one to this bit in
order to clear the CPU instruction cache. The bit always reads as a zero.

15. Last, but not least, the sixteenth bit is reserved for a page not found memory exception to be
created by the memory management unit.

Some of the upper bits have been temporarily assigned to indicate CPU capabilities. This is not
a permanent feature, as these upper bits officially remain reserved.

www.opencores.com Rev. 1.1 10

Gisselquist Technology, LLC Specification 2018/12/21

012345678910111213141516171819202122232425262728293031

0 OpCode 0 18-bit Signed Immediate

0 DR Cnd 1 BR 14-bit Signed Immediate
Standard

{

0 5’hf A BR B 13-bit Signed ImmediateMOV
{

0 4’hc 23-bit Signed ImmediateLDI
{

0 3’h7 11 xxx IgnoredNOOP
{

Figure 2.2: Zip Instruction Set Format

2.2.3 Instruction Format

All ZipCPU instructions fit in one of the formats shown in Fig. 2.2. The basic format is that some
operation, defined by the OpCode, is applied if a condition, Cnd, is true in order to produce a result
which is placed in the destination register (DR).

There are three basic exceptions to this general instruction model. The first is the MOV instruction,
which steals bits 13 and 18 to allow supervisor access to user registers. In supervisor mode, these
are set to one to reference user registers, zero otherwise. They are ignored in user mode. The second
exception is the load 23–bit signed immediate instruction (LDI), in that it accepts no conditions and
uses only a 4-bit opcode. The last exception is the NOOP instruction group, containing the BREAK,
LOCK, SIM, and NOOP opcodes. These instructions ignore their register and immediate settings.
Further, the immediate bits used by these opcodes are available for simulation or debug facilities,
but otherwise ignored by the CPU.

2.2.4 Instruction OpCodes

With a 5–bit opcode field, there are 32–possible instructions as shown in Tbl. 2.2.

2.2.5 Conditional Instructions

Most, although not quite all, instructions may be conditionally executed. The 23–bit load immediate
instruction, together with the NOOP, BREAK, and LOCK instructions are the exceptions to this rule.
All other instructions may be conditionally executed.

From the four condition code flags, eight conditions are defined, as shown in Tbl. 2.3. There
are no condition codes for either less than or equal or greater than, whether signed or unsigned. In
a similar fashion, there is no condition code for not V—there just wasn’t enough space in 3–bits.
Ways of handling non–supported conditions are discussed in Sec. 2.2.6.

With the exception of CMP and TST instructions, conditionally executed instructions will not fur-
ther adjust the condition codes. Conditional CMP or TST instructions will adjust conditions whenever
they are executed. In this way, multiple conditions may be evaluated without branches, creating a
sort of logical and–but only if all the conditions are the same. For example, to do something if R0
is one and R1 is two, one might try code such as Tbl. 2.4.

The real utility of conditionally executed instructions is that, unlike conditional branches, con-
ditionally executed instructions will not stall the bus if they are not executed.

www.opencores.com Rev. 1.1 11

Gisselquist Technology, LLC Specification 2018/12/21

OpCode A-Reg Instruction Sets CC

5’h00 SUB Subtract
5’h01 AND Bitwise And
5’h02 ADD Add two numbers
5’h03 OR Bitwise Or Y
5’h04 XOR Bitwise Exclusive Or
5’h05 LSR Logical Shift Right
5’h06 LSL Logical Shift Left
5’h07 ASR Arithmetic Shift Right
5’h08 BREV Bit Reverse B operand into result
5’h09 LDILO Load Immediate Low N
5’h0a MPYUHI Upper 32 of 64 bits from an unsigned 32x32 multiply
5’h0b MPYSHI Upper 32 of 64 bits from a signed 32x32 multiply Y
5’h0c MPY 32x32 bit multiply
5’h0d MOV Move OpB into Ra N
5’h0e DIVU R0-R13 Divide, unsigned Y
5’h0f DIVS R0-R13 Divide, signed

5’h10 CMP Compare (Ra-OpB) to zero Y
5’h11 TST Test (AND w/o setting result)
5’h12 LW Load a 32-bit word from memory (OpB) into Ra
5’h13 SW Store a 32-bit word from Ra into memory at (OpB)
5’h14 LH Load 16-bits from memory (opB) into Ra, clear upper 16 bits N
5’h15 SH Store the lower 16-bits of Ra into memory at (OpB)
5’h16 LB Load 8-bits from memory (OpB) into Ra, clear upper 24 bits
5’h17 SB Store the lower 8-bits of Ra into memory at (OpB)

5’h18/9 LDI Load 23–bit signed immediate N

5’h1a FPADD R0-R13 Floating point add
5’h1b FPSUB R0-R13 Floating point subtract
5’h1c FPMPY R0-R13 Floating point multiply Y
5’h1d FPDIV R0-R13 Floating point divide
5’h1e FPI2F R0-R13 Convert integer to floating point
5’h1f FPF2I R0-R13 Convert floating point to integer

5’h1c BREAK None(15)
5’h1d LOCK None(15) N
5’h1e SIM None(15)
5’h1f NOOP None(15)

Table 2.2: ZipCPU OpCodes

www.opencores.com Rev. 1.1 12

Gisselquist Technology, LLC Specification 2018/12/21

Code Mnemonic Condition
3’h0 None Always execute the instruction
3’h1 .Z Only execute when ‘Z’ is set
3’h2 .LT Less than (‘N’ set)
3’h3 .C Carry set (Also known as less-than unsigned)
3’h4 .V Overflow set
3’h5 .NZ Only execute when ‘Z’ is not set
3’h6 .GE Greater than or equal (‘N’ not set)
3’h7 .NC Not carry (also known as greater-than or equal, unsigned)

Table 2.3: Conditions for conditional operand execution

CMP 1,R0

; Condition codes are now set based upon R0-1
CMP.Z 2,R1

; If R0 6= 1, conditions are unchanged, Z is still false.
; If R0 = 1, conditions are now set based upon R1-2.
; Now some instruction could be done based upon the conjunction
; of both conditions.
; While we use the example of a SW, it could easily be any instruction.
SW.Z R0,(R2)

Table 2.4: An example of a double conditional

www.opencores.com Rev. 1.1 13

Gisselquist Technology, LLC Specification 2018/12/21

Original Modified Name

CMP Imm,Ry

BLE label

CMP 1+Imm,Ry

BLT label

Less-than or equal (signed, Z or N set)

CMP Rx,Ry

BLE label

CMP Rx,Ry

BLT label

BZ label

Less-than or equal (signed, Z or N set)

CMP Imm,Ry

BGT label

CMP 1+Imm,Ry

BGE label

Greater-than (immediate)

CMP Rx,Ry

BGT label

CMP Ry,Rx

BLT label

Greater-than (register)

CMP Imm,Ry

BLEU label

CMP 1+Imm,Ry

BC label

Less-than or equal unsigned immediate

CMP Rx,Ry

BLEU label

CMP Ry,Rx

BNC label

Less-than or equal unsigned register

CMP Imm,Ry

BGTU label

CMP 1+Imm,Ry

BNC label

Greater-than unsigned (immediate)

CMP Rx,Ry

BGTU label

CMP Ry,Rx

BC label

Greater-than unsigned

Table 2.5: Modifying conditions

2.2.6 Modifying Conditions

A quick look at the list of conditions supported by the ZipCPU and listed in Tbl. 2.3 reveals that the
ZipCPU does not have a full set of conditions. In particular, only one explicit unsigned condition is
supported. Therefore, Tbl. 2.5 shows examples of how these unsupported conditions can be created
simply by adjusting the compare instruction, for no extra cost in clocks. Of course, if the compare
originally had an immediate within it, that immediate would need to be loaded into a register in
order to do make some of these adjustments. That case is shown as the last case above.

Many of these alternate conditions are chosen by the compiler implementation.
Users should be aware of any signed overflow that might take place within the modified conditions,

especially when numbers close to the limit are used.

2.2.7 Operand B

Many instruction forms have a 19-bit source “Operand B”, or OpB for short, associated with them.
This “Operand B” is shown in Fig. 2.2 as part of the standard instructions. An Operand B is
either equal to a register plus a 14–bit signed immediate offset, or an 18–bit signed immediate offset
by itself. This value is encoded as shown in Tbl. 2.6. This format represents a deviation from
many other RISC architectures that use R0 to represent zero, such as OpenRISC and RISC-V. Here,
instead, we use a bit within the instruction to note whether or not an immediate is used. The result
is that ZipCPU instructions can encode larger immediates within their instruction space.

In those cases where a fourteen or eighteen bit immediate doesn’t make sense, such as for LDILO,
the extra bits associated with the immediate are simply ignored. (This rule does not apply to the
shift instructions, ASR, LSR, and LSL–which all use all of their immediate bits.)

www.opencores.com Rev. 1.1 14

Gisselquist Technology, LLC Specification 2018/12/21

0123456789101112131415161718

0 18-bit Signed Immediate

1 Reg 14-bit Signed Immediate

Table 2.6: Bit allocation for Operand B

2.2.8 Address Modes

The ZipCPU supports two addressing modes: register plus immediate, and immediate addressing.
Addresses are encoded in the same fashion as Operand B’s, discussed above.

2.2.9 Move Operands

The previous set of operands would be perfect and complete, save only that the CPU needs access
to non–supervisory registers while in supervisory mode. The MOV instruction has been modified
to fit that purpose. The two bits, shown as A and B in Fig. 2.2 above, are designed to contain the
high order bit of the 5–bit register index. If the B bit is a ‘1’, the source operand comes from the
user register set. If the A bit is a ‘1’, the destination operand is in the user register set. A zero bit
indicates the current register set.

This encoding has been chosen to keep the compiler simple. For the most part, the extra bits
are quietly set to zero by the compiler. Assembly instructions, or particular built–in instructions,
can be used to get access to these cross register set move instructions.

Further, the MOV instruction lacks the full OpB capability to use a register or a register plus
immediate as a source, since a load immediate instruction already exists. As a result, all moves
come from a register plus a potential offset.

2.2.10 Multiply Operations

The ZipCPU supports three separate 32x32-bit multiply instructions: MPY, MPYUHI, and MPYSHI. The
first of these produces the low 32-bits of a 32x32-bit multiply result. The second two produce the
upper 32-bits. The first, MPYUHI, produces the upper 32-bits assuming the multiply was unsigned,
whereas MPYSHI assumes it was signed. Each multiply instruction is independent of every other in
execution, although the compiler is likely to use them in a dependent fashion.

In an effort to maintain a fast clock speed, all three of these multiplies have been slowed down in
logic. Thus, depending upon the setting of OPT MULTIPLY within cpudefs.v, or the corresponding
IMPLEMENT MPY parameter that may override it, the multiply instructions will either 1) cause an
ILLEGAL instruction error (OPT MULTIPLY=0, or no multiply support), 2) take one additional clock
(OPT MULTIPLY=2), or 3) take two additional clock cycles (OPT MULTIPLY=3).2

2.2.11 Divide Unit

The ZipCPU also has an optional divide unit which can be built alongside the ALU. This divide
unit provides the ZipCPU with another two instructions that cannot be executed in a single cycle:

2Support also exists for a one clock multiply (no clock slowdown), or a four clock multiply, and I am anticipating
supporting a much longer multiply for FPGA architectures with no accelerated hardware multiply support.

www.opencores.com Rev. 1.1 15

Gisselquist Technology, LLC Specification 2018/12/21

0123456789101112131415

COp 0 Imm.

1 DR 1 BR Imm

LDI 8’b Imm

MOV 1 BR Imm

Figure 2.3: Zip Compressed Instruction Set (CIS) Format

COp Instruction

3’h00 SUB Subtract
3’h01 AND Bitwise And
3’h02 ADD Add two numbers
3’h03 CMP Bitwise Or
3’h04 LW Bitwise Exclusive Or
3’h05 SW Logical Shift Right
3’h06 LDI Logical Shift Left
3’h07 MOV Arithmetic Shift Right

Table 2.7: CIS OpCodes

DIVS, or signed divide, and DIVU, the unsigned divide. These are both 32–bit divide instructions,
dividing one 32–bit number by another. In this case, the Operand B field, whether it be register or
register plus immediate, constitutes the denominator, whereas the numerator is given by the other
register.

As with the multiply, the divide instructions are also a multi–clock instructions. While the divide
is running, the ALU, any memory loads, and the floating point unit (if installed) will be idle. Once
the divide completes, other units may continue.

Of course, any divide instruction can result in a division by zero exception. If this happens the
CPU will either suddenly transition from user mode to supervisor mode, or it will halt if the CPU
is already in supervisor mode. Upon exception, the divide by zero bit will be set in the CC register.
In the case of a user mode divide by zero, this will be cleared by any return to user mode command.
The supervisor bit may be cleared either by a reboot or by the external debugger.

2.3 CIS Instructions

The ZipCPU also supports a compressed instruction set (CIS), outlined in Fig. 2.3, when enabled
via OPT CIS. This compressed instruction set packs two instructions per word. Words must still
be aligned, and jumping into the middle of a compressed instruction is not allowed. Further, the
CIS only permits the encoding of 8 of the 32 opcodes available in the ISA, as listed in Tbl. 2.7. A
final feature of the compressed instruction set has to do with LW and SW instructions. An LW or SW

www.opencores.com Rev. 1.1 16

Gisselquist Technology, LLC Specification 2018/12/21

012345678910111213141516171819202122232425262728293031

00 Reserved for debuggerBREAK
{

0 3’h7 111 01 IgnoredLOCK
{

10 Reserved for SimulatorSIM
{

11NOOP
{

Figure 2.4: NOOP/Break/LOCK Instruction Format

instruction with bit-7 set low references an offset of the Stack Pointer, (SP). Hence the compressed
instruction set allows loads and stores to offsets of the Stack Pointer of -128 octets on up to 127
octets. In practice, this gives the compressed load and store instructions, when referencing the stack,
thirty–two words that they can reference.

This compressed instruction set somewhat similar to other architectures that have a thumb
instruction set, with the difference that the ZipCPU can intermix regular and thumb instructions at
will. When using the CIS, instructions are still issued one at a time, however interrupts are disabled
between instruction halves, in order to prevent the CPU from stopping mid instruction. Further, it
is the silent job of the assembler to compress CIS instructions in an opportunistic fashion.

The disassembler represents CIS instructions by placing a vertical bar between the two compo-
nents, while still leaving them on the same line.

The CIS instruction set does not support conditional execution.

2.3.1 BREAK, Bus LOCK, SIM, and NOOP Instructions

Four instructions within the opcode list in Tbl. 2.2, are somewhat special. These are the BREAK, bus
LOCK, SIM, and NOOP instructions. These are encoded according to Fig. 2.4.

The BREAK instruction is useful for creating a debug instruction that will halt the CPU without
executing. If in user mode, depending upon the setting of the break enable bit, it will either switch
to supervisor mode or halt the CPU–depending upon where the user wishes to do his debugging.
The lower 22 bits of this instruction are reserved for the debuggers use.

The LOCK instruction provides the ZipCPU’s atomic operation support, althought it only works
when the CPU is configured for pipeline mode.3 It works by stalling the ALU pipeline stack until
all prior stages are filled, and then it guarantees that once a bus cycle is started, the wishbone CYC

line will remain asserted for up to three instructions. This allows the execution of one memory load
(ex. LW), one ALU operation (ex. ADD), and then another memory instruction (ex. SW), to take place
in an uninterrupted fashion. Example uses of this capability include an atomic increment, such as
LOCK, LW (Rx),Ry, ADD #1,Ry, SW Ry,(Rx), or even a two instruction pair such as a test and set
sequence: LDI 1,Rz, LOCK, LW (Rx),Ry, SW Rz,(Rx).

The SIM and NOOP instructions need a touch more explaining. From the standpoint of the CPU,
when running from Verilog within an FPGA, the SIM instruction is an illegal instruction–generating

3The reason for not allowing LOCK support in non-pipelined mode is that the instruction fetch is not allowed to
interrupt a lock cycle. In non-pipelined mode, the instruction fetch must take place between every bus access, negating
this utility.

www.opencores.com Rev. 1.1 17

Gisselquist Technology, LLC Specification 2018/12/21

an illegal instruction exception. Likewise the NOOP instruction is just that: an instruction that
consumes a clock, but does not perform any operation. In both cases, the lower 22–bits are ignored.

Both SIM and NOOP instructions, though, contain 22–bits that can be used by a simulator if
present. The encoding of these 22-bits is identical, so that programs that run in a simulator may
run on actual hardware as well (using the NOOP encoding), or they may complain that they were
unintended to run on actual hardware, such as if the SIM encoding were used. Particular encodings
allow for exiting the simulation with a known exit code, xEXIT, dumping either one or all registers,
xDUMP, or simpling sending a character to the simulator’s standard output stream, xOUT–where x is
either N for the NOOP version of the instruction, or S for the SIM version of the opcode.

The SIM instruction is currrently a new facility for the ZipCPU, and so its functionality remains
under test.

2.3.2 Floating Point

Although the ZipCPU does not (yet) have a floating point unit, the current instruction set offers six
opcodes for floating point operations, and treats floating point exceptions like divide by zero errors.
Once this unit is built and integrated together with the rest of the CPU, the ZipCPU will support
32–bit floating point instructions natively. Any 64–bit floating point instructions will either need to
be emulated in software, or else they will need an external floating point peripheral.

Until this FPU is built and integrated, of even afterwards if the floating point unit is not installed
by option, floating point instructions will trigger an illegal instruction exception, which may be
trapped and then implemented in software.

2.3.3 Derived Instructions

The ZipCPU supports many other common instructions by construction, although not all of them
are single cycle instructions. Tables 2.8, 2.9, 2.10 and 2.11 show how these other instructions may
be implemented on the ZipCPU. Many of these instructions will have assembly equivalents, such as
the branch instructions, to facilitate working with the CPU.

2.3.4 Interrupt Handling

The ZipCPU does not maintain any interrupt vector tables. If an interrupt takes place, the CPU
simply switches to from user to supervisor (interrupt) mode. Since getting to user mode in the first
place required a return to userspace instruction, RTU, once the interrupt takes place the supervisor
just simply starts executing code immediately after that RTU instruction.

Since the CPU may return from userspace after either an interrupt (hardware generated), a trap
(software generated), or an exception (a fault of some type), it is up to the supervisor code that
handles the transition to determine which of the three has taken place.

2.3.5 Pipeline Stages

As mentioned in the introduction, and highlighted in Fig. 1.1, the ZipCPU supports a five stage
pipeline.

www.opencores.com Rev. 1.1 18

Gisselquist Technology, LLC Specification 2018/12/21

Mapped Actual Notes
ABS Rx TST -1,Rx

NEG.LT Rx

Absolute value, depends upon the derived NEG in-
struction below, and so this expands into three
instructions total.

ADD Ra,Rx

ADDC Rb,Ry

Add Ra,Rx

ADD.C $1,Ry

Add Rb,Ry

Add with carry

BRA.x +/-$Addr ADD.x $Addr+PC,PC Branch or jump on condition x. Works for 18–bit
signed address offsets.

BUSY ADD $-1,PC Execute an infinite loop. This is used within
ZipCPU simulations as the execute simulation on
error instruction.

CLRF.NZ Rx XOR.NZ Rx,Rx Clear Rx, and flags, if the Z-bit is not set
CLR Rx LDI $0,Rx Clears Rx, leaving the flags untouched. This in-

struction cannot be conditional.
CLR.NZ Rx BREV.NZ $0,Rx Clears Rx, leaving the flags untouched. This in-

struction can be executed conditionally. The as-
sembler will quietly choose between LDI and BREV

depending upon the existence of the condition.
EXCH.W Rx MOV Rx,Rh

LSL $16,Rh

LSR $16,Rx

OR Rh,Rx

Exchanges the top and bottom 16’bit words of Rx

HALT Or $SLEEP,CC This only works when issued in inter-
rupt/supervisor mode. In user mode this is
simply a wait until interrupt instruction.
This is also used within the simulator as an exit
simulation on success instruction.

INT LDI $0,CC This is also known as a trap instruction
IRET OR $GIE,CC Also known as an RTU instruction (Return to

Userspace)
JMP R6+$Offset MOV $Offset(R6),PC Only works for 13–bit offsets. Other offsets require

adding the offset first to R6 before jumping.
LJMP $Addr LW (PC),PC

Address

Although this only works for an unconditional
jump, and it only works in an architecture with
a unified instruction and data address space, this
instruction combination makes for a nice combi-
nation that can be adjusted by a linker at a later
time.

LJMP.x $Addr LW.x 4(PC),PC

ADD 4,PC

Address

Long jump, works for a conditional long jump, not
necessarily the best way to do this.

Table 2.8: Derived Instructions

www.opencores.com Rev. 1.1 19

Gisselquist Technology, LLC Specification 2018/12/21

Mapped Actual Notes
LJSR $Addr MOV $8+PC,R0

LW (PC),PC

Address

Similar to LJMP, but it handles the return address
properly.

JSR PC+$Offset MOV $4+PC,R0

ADD $Offset,PC

This is similar to the jump and link instructions
from other architectures, save only that it requires
a specific link instruction, seen here as the MOV

instruction on the left.
LDI $val,Rx BREV REV(val)&0x0ffff,Rx

LDILO (val&0x0ffff),Rx

Sadly, there’s not enough instruction space to
load a complete immediate value into any register.
Therefore, fully loading any register takes two cy-
cles. The LDILO (load immediate low) instruction
has been created to facilitate this together with
BREV.
This is also the appropriate means for setting a
register value to an arbitrary 32–bit value in a
post–assembly link operation.

LSL $1,Rx

LSLC $1,Ry

LSL $1,Ry

LSL $1,Rx

OR.C $1,Ry

Logical shift left with carry. Note that the instruc-
tion order is now backwards, to keep the condi-
tions valid. That is, LSL sets the carry flag, so if
we did this the other way with Rx before Ry, then
the condition flag wouldn’t have been right for an
OR correction at the end.

LSR $1,Rx

LSRC $1,Ry

CLR Rz

LSR $1,Ry

BREV.C $1,Rz

LSR $1,Rx

OR Rz,Rx

Logical shift right with carry. Unlike the shift
left, this approach doesn’t extend well to numbers
larger than two words.

NEG Rx XOR $-1,Rx

ADD $1,Rx

Negates Rx

NEG.C Rx MOV.C $-1+Rx,Rx

XOR.C $-1,Rx

Conditionally negates Rx

NOT Rx XOR $-1,Rx One’s complement
POP Rx LW $(SP),Rx

ADD $4,SP

The compiler avoids the need for this instruction
and the similar PUSH instruction when setting up
the stack by coalescing all the stack address modi-
fications into a single instruction at the beginning
of any stack frame.

PUSH Rx SUB $4,SP

SW Rx,$(SP)

Note that for pipelined operation, it helps to co-
alesce all the SUB’s into one command, and place
the SW’s right after each other. Further, to avoid
a pipeline stall, the immediate value for the first
store must be zero.

Table 2.9: Derived Instructions, continued

www.opencores.com Rev. 1.1 20

Gisselquist Technology, LLC Specification 2018/12/21

PUSH Rx-Ry SUB $4n,SP
SW Rx,$(SP) ...

SW Ry,$4 (n− 1)(SP)

Multiple pushes at once only need the single subtract
from the stack pointer. This derived instruction is
analogous to a similar one on the Motorola 68k archi-
tecture, although the Zip Assembler does not support
the combined instruction. This instruction also sup-
ports pipelined memory access.

RESET LDI 0xff000000,R2

LDI 1,R1

SW R1,$watchdog(R2)

BUSY

This depends upon the existence of a watchdog
peripheral, and the peripheral base address being
preloaded into R12. The BUSY instructions are re-
quired because the CPU will continue until the SW

has completed.
Another opportunity might be to jump to the reset
address from within supervisor mode.

RET MOV R0,PC This depends upon the form of the JSR given on the
previous page that stores the return address into R0.

SEXB Rx LSL 24,Rx

ASR 24,Rx

Signed extend an 8–bit value into a full word.

SEXH Rx LSL 16,Rx

ASR 16,Rx

Sign extend a 16–bit value into a full word.

STEP Rr,Rt LSR $1,Rr

XOR.C Rt,Rr

Step a Galois implementation of a Linear Feedback
Shift Register, Rr, using taps Rt

STEP OR $Step|$GIE,CC Steps a user mode process by one instruction
SUBR Rx,Ry XOR -1,Ry

ADD 1+Rx,Ry

Ry is set to Rx-Ry, rather than the normal subtract
which sets Ry to Ry-Rx.

SUB Ra,Rx

SUBC Rb,Ry

SUB Ra,Rx

SUB.C $1,Ry

SUB Rb,Ry

Subtract with carry. Note that the overflow flag may
not be set correctly after this operation.

SWAP Rx,Ry XOR Ry,Rx

XOR Rx,Ry

XOR Ry,Rx

While no extra registers are needed, this example does
take 3-clocks.

TRAP #X LDI $x,R1

AND ~$GIE,CC

This works because whenever a user lowers the $GIE
flag, it sets a TRAP bit within the uCC register.
Therefore, upon entering the supervisor state, the
CPU only need check this bit to know that it got
there via a TRAP. The trap could be made condi-
tional by making the LDI and the AND conditional.
In that case, the assembler would quietly turn the
LDI instruction into a BREV/LDILO pair, but the ef-
fect would be the same.

TS Rx,Ry,(Rz) LDI 1,Rx

LOCK

LW (Rz),Ry

SW Rx,(Rz)

A test and set instruction. The LOCK instruction in-
sures that the next two instructions lock the bus be-
tween the instructions, so no one else can use it. Thus
guarantees that the operation is atomic.

Table 2.10: Derived Instructions, continued

www.opencores.com Rev. 1.1 21

Gisselquist Technology, LLC Specification 2018/12/21

TST Rx TST $-1,Rx Set the condition codes based upon Rx without
changing Rx. Equivalent to a CMP $0,Rx.

WAIT Or $GIE | $SLEEP,CC Wait until the next interrupt, then jump to super-
visor/interrupt mode.

Table 2.11: Derived Instructions, continued

1. Prefetch: Reads instructions from memory. If the CPU has been configured with a cache,
the cache has been integrated into the prefetch. Stalls are also created here if the instruction
isn’t in the prefetch cache.

The ZipCPU supports one of three prefetch methods, depending upon the flags set at build
time within the cpudefs.v file.

The simplest is a non–cached implementation of a prefetch. This implementation is fairly small,
and ideal for users of the ZipCPU who need the extra space on the FPGA fabric. However,
because this non–cached version has no cache, the maximum number of instructions per clock
is limited to about one per eight–depending upon the bus/memory delay. This prefetch option
is set by leaving the OPT SINGLE FETCH line uncommented within the cpudefs.v file. Using
this option will also turn off the ZipCPU pipeline.

The second prefetch module is a non–traditional pipelined prefetch with a cache. This module
tries to keep the instruction address within a window of valid instruction addresses. While
effective, it is not a traditional cache implementation. A disappointing feature of this imple-
mentation is that it needs an extra internal pipeline stage to be implemented.

The third prefetch and cache module implements a more traditional cache. This cache provides
for the fastest CPU speed. The only drawback is that, when a cache line is loading, the CPU
will be stalled until the cache is completely loaded.

2. Decode: Decodes an instruction into it’s OpCode, register(s) to read, condition code, and
immediate offset. This stage also determines whether the flags will be read or set, whether
registers will be read (and hence the pipeline may need to stall), or whether the result will
be written back. In many ways, simplifying the CPU has meant simplifying this particular
pipeline stage and hence the instruction set architecture that it implements.

This stage is also responsible for both normal and CIS decoding. Hence, following this stage,
little information remains regarding whether or not the CPU was executing a CIS instruction.

3. Read Operands: Read from the register file and applies any immediate values to the result.
There is no means of detecting or flagging arithmetic overflow or carry when adding the
immediate to the operand. This stage will stall if any source operand is pending and the
immediate value is non–zero.

4. At this point, the processing flow splits into one of four tracks: An ALU track which will
accomplish a simple instruction, the MemOps stage which handles LW (load) and SW (store)
instructions, the divide unit, and the floating point unit.

www.opencores.com Rev. 1.1 22

Gisselquist Technology, LLC Specification 2018/12/21

• Loads will stall instructions in the read operands stage until the entire memory operation
is complete, lest a register be read from the register file only to be updated unseen by the
Load.

• Condition codes are set upon completion of the ALU, divide, or FPU stage. (Memory
operations do not set conditions.)

• Issuing a non–pipelined memory instruction to the memory unit while the memory unit
is busy will stall the entire pipeline until the memory unit is idle and ready to accept
another instruction.

5. Write-Back: Conditionally write back the result to the register set, applying the condition
and any special CC logic. This routine is quad-entrant: either the ALU, the memory, the
divide, or the FPU may commit a result. The only design rule is that no more than a single
register may be written in any given clock cycle.

This is also the stage where any special condition code logic takes place.

The ZipCPU does not support out of order execution. Therefore, if the memory unit stalls,
every other instruction stalls. The same is true for divide or floating point instructions–all other
instructions will stall while waiting for these to complete. Memory stores, however, can take place
concurrently with non–memory operations, although memory reads (loads) cannot. This is likely to
change with the integration of an memory management unit (MMU), in which case a store instruction
must stall the CPU until it is known whether or not the store address can be mapped by the MMU.

2.3.6 Pipeline Stalls

The processing pipeline can and will stall for a variety of reasons. Some of these are obvious, some
less so. These reasons are listed below:

• When the prefetch cache is exhausted

This reason should be obvious. If the prefetch cache doesn’t have the instruction in memory,
the entire pipeline must stall until an instruction can be made ready. In the case of the
pipefetch windowed approach to the prefetch cache, this means the pipeline will stall until
enough of the prefetch cache is loaded to support the next instruction. In the case of the more
traditional pfcache approach, the entire cache line must fill before instruction execution can
continue.

• While waiting for the pipeline to load following any taken branch, jump, return from interrupt
or switch to interrupt context (4 stall cycles, minimum)

Fig. 2.5 illustrates the situation for a conditional branch. In this case, the branch instruction,
BC, is nominally followed by instructions I1 and so forth. However, since the branch is taken,
the next instruction must be IA. Therefore, the pipeline needs to be cleared and reloaded.
Given that there are five stages to the pipeline, that accounts for the four stalls. (Were the
pipefetch cache chosen, there would be another stall internal to the pipefetch cache.)

The decode stage can handle the ADD $X,PC, LDI $X,PC, and LW (PC),PC instructions spe-
cially, however, when EARLY BRANCHING is enabled. These instructions, when not conditioned
on the flags, can execute with only a single stall cycle (two for the LW(PC),PC instruction),

www.opencores.com Rev. 1.1 23

Gisselquist Technology, LLC Specification 2018/12/21

clk

PF I4 IA IB IC ID IE IF

DC I3 CLR IA IB IC ID IE

OP I2 CLR IA IB IC ID

ALU I1 CLR IA IB IC

WB BC IA IB

Figure 2.5: A conditional branch generates 4 stall cycles

clk

PF BR I1 IA IB IC ID IE IF

DC BR CLR IA IB IC ID IE

OP BR IA IB IC ID

ALU BR IA IB IC

WB BR IA IB

Figure 2.6: An expedited branch costs a single stall cycle

www.opencores.com Rev. 1.1 24

Gisselquist Technology, LLC Specification 2018/12/21

such as is shown in Fig. 2.6. In this example, BR is a branch always taken, I1 is the instruction
following the branch in memory, while IA is the first instruction at the branch address. (CLR
denotes a clear–pipeline operation, and does not represent any instruction.)

• When reading from a prior register while also adding an immediate offset

1. OPCODE ?,RA

2. (stall)

3. OPCODE I+RA,RB

Since the addition of the immediate register within OpB decoding gets applied during the read
operand stage so that it can be nicely settled before the ALU, any instruction that will write
back an operand must be separated from the opcode that will read and apply an immediate
offset by one instruction. The good news is that this stall can easily be mitigated by proper
scheduling. That is, any instruction that does not add an immediate to RA may be scheduled
into the stall slot.

This is also the reason why, when setting up a stack frame, the top of the stack frame is used
first: it eliminates this stall cycle.4 Hence, to save registers at the top of a procedure, one
would write:

1. SUB 16,SP

2. SW R1,(SP)

3. SW R2,4(SP)

Had R1 instead been stored at 1(SP) as the top of the stack, there would’ve been an extra
stall in setting up the stack frame.

• When reading from the CC register after setting the flags

1. ALUOP RA,RB ; Ex: a compare opcode

2. (stall)

3. TST sys.ccv,CC

4. BZ somewhere

The reason for this stall is simply performance: many of the flags are determined via combina-
torial logic during the writeback cycle. Trying to then place these into the input for one of the
operands for an ALU instruction during the same cycle created a time delay loop that would
no longer execute in a single 100 MHz clock cycle. (The time delay of the multiply within the
ALU wasn’t helping either . . .).

This stall may be eliminated via proper scheduling, by placing an instruction that does not
set flags in between the ALU operation and the instruction that references the CC register.
For example, MOV $addr+PC,uPC followed by an RTU (OR $GIE,CC) instruction will not incur
this stall, whereas an OR $BREAKEN,CC followed by an OR $STEP,CC will incur the stall, while
a LDI $BREAKEN|$STEP,CC will not since it doesn’t read the condition codes before executing.

4This only applies if there is no local memory to allocate on the stack as well.

www.opencores.com Rev. 1.1 25

Gisselquist Technology, LLC Specification 2018/12/21

clk

PF LC I1 I2 I3 I4 I5 I6

DC LB LC I1 I2 I3 I4 I5

OP LA LB LC I1 I2 I3 I4

ALU I1 I2 I3

MEM Load

CYC

STB

ADR LA LB LC

ACK

Stall

DATA LA LB LC

WB LA LB LC I1 I2

B
u
s
 M

a
s
te

r
S
la

v
e

Figure 2.7: Pipeline handling of a load instruction

• When waiting for a memory read operation to complete

1. LW address,RA

2. (multiple stalls, bus dependent, 4 clocks best)

3. OPCODE I+RA,RB

Remember, the ZipCPU does not support out of order execution. Therefore, anytime the
memory unit becomes busy both the memory unit and the ALU must stall until the memory
unit is cleared. This is illustrated in Fig. 2.7, since it is especially true of a load instruction,
which must still write its operand back to the register file. Further, note that on a pipelined
memory operation, the instruction must stall in the decode operand stage, lest it try to read
a result from the register file before the load result has been written to it. Finally, note that
there is an extra stall at the end of the memory cycle, so that the memory unit will be idle for
two clocks before an instruction will be accepted into the ALU. Store instructions are different,
as shown in Fig. 2.8, since they can be busy with the bus without impacting later write back
pipeline stages. Hence, only loads stall the pipeline.

This, of course, also assumes that the memory being accessed is a single cycle memory and that
there are no stalls to get to the memory. Slower memories, such as the Quad SPI flash, will
take longer–perhaps even as long as forty clocks. During this time the CPU and the external
bus will be busy, and unable to do anything else. Likewise, if it takes a couple of clock cycles
for the bus to be free, as shown in both Figs. 2.7 and 2.8, there will be stalls.

www.opencores.com Rev. 1.1 26

Gisselquist Technology, LLC Specification 2018/12/21

clk

PF SC I1 I2 I3 I4 I5 I6 I�

DC SB SC I1 I2 I3 I4 I5 I6

OP SA SB SC I1 I2 I3 I4 I5

ALU I1 I2 I3 I4

MEM Store

CYC

STB

ADR SA SB SC

DATA SA SB SC

Stall

ACK

WB I1 I2 I3

B
u
s
 M

a
s
te

r
S
la

v
e

Figure 2.8: Pipeline handling of a store instruction

• Memory operation followed by a memory operation

1. SW address,RA

2. (multiple stalls, bus dependent, 4 clocks best)

3. LW address,RB

4. (multiple stalls, bus dependent, 4 clocks best)

In this case, the LW instruction cannot start until the SW is finished, as illustrated by Fig. 2.9.
With proper scheduling, it is possible to do something in the ALU while the memory unit is
busy with the SW instruction, but otherwise this pipeline will stall while waiting for it to
complete before the load instruction can start.

The ZipCPU has the capability of supporting a form of burst memory access, often called
pipelined memory access within this document due to its use of the Wishbone B4 pipelined
access mode. When using this mode, the CPU may issue multiple loads or stores at a time, to
the extent that all but the first take only a single clock. Doing this requires several conditions
to be true:

1. Aall accesses within the burst must all be reads or all be writes,

2. All must use the same base register for their address, and

3. There can be no stalls or other instructions between memory access instructions within
the burst.

www.opencores.com Rev. 1.1 27

Gisselquist Technology, LLC Specification 2018/12/21

clk

PF I1 I2 I3 I4 I5

DC LB I1 I2 I3 I4

OP SA LB I1 I2 I3

ALU I1 I2

MEM Store Load

CYC

STB

ADR SA LB

DATA SA

Stall

ACK

DATA LB

WB LB I1

B
u
s
 M

a
s
te

r
S
la

v
e

Figure 2.9: Pipeline handling of a store followed by a load instruction

4. Further, the immediate offset to memory must be either indentical or increasing by one
address each instruction.

These conditions work well for saving or storing registers to the stack in a burst operation.
Indeed, if you noticed, both Fig. 2.7 and Fig. 2.8 illustrated pipelined memory accesses. Beyond
saving and restoring registers to the stack, the compiler does not optimize well (yet) for using
this burst mode.

2.4 External Architecture

Having now described the CPU registers, instructions, and instruction formats, we now turn our
attention to how the CPU interacts with the rest of the world. Specifically, we shall discuss how the
bus is implemented, and the memory model assumed by the CPU.

2.4.1 Simplified Wishbone Bus

The bus architecture of the ZipCPU is that of a simplified, pipelined, WISHBONE bus built ac-
cording to the B4 specification. Several changes have been made to simplify this bus. First, all
unnecessary ancillary information has been removed. This includes the retry, tag, lock, cycle type
indicator, and burst indicator signals. The bus supports big endian operation where the high order
octet occupies the low order address. Second, we insist that all accesses be pipelined, and simplify
that further by insisting that pipelined accesses not cross peripherals—although we leave it to the

www.opencores.com Rev. 1.1 28

Gisselquist Technology, LLC Specification 2018/12/21

user to keep that from happening in practice. Finally, we insist that the wishbone strobe line be
zero any time the cycle line is inactive. This makes decoding simpler in slave logic: a transaction
is initiated whenever the strobe line is high and the stall line is low. For those peripherals that do
not generate stalls, only the strobe line needs to be tested for access. The transaction completes
whenever either the ACK or the ERR lines go high.

2.4.2 Memory Model

The memory model of the ZipCPU is that of a uniform 32–bit address space. The CPU knows nothing
about which addresses reference on–chip or off-chip memory, or even which reference peripherals.
Indeed, there is no indication within the CPU if a particular piece of memory can be cached or not,
save that the CPU assumes any and all instruction words can be cached.

The one exception to this rule revolves around addresses where the top 8-bits of their high order
word are all ones. These addresses are used to access a variety of optional peripherals that will be
discussed more in Sec. 2.4.3, but that are only present within the ZipSystem. When used with the
bare ZipBones, these addresses will cause a bus error.

The prefetch cache currently has no means of detecting an instruction that was changed, save by
clearing the instruction cache. This may be necessary when loading programs into previously used
memory, or when creating self–modifying code.

Should the memory management unit (MMU) be integrated into the ZipCPU, the MMU config-
uration will tell the ZipCPU wich addresses may be cached and which not.

This topic is discussed further in the linker section, Sec. 3.6.1 of the ABI chapter, Chap. 3.

2.4.3 ZipSystem

While the previous chapter describes a CPU in isolation, the ZipSystem includes a small minimum
set of peripherals that can be tightly integrated into the CPU. These peripherals are shown in
Fig. 2.10 and described here. They are designed to make the ZipCPU more useful in an Embedded
Operating System environment.

Interrupt Controller

Perhaps the most important peripheral within the ZipSystem is the interrupt controller. While
the ZipCPU itself can only handle one interrupt, and has only the one interrupt state: disabled or
enabled, the interrupt controller can make things more interesting.

The ZipSystem interrupt controller module supports up to 15 interrupts, all controlled from one
register. Further, it has been designed so that individual interrupts can be enabled or disabled indi-
vidually without having any knowledge of the rest of the controller setting. To enable an interrupt,
write to the register with the high order global enable bit set and the respective interrupt enable bit
set. No other bits will be affected. To disable an interrupt, write to the register with the high order
global enable bit cleared and the respective interrupt enable bit set. To clear an interrupt, write a
‘1’ to that interrupt’s status pin. A zero written to the register has the sole effect of disabling the
master interrupt enable bit.

As an example, suppose you wished to enable interrupt #4. You would then write to the register
a 0x80100010 to enable interrupt #4 and to clear any past active state. When you later wish to
disable this interrupt, you would write a 0x00100010 to the register. This both disables the interrupt

www.opencores.com Rev. 1.1 29

Gisselquist Technology, LLC Specification 2018/12/21

Figure 2.10: ZipSystem Peripherals

and clears the active indicator. This also has the side effect of disabling all interrupts, so a second
write of 0x80000000 may be necessary to re-enable any other interrupts.

The ZipSystem hosts two interrupt controllers: a primary and a secondary. The primary interrupt
controller is the one that interrupts the CPU. It has six local interrupt lines, the rest coming
from external interrupt sources. One of those interrupt lines to the primary controller comes from
the secondary interrupt controller. This controller maintains an interrupt state for the process
accounting counters, and any other external interrupts that didn’t fit into the primary interrupt
controller.

As a word of caution, because the interrupt controller is an external peripheral, and because
memory writes take place concurrently with any following instructions, any attempt to clear inter-
rupts on one instruction followed by an immediate Return to Userspace (RTU) instruction, may not
have the effect of having interrupts cleared before the RTU instruction executes.

Counter

The Zip Counter is a very simple counter: it just counts. It cannot be halted. When it rolls over, it
issues an interrupt. Writing a value to the counter just sets the current value, and it starts counting
again from that value.

Eight counters are implemented in the ZipSystem for process accounting if the INCLUDE ACCOUNTING COUNTERS

define is set within cpudefs.v. Four of those measure the performance of the system as a whole,
four are used for measuring user CPU usage. This may change in the future, as nothing as yet uses
these counters.

www.opencores.com Rev. 1.1 30

Gisselquist Technology, LLC Specification 2018/12/21

Timer

The Zip Timer is also very simple: it is a 31–bit counter that simply counts down to zero. When it
transitions from a one to a zero it creates an interrupt.

Writing any non-zero value to the timer starts the timer. If the high order bit is set when writing
to the timer, the timer becomes an interval timer and reloads its last start time on any interrupt.
Hence, to mark seconds, one might set the 31–bits of the timer to the number of clocks per second
and the top bit to one. Ever after, the timer will interrupt the CPU once per second–until a non–
interrupt interval is set in the timer. This reload capability also limits the maximum timer value to
231 − 1, rather than 232 − 1.

Watchdog Timer

The watchdog timer has only two differences from the of the other timers. The first difference is
that it is a one–shot timer. The second difference, though, is critical: the interrupt line from the
watchdog timer is tied to the reset line of the CPU. Hence writing a ‘1’ to the watchdog timer will
always reset the CPU. To stop the Watchdog timer, write a ‘0’ to it. To start it, write any other
number to it—as with the other timers.

Bus Watchdog

There is an additional watchdog timer on the Wishbone bus of the ZipSystem. This timer, however,
is hardware configured and not software configured. The timer is reset at the beginning of any bus
transaction, and only counts clocks during such bus transactions. If the bus transaction takes longer
than the number of counts the timer allots, it will raise a bus error flag to terminate the transaction.
This is useful in the case of any peripherals that are misbehaving. If the bus watchdog terminates
a bus transaction, the CPU may then read from its port to find out which memory location created
the problem.

Aside from its unusual configuration, the bus watchdog is just another implementation of the
fundamental timer described above–stripped down for simplicity.

Jiffies

This peripheral is motivated by the Linux use of ‘jiffies’ whereby a process can request to be put
to sleep until a certain number of ‘jiffies’ have elapsed. Using this interface, the CPU can read the
number of ‘jiffies’ from the peripheral (it only has the one location in address space), add the sleep
length to it, and write the result back to the peripheral. The zipjiffies peripheral will record
the value written to it only if it is nearer the current counter value than the last current waiting
interrupt time. If no other interrupts are waiting, and this time is in the future, it will be enabled.
(There is currently no way to disable a jiffie interrupt once set, other than to disable the interrupt
line in the interrupt controller.) The processor may then place this sleep request into a list among
other sleep requests. Once the timer expires, it would write the next Jiffy request to the peripheral
and wake up the process whose timer had expired.

Indeed, the Jiffies register is nothing more than a glorified counter with an interrupt. Unlike the
other counters, the internal Jiffies counter can only be read, never set. Writes to the jiffies register
create an interrupt time. When the Jiffies register later equals the value written to it, an interrupt
will be asserted and the register then continues counting as though no interrupt had taken place.

www.opencores.com Rev. 1.1 31

Gisselquist Technology, LLC Specification 2018/12/21

Finally, if the new value written to the Jiffies register is within the past 231−1 clock ticks, the
Jiffies register will immediately cause an interrupt and otherwise ignore the new request.

The purpose of this register is to support alarm times within a CPU. To set an alarm for a
particular process N clocks in advance, read the current Jiffies value, add N , and write it back to
the Jiffies register. The O/S must also keep track of values written to the Jiffies register. Thus,
when an ‘alarm’ trips, it should be removed from the list of alarms, the list should be resorted, and
the next alarm in terms of Jiffies should be written to the register–possibly for a second time.

Direct Memory Access Controller

The Direct Memory Access (DMA) controller can be used to either move memory from one location
to another, to read from a peripheral into memory, or to write from a peripheral into memory all
without CPU intervention. Further, since the DMA controller can issue (and does issue) pipeline
wishbone accesses, any DMA memory move will by nature be faster than a corresponding program
accomplishing the same move. To put this to numbers, it may take a program running on the CPU
18 clocks per word transferred, whereas this DMA controller can move one word in eight clocks–
provided it has bus access5 (The CPU gets priority over the bus, but once bus access is granted to
the DMA peripheral, it will not be revoked mid–read or mid–write.)

The DMA controller supports only aligned word accesses. It does not support byte or half-word
accesses.

When copying memory from one location to another, the DMA controller will copy in units of a
given transfer length–up to 1024 words at a time. It will read that transfer length into its internal
buffer, and then write to the destination address from that buffer.

When coupled with a peripheral, the DMA controller can be configured to start a memory copy
when any interrupt line goes high. Further, the controller can be configured to issue reads from (or
to) the same address instead of incrementing the address at each clock. The DMA completes once
the total number of items specified (not the transfer length) have been transferred.

In each case, once the transfer is complete and the DMA unit returns to idle, the DMA will issue
an interrupt.

2.5 Debug Interface

The ZipCPU supports an external debug port. Access to the port is the same as accessing a two
register peripheral on a wishbone bus, so the basic interface is fairly simple. Using this interface,
it is possible to both control the CPU, as well as read register values and current status from the
CPU.

While a more detailed discussion will be reserved for Sec. 5.2, here we’ll just discuss how it is
put together. The debug interface allows a controller access to the CPU reset line, and a halt line.
By raising the reset line, the CPU will be caused to clear it’s cache, to clear any internal exception
or error conditions, and then to start execution at the RESET ADDRESS–just like a normal reboot. In
a similar fashion, the debug interface allows you to control the cpu halt line into the CPU. Holding
this line high will hold the CPU in an externally halted state. Toggling the line low for one clock
allows one to step the CPU by one instruction. Lowering the line causes the CPU to go. A final

5The pipeline cost of the DMA controller, including setup cost, is a minimum of 14 + 2N clocks.

www.opencores.com Rev. 1.1 32

Gisselquist Technology, LLC Specification 2018/12/21

control wire, controlled by the debug interface, will force the CPU to clear its cache. All of these
control wires are set or cleared from the debug control register.

The two debug command registers also make it possible to read and write all 32 registers within
the CPU. In this fashion, a debugger can halt the CPU, investigate its state, and even modify
registers so as to have the CPU restart from a different state.

Finally, without halting the CPU, the debug controller can read from any single register, and it
can see if the CPU is still actively running, whether it is in user or supervisor modes, and whether
or not it is sleeping. This alone is useful for detecting deadlocks or other difficult problems.

www.opencores.com Rev. 1.1 33

Gisselquist Technology, LLC Specification 2018/12/21

3.

Application Binary Interface

This chapter discusses not the CPU itself, but rather how the GCC and binutils toolchains have
been configured to support the ZipCPU.

3.1 Executable File Format

ZipCPU executable files are stored in the Executable and Linkable Format (ELF), prior to being
placed in flash, or whatever memory they will be executed from.

The ZipCPU described by this specification uses the 16-bits 16’hdad1 to identify itself against
other CPUs. This is not an officially registered number, and may change in the future.

The ZipCPU does not (yet) have a dynamic linker/loader. All linking is currently static, and
done prior to run time.

3.2 Stack

Register R13 (also known as the SP register) is the stack register. The compiler generates code that
grows the stack from high addresses to lower addresses. That means that the stack will usually
start out set to a very large value, such as one past the last RAM address, and it will grow to lower
and lower values–hopefully never mixing with the heap. Memory at the current stack position is
assumed to be allocated.

When creating a stack frame for a function, the compiler will subtract the size of the stack
frame from the stack register. It will then store any registers used by the function, from R5 to
R12 (including the link register R0) onto offsets given by the stack pointer plus a constant. If a
frame pointer is used, the compiler uses R12 (or FP) for this purpose. The frame pointer is set by
moving the stack pointer plus an offset into FP. This MOV instruction effectively limits the size of any
individual stack frame to 212 − 1 octets.

Once a subroutine is complete, the frame is unwound. If the frame pointer, FP was used, then FP

is copied directly to the stack pointer, SP. Registers are restored, starting with R0 all the way to R12

(FP). This also restores, and obliterates, the subroutine frame pointer. Once complete, a value is
added to the stack pointer to return it to its original value, and a jump is made to the value located
within R0.

www.opencores.com Rev. 1.1 34

Gisselquist Technology, LLC Specification 2018/12/21

3.3 Relocations

The ZipCPU binutils back end supports several types of relocations, although the two most common
are the 32–bit relocations for register load and long jump.

The first of these is for loading an arbitrary 32–bit value into a register. Such instructions are
broken into a pair of BREV and LDILO instructions, and once the value of the parameter is known
their immediate values can be filled in.

The second type of 32–bit relocation is for jumps to arbitrary addresses. These jumps are
supported by the LW (PC),PC instruction, followed by the 32–bit address to be filled in later by the
linker. If the jump is conditional, then a conditional LW.x 4(PC),PC instruction is used, followed
by a ADD 4,PC and then the 32–bit relocation value.

If a branch distance is known and within reach, then it will be implemented with an ADD #,PC

instruction, possibly conditional, as necessary.
While other relocations are supported, they tend not to be used nearly as much as these two.

3.4 Call format

One unique of the ZipCPU is that it has no JSR instruction. The assembler attempts to minimize
this problem by replacing a JSR address instruction with a MOV #(PC),R0 followed by a jump to
the requested address. In this case, the offset to the PC for the MOV instruction is determined by
whether or not the jump can be accomplished with a local branch or a long jump.

While this works well in practice, this implementation prevents such things as JSR’s followed by
BRA’s from being combined together.

Finally, GCC will place first five operands passed to the subroutine into registers R1–R5. Any
additional operands are placed upon the stack.

3.5 Built-ins

The ZipCPU ABI supports the a number of built in functions. The compiler maps these functions
directly to assembly language equivalents, essentially providing the C programmer with access to
several assembly language instructions. These are:

1. zip bitrev(int) reverses the bits in the given integer, returning the result. This utilizes the
internal BREV instruction, and is designed to be used with FFT’s as necessary.

2. zip busy() executes an ADD -4,PC function, essentially forcing the CPU into a very tight
infinite loop.

3. zip cc() returns the value of the current CC register. This may be used within both user and
supervisor code to determine in which mode the CPU is within.

4. zip halt() executes an OR $SLEEP,CC instruction to place the processor to sleep. If the
processor is in supervisor mode, this halt’s the processor.

5. zip rtu() executes an OR $GIE,CC instruction. This will place the CPU into user mode, and
has no effect if the CPU is already in user mode.

www.opencores.com Rev. 1.1 35

Gisselquist Technology, LLC Specification 2018/12/21

6. zip step() executes an OR $STEP|$GIE,CC instruction. This will place the CPU into user
mode in order to step one instruction, and then return to supervisor mode. It has no effect if
the CPU is already in user mode.

7. zip system() executes an AND ~$GIE,CC instruction to return the CPU to supervisor mode.
This essentially executes a trap, setting the trap bit for the supervisor to examine. What this
instruction does not do is arrange for the trap arguments to be placed into the registers R1

through R5. Since this is a wholly inadequate solution, a function call may be made to an
assembly routine that executes a trap if necessary.

8. zip wait() executes a $SLEEP|$GIE,CC instruction. Unlike zip halt(), this zip wait()

instruction places the CPU into a wait state regardless of whether or not the CPU is in
supervisor mode or not. When this function, i.e. instruction, completes, it will leave the CPU
in supervisor mode upon an interrupt having taken place.

You may wish to set the user program counter prior to this instruction, as the prefetch unit will
try to load instructions from the address contained within the user program counter. Attempts
to read from addresses with sideeffects may not produce the desired outcome. However, once
that cache fails (or succeeds), the CPU will have been put to sleep and will do no more.

9. zip restore context(context *) inserts the 32 assembly instructions necessary to copy all
sixteen user registers to a memory region pointed to by the given context pointer, starting
with uR0 on up to uPC.

10. zip save context(context *) inserts the 32 assembly instructions necessary to copy all six-
teen user registers to a memory region pointed to by the given context pointer argument,
starting with uR0 on up to uPC.

11. zip ucc(), returns the value of the user CC register.

3.6 Linker Scripts

The ZipCPU makes no assumptions about its memory layout. The result, though, is that the
memory layout of a given project is board specific. This is accomplished via a board specific linker
script. This section will discuss some of the specifics of a ZipCPU linker script.

Because the ZipCPU uses a modified binutils package as part of its tool chain, the format for
this linker script is defined by the GNU LD project within binutils. Further details on that format
may be found within the GNU LD documentation within the binutils package.

This discussion will focus on those parts of the script specific to the ZipCPU.

3.6.1 Memory Types

Of the FPGA boards that the ZipCPU has been applied to, most of them have some combination
of three types of memory: flash, block RAM, and Synchronous Dynamic RAM (SDRAM). Of these
three, only the flash is non–volatile. The block RAM is the fastest, and the SDRAM the largest.
While other memory types are available, such as files on an external media such as an SD card or a
network drive, these three types have so far been sufficient for our purposes.

www.opencores.com Rev. 1.1 36

Gisselquist Technology, LLC Specification 2018/12/21

To support these memories, the linker script has three memory lines identifying where each
memory exists on the bus, the size of the memory, and any protections associated with it. For
example,

blkram (wx) : ORIGIN = 0x0008000, LENGTH = 0x0008000

specifies that there is a region of memory, called blkram, that can be read and written, and that
programs can execute from. This section starts at address 0x8000 and extends for another 0x8000
bytes. The other memories are defined in a similar manner, with names flash and sdram.

Following the memory section, three specific symbols are defined: flash, defining the beginning
of flash memory, blkram, defining the beginning of on–chip block RAM, and sdram, defining the
beginning of SDRAM. These symbols are used to make the bootloader’s task easier.

3.6.2 The Entry Function

The ZipCPU has, as a parameter, a RESET ADDRESS. It is important that this address contain a valid
instruction (or more), since this is the first instruction the ZipCPU will execute. Traditionally, this
address is also the first address in instruction memory as well.

To make this happen, the ZipCPU defines two additional segments: the .start and the .boot

segments. The .start segment is to have nothing in it but the very initial startup code. This
code needs to run from flash (or other ROM). By placing this segment at the very beginning of the
ZipCPU’s flash address space, and in particular at the first valid flash address, the ZipCPU will
boot from this address. This is the purpose of the .start section.

The .boot section has a similar purpose. This section includes anything associated with the
bootloader. It is a special section because, when loading from flash, the bootloader cannot be placed
in RAM, but must be placed in flash–since it is the code that loads things from flash into RAM.

It may also make sense to place any code executed once only within flash as well. Such code may
run slower than the main system code, but by leaving it in flash it can be kept from consuming any
higher speed RAM. To do this, place this other code into the .boot section.

You may also find that large data structures that are best left in flash can also be placed into
this .boot section as well for that purpose.

3.6.3 Bootloader Tags

The bootloader needs to know a couple things from the linker script. It needs to know what
code/data to copy to block RAM from the flash, what code/data to copy to SDRAM, and finally
what initial data area needs to be zeroed. Four additional pointers, set within a linker script, can
define these regions.

1. kernel image start

This is the first location in flash containing data that the bootloader needs to move.

2. kernel image end

This is a pointer to one past the last location in block RAM to place things into. If this pointer
is equal to kernel image start, then no information is placed into block RAM.

www.opencores.com Rev. 1.1 37

Gisselquist Technology, LLC Specification 2018/12/21

3. sdram image start

This should be equal to kernel image end. It is a pointer, within block RAM address
space, of the first location to be moved into SDRAM. By adding the difference between
sdram image start and blkram to the flash address in kernel image start, the actual
source address within the flash of the code/data that needs to be copied into SDRAM can be
determined.

4. sdram image end

This is the ending address of any code/data to be copied into SDRAM. The distance between
this pointer and sdram should be the amount of data to be placed into SDRAM.

5. bss image end

The BSS segment contains data the starts with an initial value of zero. Such data are usually
not placed in the executable file, nor are they placed into any flash image. This address points
to the last location in SDRAM used by the BSS segment. The bootloader is responsible then
for clearing the SDRAM between sdram image end and bss image end.

The bootloader must also be robust enough to handle the cases where 1) there is no SDRAM,
2) there is no block RAM, and 3) where there is non requirement to move memory at all—such
as when the program is placed into memory and started from there.

3.6.4 Other required linker symbols

Two other symbols need to be defined in the linker script, which are used by the startup code. These
are:

1. top of stack

This is the address that the startup code will set the stack pointer to point to. It may be one
past the last location of a RAM memory, whether block RAM or SDRAM.

2. top of heap

This is the first location past the end of the .bss segment. Equivalently, this is the address of
the first unused piece of memory, or the location from whence to start any dynamic memory
subsystem.

All of these symbols need to reference word aligned addresses.

3.7 Loading ZipCPU Programs

There are two basic ways to load a ZipCPU program, depending upon whether or not the ZipCPU is
active within the current configuration. If the ZipCPU is not a part of the current FPGA configura-
tion, one need only write the flash and then switch configurations. It will be the CPU’s responsibility
to place itself in RAM then.

The more practical alternative is a little more involved, and there are several steps to it.

www.opencores.com Rev. 1.1 38

Gisselquist Technology, LLC Specification 2018/12/21

1. Halt the CPU by writing 0x0440 to the CPU control register. This both halts and resets the
CPU. It then prevents both bus contention, while writing the new instructions to memory,
as well as preventing the CPU from running some instructions from one program and other
instructions from another.

2. Load the program into memory. For many programs this will involve loading the program into
flash, and necessitate having and using a flash controller. The ZipCPU also supports being
loaded straight into RAM address as well, as though the bootloader had completed it’s task.

3. You may optionally, at this point, clear all of the CPUs registers, to make certain the reboot
is clean.

4. Set the sPC register to the starting address.

5. Clear the instruction cache in order to force the CPU to reload its cache upon start.

6. Release the CPU by writing to the CPU debug control register a number between 0 and 31.
This number will correspond to the register number of the register that can be “peeked” at
while the CPU is running.

3.8 Starting a ZipCPU program

3.8.1 CRT0

Most computers have a section of code, conventionally called crt0, which loads a program into
memory. On the ZipCPU, this code starts at start. It is responsible for setting the stack pointer,
calling the boot loader, and then calling the main entry function, entry().

Because start must be the first symbol in a program, and because that first symbol is located
at the boot address for the CPU, the start is placed into the .start segment. It is the only routine
placed there.

On those CPU’s that don’t have enough logic space for a debugger, it may be useful to place a
routine to dump any registers, stack values and/or kernel traces to an output routine at this time.
That way, on any kernel fault, the kernel can be brought back up with a debug trace. This works
because rebooting the CPU doesn’t reset any register values save the sCC and sPC.

3.8.2 The Bootloader

As discussed in Sec. 3.6.3, the bootloader must be placed into flash if it is used. It can be a small
C program (it need not be assembly, like start), and it only needs to copy memory. First, it
copies any memory from flash to block RAM. Second, it copies any necessary memory from flash to
SDRAM. Then, it zeros any memory necessary in SDRAM (or block RAM, if there is no SDRAM).

These memory copies may be done with the DMA, or they may be done one–at–a time for a
performance penalty.

www.opencores.com Rev. 1.1 39

Gisselquist Technology, LLC Specification 2018/12/21

3.8.3 Kernel Entry

After calling the boot loader, execution returns to the start routine which then calls the main
program entry function, entry(). No requirements are laid upon this entry function regarding
where it must reside. The simplest place to put it is in Block RAM–and just to put all code and
variables there. In reality, this entry function may easily be left in flash. It often doesn’t need to
run particularly fast, since there may easily be one–time setup functions that are independent of the
programs main loop.

3.8.4 Kernel Main

If the kernel entry function, entry(), is placed in flash, it should call a separate function to run the
main while loop once it has been set up. In this fashion, the main while loop may be kept in the
fastest memory necessary (that it will fit within), to ensure good performance.

www.opencores.com Rev. 1.1 40

Gisselquist Technology, LLC Specification 2018/12/21

4.

Operation

This chapter will explore how to perform common tasks with the ZipCPU, offering examples in both
C and assembly for those tasks.

4.1 CRT0

Of course, the one task that every CPU must do is start the CPU for other tasks. The ZipCPU is
no different. This is the one ZipCPU task that must take place in assembly, since no assumptions
can be made about the state of the ZipCPU upon entry. In particular, the stack pointer, SP, needs
to be loaded with a valid memory location before any higher level language can work. Once that
has taken place, it is then possible to call other higher level routines.

Table. 4.1 presents an example of one such initialization routine that first sets up the stack, then
calls a bootloader routine. Upon completion, the initialization routine then calls the main entry
point for the CPU. Should that main entry point ever return, a short routine following halts the
CPU.

The example also highlights one optimization that didn’t take place. Instead of placing the
after bootloader address into R0, this script could have placed the entry() address into R0. Had
it done so, the CPU would not have suffered the pipeline stalls associated with two long jumps: the
first to R0, and the second to entry. Instead, it would have suffered such stalls only once: when
jumping to entry().

4.2 System High

The easiest and simplest way to run the ZipCPU is in the system high mode. In this mode, the
CPU runs your program in supervisor mode from reboot to power down, and is never interrupted.
You will need to poll the interrupt controller to determine when any external condition has become
active. This mode is incredibly useful, and can handle many microcontroller–type tasks.

Even better, in system high mode, all of the user registers are available to the system high
program as variables. Accessing these registers can be done in a single clock cycle, which would
move them to the active register set or move them back. While this may seem like a load or store
instruction, none of these register accesses will suffer from memory delays.

The one thing that cannot be done in supervisor mode is a wait for interrupt instruction. This,
however, is easily rectified by jumping to a user task within the supervisors memory space, such as
Tbl. 4.2.

www.opencores.com Rev. 1.1 41

Gisselquist Technology, LLC Specification 2018/12/21

; By starting our loader in the .start section, we guarantee through our
; linker script that these are the very first instructions the CPU sees.

.section .start

.global start

; start is to be placed at our reboot/reset address, so it will be
; called upon any reboot.
start:

; The most important step: creating a stack pointer. The value
; top of stack is created by the linker based upon the linker script.
LDI top of stack,SP

; We then call the bootloader to load our code into memory.
MOV after bootloader(PC),R0

BRA bootloader

after bootloader:

; Just in case the bootloader messed up the stack, we’ll reset it here.
LDI top of stack,SP

; Finally, we call the entry function for the entire design.
MOV kernel exit(PC),R0

BRA entry

; The kernel exit routine that follows isn’t strictly necessary,
; since the CPU should never return from the entry() function. However,
; since returning from such a function is valid C code, and just in case
; it does return, we provide this function as a fail safe to make sure
; the kernel halts upon completion.
kernel exit:

HALT

BRA kernel exit

Table 4.1: Setting up a stack frame and starting the CPU

www.opencores.com Rev. 1.1 42

Gisselquist Technology, LLC Specification 2018/12/21

supervisor idle:

; While not strictly required, the following move helps to
; ensure that the prefetch doesn’t try to fetch an instruction
; outside of the CPU’s address space when it switches to user
; mode.
MOV supervisor idle continue,uPC

; Put the processor into user mode and to sleep in the same
; instruction.
OR $SLEEP|$GIE,CC

supervisor idle continue:

; Now, if we haven’t done this inline, we need to return
; to whatever function called us.
RETN

Table 4.2: Executing an idle from supervisor mode

There are some problems with this model, however. For example, even though the user registers
can be accessed in a single cycle, there is currently no way to do so other than with assembly
instructions.

An alternative to this approach is to use the zip wait() built–in function. This places the
ZipCPU into an idle/sleep mode to wait for interrupts. Because the supervisor puts the CPU to
sleep, rather than the user, no user context needs to be set up.

4.3 A Programmable Delay

One common task in microcontrollers, whether in a user task or supervisor task, is to wait for a
programmable amount of time. Using the ZipSystem, there are several peripherals that can be used
to create such a delay. It can be done with one of the three timers, the jiffies, or even an off-chip
ZipCounter.

Here, in Tbl. 4.3, we present one means of waiting for a programmable amount of time using a
timer. If exact timing is important, you may wish to calibrate the method by subtracting from the
counts number the counts it takes to actually do the routine. Otherwise, the timer is guaranteed to
at least counts ticks.

Notice that the routine clears the PIC early on. While one might expect that this could be done
in the instruction immediately before zip rtu(), this isn’t the case. The reason is a race condition
created by the fact that the write to the PIC completes after the zip rtu() instruction. As a result,
you might find yourself with a zero delay simply because the timer had tripped some time earlier.

The routine is also careful not to clear any other interrupts beyond the timer interrupt, lest some
other condition trip that the user was also waiting on.

www.opencores.com Rev. 1.1 43

Gisselquist Technology, LLC Specification 2018/12/21

#define EINT(A) (0x80000000|(A<<16)) // Enable interrupt A
#define DINT(A) (A<<16) // Just disable the interrupts in A
#define DISABLEALL 0x7fff0000 // Disable all interrupts
#define CLEARPIC 0x7fff7fff // Clears and disables all interrupts
#define SYSINT TMA 0x10 // The Timer–A interrupt mask

void timer delay(int nclocks) {
// Clear the PIC. We want to exit from here on timer counts alone
zip->pic = DISABLEALL|SYSINT TMA;

if (nclocks > 10) {
// Set our timer to count down the given number of counts
zip->tma = nclocks;

zip->pic = EINT(SYSINT TMA);

zip wait();

zip->pic = CLEARPIC;

} // else anything less has likely already passed
}

Table 4.3: Waiting on a timer

4.4 Traditional Interrupt Handling

Although the ZipCPU does not have a traditional interrupt architecture, it is possible to create
the more traditional interrupt approach via software. In this mode, the programmable interrupt
controller is used together with the supervisor state to create the illusion of more traditional interrupt
handling.

To set this up, upon reboot the supervisor task:

1. Creates a (single) user context, a user stack, and sets the user program counter to the entry
of the user task

2. Creates a task table of ISR entries

3. Enables the master interrupt enable via the interrupt controller, albeit without enabling any
of the fifteen potential underlying interrupts.

4. Switches to user mode, as the first part of the while loop in Tbl. 4.4.

We can work through the interrupt handling process by examining Tbl. 4.4. First, remember,
the CPU is always running either the user or the supervisor context. Once the supervisor switches
to user mode, control does not return until either an interrupt, a trap, or an exception has taken
place. Therefore, if neither the trap bit nor any of the exception bits have been set, then we know
an interrupt has taken place.

It is also possible that an interrupt will occur coincident with a trap or exception. If this is the
case, the subsequent zip rtu() instruction will return immediately, since the interrupt has yet to
be cleared.

www.opencores.com Rev. 1.1 44

Gisselquist Technology, LLC Specification 2018/12/21

while(true) {
zip rtu();

if (zip ucc() & CC TRAPBIT) { // Here, we allow users to install ISRs, or
// whatever else they may wish to do in supervisor mode.
...

} else (zip ucc() & (CC BUSERR|CC FPUERR|CC DIVERR)) {
// Here we handle any faults that the CPU may have encountered
// The easiest solution is often to print a trace and reboot
// the CPU.
start();

} else {
// At this point, we know an interrupt has taken place: Ask the programmable
// interrupt controller (PIC) which interrupts are enabled and which are active.
int picv = zip->pic;

// Turn off all active interrupts
// Globally disable interrupt generation in the process
int active = (picv >> 16) & picv & 0x07fff;

zip->pic = (active<<16);

// We build a mask of interrupts to re-enable in picv.
picv = 0;

for(int i=0,msk=1; i<15; i++, msk<<=1) {
if ((active & msk)&&(isr table[i])) {

// Here we call our interrupt service routine.
tmp = (isr table[i])();

// The tricky part is that, because of how the PIC is built, the ISR cannot
// re-enable its own interrupts without re-enabling all interrupts. Hence, we
// look at the return value from the ISR to know if an interrupt needs to be
// re-enabled.
if (tmp)

picv |= msk;

}
}
// Re-activate, but do not clear, all (requested) interrupts
zip->pic = picv | 0x80000000;

}
}

Table 4.4: Traditional Interrupt handling

www.opencores.com Rev. 1.1 45

Gisselquist Technology, LLC Specification 2018/12/21

idle task:

; Wait for the next interrupt, then switch to supervisor task
WAIT

; When we come back, it’s because the supervisor wishes to
; wait for an interrupt again, so go back to the top.
BRA idle task

Table 4.5: Example Idle Task in Assembly

As Sec. 2.4.3 discusses, the top of the PIC register stores which interrupts are enabled, and the
bottom stores which have tripped. (Interrupts may trip without being enabled, they just will not
generate an interrupt to the CPU.) Our first step is to query the register to find out our interrupt
state, and then to disable any interrupts that have tripped. To do that, we write a one to the
enable half of the register while also clearing the top bit (master interrupt enable). This has the
consequence of disabling any and all further interrupts, not just the ones that have tripped. Hence,
upon completion, we re–enable the master interrupt bit again. Finally, we keep track of which
interrupts have tripped.

Using the bit mask of interrupts that have tripped, we walk through all fifteen possible interrupts.
If there is an ISR installed, we simply call it here. The ISR, however, cannot re–enable its interrupt
without re-enabling the master interrupt bit. Thus, to keep things simple, when the ISR is finished
it returns a boolean into R0 to indicate whether or not the interrupt needs to be re-enabled. Put
together, this tells the kernel which interrupts to re–enable. As a final instruction, interrupts are
re–enabled before returning continuing the while loop.

There you have it: the ZipCPU, with its non-traditional interrupt architecture, can still process
interrupts in a very traditional fashion.

4.5 Idle Task

One task every operating system needs is the idle task, the task that takes place when nothing else
can run. On the ZipCPU, this task is quite simple, and it is shown in assembly in Tbl. 4.5, or
equivalently in C in Tbl. 4.6.

When this task runs, the CPU will fill up all of the pipeline stages up the ALU. The WAIT

instruction, upon leaving the ALU, places the CPU into a sleep state where nothing more moves.
Then, once an interrupt takes place, control passes to the supervisor task to handle the interrupt.
When control passes back to this task, it will be on the next instruction. Since that next instruction
sends us back to the top of the task, the idle task thus does nothing but wait for an interrupt.

This should be the lowest priority task, the task that runs when nothing else can. It will help
lower the FPGA power usage overall—at least its dynamic power usage.

For those highly interested in reducing power consumption, the clock could even be disabled at
this time–requiring only some small modifications to the core.

www.opencores.com Rev. 1.1 46

Gisselquist Technology, LLC Specification 2018/12/21

void idle task(void) {
while(true) { // Never exit
// Wait for the next interrupt, then switch to supervisor task
zip wait();

//
// When we come back, it’s because the supervisor wishes to
// wait for an interrupt again, so go back to the top.
}

}

Table 4.6: Example Idle Task in C

void memcpy(char *dest, char *src, int len) {
for(int i=0; i<len; i++)

*dest++ = *src++;

}

Table 4.7: Example Memory Copy code in C

4.6 Memory Copy

One common operation is that of a memory move or copy. This section will present several methods
available to the ZipCPU for performing a memory copy, starting with the C code shown in Tbl. 4.7.
Each successive example will further speed up the memory copying process.

This memory copy code can be translated in Zip Assembly as shown in Tbl. 4.8. This example
points out several things associated with the ZipCPU. First, a straightforward implementation of a
for loop is not the fastest loop structure. For this reason, we have placed the test to continue at the
end. Second, notice that we can use R4 without storing it, since the C ABI allows for subroutines
to use R1–R4 without saving them. This means that we can return from this subroutine using
conditional jumps to R0.

Still, there’s more that could be done. Suppose we wished to use the pipeline bus capability?
We might then write something closer to Tbl. 4.9. This pipeline memory example, though, provides
some neat things to discuss about optimizing code using the ZipCPU.

First, note that all of the loads and stores, except the three following memcpy finish, are
pipelined. To do this, we needed to unroll the copy loop by a factor of four. This means that
each time through the loop, we can read and store four values. At 17 clocks to copy four values,
that’s roughly three times faster than our previous example. The down side, though, is that the
loop now needs a final cleanup section where the last 0–3 values will be copied.

Second, note that we used our remaining length minus one as our loop variable. This was
done so that the conditions set by subtracting four from our loop variable could be used without a
separate compare. Speaking of the compare, note that we have chosen to use a branch if carry (BC)
comparison, which is equivalent to a less–than unsigned comparison.

www.opencores.com Rev. 1.1 47

Gisselquist Technology, LLC Specification 2018/12/21

memcpy:
; R0 = return address, R1 = *dest, R2 = *src, R3 = LEN
; The following will operate in 6 (N = 0), or 2 + 12N clocks (N 6= 0).
CMP 0,R3

RETN.Z ; A conditional return
; No stack frame needs to be set up to use R4, since the compiler
; assumes R1-R4 may be used and changed by any subroutine

memcpy loop:
LB (R2),R4

; (4 stalls, cannot be scheduled away)
SB R4,(R1) ; (4 schedulable stalls, has no impact now)
; Update our count of the number of remaining values to copy
SUB 1,R3 ; This will be zero when we have copied our last
RETN.Z ; + 4 stalls, if taken
ADD 1,R1 ; Implement the destination pointer
ADD 1,R2 ; Implement the source pointer
BRA memcpy loop

; (1 stall on a BRA instruction)

Table 4.8: Example Memory Copy code in Zip Assembly, Unoptimized

Third, notice how we packed four ALU instructions, two adds, a subtract, and a conditional
branch, after the four store instructions. These instructions can complete while the memory unit
is busy, preparing us to start the subsequent load without any further stalls (unless the memory is
particularly slow.)

Next, you may wish to notice that the four memory loads within the loop are followed by the
early branching instruction. As a result, the branch costs no extra clocks, and the time between the
loads at the bottom of the loop is dominated by the load to store time frame.

Finally, notice how the comparison at the end has been stacked. By comparing against one,
we can return when there are zero items left, or one item left, without needing a new comparison.
Hence, zero to three separate values can be copied using only two compares.

However, this discussion wouldn’t be complete without an example of how this memory operation
would be made even simpler using the direct memory access controller. In that case, we can return
to the C language with the code in Tbl. 4.10. The DMA, however, will only work with an integer
number of 32–bit aligned words. Still, for large memory amounts, the cost of this approach will scale
at roughly 2 clocks per word transferred.

Notice how much simpler this memory copy has become to write by using the DMA. But also
consider, the system has only one direct memory access controller. What happens if one task tries
to use the controller when it is already in use by another task? The result is that the direct memory
access controller may need some special protections to make certain that only one task uses it at a
time—much like any other hardware peripheral.

www.opencores.com Rev. 1.1 48

Gisselquist Technology, LLC Specification 2018/12/21

; Upon entry, R0 = return address, R1 = *dest, R2 = *src, R3 = LEN
; Achieves roughly 32 + 17

⌊

N

4

⌋

clocks, after the initial pipeline delay
memcpy opt:

CMP 4,R3 ; Check for small short lengths, len < 4
BC memcpy finish ; Jump to the end if so
SUB 12,SP ; Otherwise, create a stack frame, storing the registers
SW R5,(SP) ; we will be using. Note that this is a pipelined store, so
SW R6,4(SP) ; subsequent stores only cost 1 clock.
SW R7,8(SP)

ADD 4,R2 ; Pre-Increment our pointers, for a 4-stage pipeline. This
ADD 4,R1 ; also fills up the 3 of the 4 stall states following the
SUB 5,R3 ; stores. Also, leave R3 as the number left minus one.
LB -4(R2),R4 ; Load the first four values into
LB -3(R2),R5 ; registers, using pipelined loads.
LB -2(R2),R6

LB -1(R2),R7

mcopy next four chars: ; Here’s the top of our copy loop
SB R4,-4(R1) ; Store four values, using a burst memory operation.
SB R5,-3(R1) ; One clock for subsequent stores.
SB R6,-2(R1) ; None of these effect the flags, that were set when
SB R7,-1(R1) ; we last adjusted R3

BC preend memcpy ; +4 stall cycles, but only when taken
ADD 4,R1 ; ALU ops don’t stall during stores, so
ADD 4,R2 ; increment our pointers here.
SUB 4,R3 ; Calculate whether or not we have a next round
LB -4(R2),R4 ; Preload the values for the next round
LB -3(R2),R5 ; Notice that these are also pipelined
LB -2(R2),R6 ; loads, as before.
LB -1(R2),R7 ; The four stall cycles, though, are concurrent w/ the branch.
BRA mcopy next four chars ; Early branching avoids the full memory pipeline stall

preend memcpy:

ADD 1,R3 ; R3 is now the remaining length, rather than one less than it
LW (SP),R5 ; Restore our saved registers, since the remainder of the routine
LW 4(SP),R6 ; doesn’t use these registers
LW 8(SP),R7 ;
ADD 12,SP ; Adjust the stack pointer back to what it was

memcpy finish: ; At this point, there are 0 ≤ R3< 4 words left
CMP 1,R3 ; Check if any ops are remaining
RETN.LT ; Return now if nothing is left
LB (R1),R4 ; Load and store the first item
SB R4,(R1) ;
RETN.Z ; Return if that was our only value
LB 1(R1),R4 ; Load and store the second item (if necessary)
SB R4,1(R1)

CMP 2, R3

RETN.LT

LB 2(R1),R4 ; Load and store the second item (if necessary)
SB R4,2(R1) ; LW, SW, RETN will cost 10 cycles
RETN ; Finally, we return

Table 4.9: Example Memory Copy code in Zip Assembly, Hand Optimized

www.opencores.com Rev. 1.1 49

Gisselquist Technology, LLC Specification 2018/12/21

#define DMACOPY 0x0fed0000 // Copy memory, largest chunk at a time possible

void memcpy dma(void *dest, void *src, int len) {
// This assumes we have access to the DMA, that the DMA is not
// busy, and that we are running in system high mode ...
zip->dma.len = len; // Set up the DMA
zip->dma.rd = src;

zip->dma.wr = dst;

// Command the DMA to start copying
zip->dma.ctrl= DMACOPY;

// Note that we take two clocks to set up our PIC. This is
// required because the PIC takes at least a clock cycle to clear.
zip->pic = DISABLEALL|SYSINT DMA;

// Now that our PIC is actually clear, with no more DMA
// interrupt within it, now we enable the DMA interrupt, and
// only the DMA interrupt.
zip->pic = EINT(SYSINT DMA);

// And wait for the DMA to complete.
zip wait();

}

Table 4.10: Example Memory Copy code using the DMA

void *memset(char *s, int c, size t n) {
for(size t i=0; i<n; i++)

*s++ = c;

return s;

}

Table 4.11: Example Memset code

4.7 Memset

Another example worth discussing is the memset() library function. A straightforward implemen-
tation of this function in C might look like Tbl. 4.11. The function is simple enough to handle
compile into the assembling listing in Tbl. 4.12. Note that we grab R4 as a local variable, so that
we can maintain the source pointer in R1 as our result upon return. This is valid, since the compiler
assumes that R1–R4 will be clobbered upon any function call and so they are not saved.

You can also see that this straight forward implementation costs about six clocks per value to
be set.

Were we to pipeline the memory accesses, we might choose to unroll the loop and do something
more like Tbl. 4.13. Note that, in this example as with the memcpy example, our loop variable is one
less than the number of operations remaining. This is because the ZipCPU has no less than or equal
comparison, but only a less than comparison. By subtracting one from the loop variable, that’s all

www.opencores.com Rev. 1.1 50

Gisselquist Technology, LLC Specification 2018/12/21

; Upon entry, R0 = return address, R1 = s, R2 = c, R3 = len
; Cost: Roughly 4 + 6N clocks
memset:

TST R3 ; Return immediately if len (R3) is zero
RETN.Z

MOV R1,R4 ; Keep our return value in R1, use R4 as a local
memset loop: ; Here, we know we have at least one more to go

SB R2,(R4) ; Store one value (no pipelining)
SUB 1,R3 ; Subtract during the store
RETN.Z ; Return (during store) if all done
ADD 1,R4 ; Otherwise increment our pointer
BRA memset loop ; and repeat

Table 4.12: Example Memset code, minimally optimized

; Upon entry, R0 = return address, R1 = s, R2 = c, R3 = len
; Cost: roughly 20 + 9

⌊

N

4

⌋

memset pipe:

MOV R1,R4 ; Make a local copy of *s, so we can return R1
CMP 4,R3 ; Jump to non–unrolled section
JMP.C memset pipe tail

SUB 1,R3 ; R3 is now one less than the number to finish
memset pipe unrolled: ; Here, we know we have at least four more to go

SB R2,(R4) ; Store our four values, pipelining our
SB R2,1(R4) ; access across the bus
SB R2,2(R4)

SB R2,3(R4)

SUB 4,R3 ; If there are zero left, this will be a -1 result
BC prememset pipe tail ; So we can use our LT condition
ADD 4,R4 ; Otherwise increment our pointer
BRA memset pipe unrolled ; and repeat using an early branchable instruction

prememset pipe tail:

ADD 1,R3 ; Return our counts left to the run number
memset pipe tail: ; At this point, we have R3=0-3 remaining

CMP 1,R3 ; If there’s less than one left
RETN.C ; then return early.
SB R2,(R4) ; If we’ve got one left, store it
SB.GT R2,1(R4) ; if two, do a burst store
CMP 3,R3 ; Check if we have another left
SB.Z R2,2(R4) ; and store it if so.
RETN ; Return now that we are complete.

Table 4.13: Example Memset after loop unrolling, using pipelined memory ops

www.opencores.com Rev. 1.1 51

Gisselquist Technology, LLC Specification 2018/12/21

#define DMA CONSTSRC 0x20000000 // Don’t increment the source address
int * memset dma(int *s, int c, size t len) {

// As before, this assumes we have access to the DMA, and that
// we are running in system high mode ...
zip->dma.len = len; // Set up the DMA
zip->dma.rd = &c;

zip->dma.wr = s;

// Command the DMA to start copying, but not to increment the
// source address during the copy.
zip->dma.ctrl= DMACOPY|DMA CONSTSRC;

// Note that we take two clocks to set up our PIC. This is
// required because the PIC takes at least a clock cycle to clear.
zip->pic = DISABLEALL|SYSINT DMA;

// Now that our PIC is actually clear, with no more DMA
// interrupt within it, now we enable the DMA interrupt, and
// only the DMA interrupt.
zip->pic = EINT(SYSINT DMA);

// And wait for the DMA to complete.
zip wait();

// Return the original source pointer, so as to
// match the library definition.
return s;

}

Table 4.14: Example Memset code, only this time with the DMA

our comparison needs to be–at least, until the end of the loop. For that, we jump to a section one
instruction earlier and return our counts value to the true remaining length.

You may also notice that, despite the four possibilities in the end game, we can carefully rearrange
the logic to only use two compares. The first compare tests against less than one and returns if
there are no more sets left. Using the same compare, though, we can also know if we have one or
more stores left. Hence, we can create a burst memory operation with one or two stores.

The three examples given so far discuss and demonstrate solutions appropriate for memory
accesses that are not necessarily aligned. Were the accesses aligned, the operation could be done
about four times faster. To do this, the LB and SB instructions would need to be replaced by LW and
SW instructions.

Still, if all accesses were able to be aligned, then we might also use the DMA for this operation.
Hence, the DMA makes our final example in Tbl. 4.14. This is almost identical to the memcpy

function above that used the DMA, save that the pointer for the value read is given to be the
address of c, and that the DMA is instructed not to increment its source pointer. The DMA will
still do len reads, so the asymptotic performance will never be less than 2N clocks per transfer.

www.opencores.com Rev. 1.1 52

Gisselquist Technology, LLC Specification 2018/12/21

while(true) {
// The instruction before the context switch processing must
// be the RTU instruction that enacted user mode in the first
// place. We show it here just for reference.
zip rtu();

if (zip ucc() & (CC FAULT)) {
// The user program has experienced an unrecoverable fault and must die.
// Do something here to kill the task, recover any resources
// it was using, and report/record the problem.
. . .

} else if (zip ucc() & (CC TRAPBIT)) {
// Handle any user request
zip restore context(userregs);

// If the request ID is in uR1, that is now userregs[1]
switch(userregs[1]) {
case x: // Perform some user requested function

break;

}
}

}

Table 4.15: Checking for whether the user task needs our attention

4.8 Context Switch

Fundamental to any multiprocessing system is the ability to switch from one task to the next. In
the ZipSystem, this is accomplished in one of a couple of ways. The first step is that an interrupt,
trap, or exception takes place. This will pull the CPU out of user mode and into supervisor mode.
At this point, the CPU needs to execute the following tasks:

1. Check for the reason, why did we return from user mode? Did the user execute a trap in-
struction, or did some other user exception such as a break, bus error, division by zero error,
or floating point exception occur. That is, if the user process needs attending then we may
not wish to adjust the context, check interrupts, or call the scheduler. Tbl. 4.15 shows the
rudiments of this code, while showing nothing of how the actual trap would be implemented.

You may also wish to note that the instruction before the first instruction in our context swap
must be a return to userspace instruction. Remember, the supervisor process is re–entered
where it left off. This is different from many other processors that enter interrupt mode at
some vector or other. In this case, we always enter supervisor mode right where we last left.

2. Capture user accounting counters. If the operating system is keeping track of system usage via
the accounting counters, those counters need to be copied and accumulated into some master
counter at this point.

www.opencores.com Rev. 1.1 53

Gisselquist Technology, LLC Specification 2018/12/21

save context:

SUB 4,SP ; Function prologue: create a stack
SW R5,(SP) ; frame and save R5. (R1-R4 are assumed
MOV uR0,R2 ; to be used and in need of saving. Then
MOV uR1,R3 ; copy the user registers, four at a time to
MOV uR2,R4 ; supervisor registers, where they can be
MOV uR3,R5 ; stored, while exploiting memory pipelining
SW R2,(R1) ; Exploit memory pipelining:
SW R3,4(R1) ; All instructions write to same base memory
SW R4,8(R1) ; All offsets increment by one
SW R5,12(R1)

. . . ; Need to repeat for all user registers
MOV uR12,R2 ; Finish copying ...
MOV uSP,R3

MOV uCC,R4

MOV uPC,R5

SW R2,48(R1) ; and saving the last registers.
SW R3,52(R1) ; Note that even the special user registers
SW R4,56(R1) ; are saved just like any others.
SW R5,60(R1)

LW (SP),R5 ; Restore our one saved register
ADD 4,SP ; our stack frame,
RETN ; and return

Table 4.16: Example Storing User Task Context

3. Preserve the old context. This involves recording all of the user registers to some supervisor
memory structure, such as is shown in Tbl. 4.16. Since this task is so fundamental, the ZipCPU
compiler back end provides the zip save context(int *) function.

4. Reset the watchdog timer. If you are using the watchdog timer, it should be reset on a context
swap, to know that things are still working.

5. Interrupt handling. How you handle interrupts on the ZipCPU are up to you. You can activate
a sleeping task if you like, or for smaller faster interrupt routines, such as copying a character
to or from a serial port or providing a sample to an audio port, you might choose to do the task
within the kernel main loop. The difference may depend upon how you have your hardware
set up, and how fast the kernel main loop is.

6. Calling the scheduler. This needs to be done to pick the next task to switch to. It may be an
interrupt handler, or it may be a normal user task. From a priority standpoint, it would make
sense that the interrupt handlers all have a higher priority than the user tasks, and that once
they have been called the user tasks may then be called again. If no task is ready to run, run
the idle task to wait for an interrupt.

This suggests a minimum of four task priorities:

www.opencores.com Rev. 1.1 54

Gisselquist Technology, LLC Specification 2018/12/21

restore context:

SUB 4,SP ; Set up a stack frame
SW R5,(SP) ; and store a local register onto it.

LW (R1),R2 ; By doing four loads at a time, we are
LW 4(R1),R3 ; making sure we are using our pipelined
LW 8(R1),R4 ; memory capability.
LW 12(R1),R5

MOV R2,uR1 ; Once the registers are loaded, copy them
MOV R3,uR2 ; into the user registers that they need to
MOV R4,uR3 ; be placed within.
MOV R5,uR4

. . . ; Need to repeat for all user registers
LW 48(R1),R2 ; Now for our last four registers ...
LW 52(R5),R3

LW 56(R5),R4

LW 60(R5),R5

MOV R2,uR12 ; These are the special purpose ones, restored
MOV R3,uSP ; just like any others.
MOV R4,uCC

MOV R5,uPC

LW (SP),R5 ; Restore our saved register,
ADD 4,SP ; and the stack frame,
RETN ; and return to where we were called from.

Table 4.17: Example Restoring User Task Context

(a) Interrupt handlers, executed with their interrupts disabled

(b) Device drivers, executed with interrupts re-enabled

(c) User tasks

(d) The idle task, executed when nothing else is able to execute

7. Restore the new tasks context. Given that the scheduler has returned a task that can be run at
this time, the user registers need to be read from the memory at the user context pointer and
then placed into the user registers. An example of this is shown in Tbl. 4.17, Because this is such
an important task, the ZipCPU GCC provides a built–in function, zip restore context(int

*), which can be used for this task.

8. Clear the userspace accounting registers. In order to keep track of per process system usage,
these registers need to be cleared before reactivating the userspace process. That way, upon
the next interrupt, we’ll know how many clocks the userspace program has encountered, and
how many instructions it was able to issue in those many clocks.

9. Return back to the top of our loop in order to execute zip rtu() again.

www.opencores.com Rev. 1.1 55

Gisselquist Technology, LLC Specification 2018/12/21

5.

Registers

This chapter covers the definitions and locations of the various registers associated with both the
ZipSystem, and the ZipCPU contained within it. These registers fall into two separate categories:
the registers belonging to the ZipSystem, and then the two debug port registers belonging to the
CPU itself. In this chapter, we’ll discuss the ZipSystem peripheral registers first, followed by the
two ZipCPU registers.

5.1 ZipSystem Peripheral Registers

The ZipSystem maintains currently maintains 20 register locations, as shown in Tbl. 5.1. These

Name Address Width Access Description

PIC 0xff000000 32 R/W Primary Interrupt Controller
WDT 0xff000004 32 R/W Watchdog Timer
WBU 0xff000008 32 R Address of last bus timeout error
CTRIC 0xff00000c 32 R/W Secondary Interrupt Controller
TMRA 0xff000010 32 R/W Timer A
TMRB 0xff000014 32 R/W Timer B
TMRC 0xff000018 32 R/W Timer C
JIFF 0xff00001c 32 R/W Jiffies
MTASK 0xff000020 32 R/W Master Task Clock Counter
MMSTL 0xff000024 32 R/W Master Stall Counter
MPSTL 0xff000028 32 R/W Master Pre–Fetch Stall Counter
MICNT 0xff00002c 32 R/W Master Instruction Counter
UTASK 0xff000030 32 R/W User Task Clock Counter
UMSTL 0xff000034 32 R/W User Stall Counter
UPSTL 0xff000038 32 R/W User Pre–Fetch Stall Counter
UICNT 0xff00003c 32 R/W User Instruction Counter
DMACTRL 0xff000040 32 R/W DMA Control Register
DMALEN 0xff000044 32 R/W DMA total transfer length
DMASRC 0xff000048 32 R/W DMA source address
DMADST 0xff00004c 32 R/W DMA destination address

Table 5.1: ZipSystem Internal/Peripheral Registers

www.opencores.com Rev. 1.1 56

Gisselquist Technology, LLC Specification 2018/12/21

Bit # Access Description

31 R/W Master Interrupt Enable
30. . . 16 R/W Interrupt Enable lines
15 R Current Master Interrupt State
15. . . 0 R/W Input Interrupt states, write ‘1’ to clear

Table 5.2: Interrupt Controller Register Bits

registers are all 32-bit registers. Writes of less than 32–bits may have unexpected results. Further,
they are located in a reserved location within the CPU’s address space. As a result, references to
these locations by a ZipBones based system will generate a bus error.

Here in this section, we’ll walk through the definition of each of these registers in turn, together
with any bit fields that may be associated with them, and how to set those fields.

5.1.1 Interrupt Controller(s)

Any CPU with only a single interrupt line, such as the ZipCPU, really needs an interrupt controller
to give it access to more than the single interrupt. The ZipCPU is no different. When the ZipCPU
is built as part of the ZipSystem, this interrupt controller comes integrated into the system.

Looking into the bits that define this controller, you can see from Tbl. 5.2, that the ZipCPU
Interrupt controller has four different types of bits. The high order bit, or bit–31, is the master
interrupt enable bit. When this bit is set, then any time an interrupt occurs the CPU will be
interrupted and will switch to supervisor mode, etc.

Bits 30 . . . 16 are interrupt enable bits. Should the interrupt line ever be high while enabled, an
interrupt will be generated. Further, interrupts are level triggered. Hence, if the interrupt is cleared
while the line feeding the controller remains high, then the interrupt will re–trip. To set one of these
interrupt enable bits, one needs to write the master interrupt enable while writing a ‘1’ to this the
bit. To clear, one need only write a ‘0’ to the master interrupt enable, while leaving this line high.

Bits 15. . . 0 are the current state of the interrupt vector. Interrupt lines trip whenever they are
high, and remain tripped until the input is lowered and the interrupt is acknowledged. Thus, if the
interrupt line is high when the controller receives a clear request, then the interrupt will not clear.
The incoming line must go low again before the status bit can be cleared.

As an example, consider the following scenario where the ZipCPU supports four interrupts, 3. . . 0.

1. The Supervisor will first, while in the interrupts disabled mode, write a 32’h800f000f to the
controller. The supervisor may then switch to the user state with interrupts enabled.

2. When an interrupt occurs, the supervisor will switch to the interrupt state. It will then cycle
through the interrupt bits to learn which interrupt handler to call.

3. If the interrupt handler expects more interrupts, it will clear its current interrupt when it is
done handling the interrupt in question. To do this, it will write a ‘1’ to the low order interrupt
mask, such as writing a 32’h0000 0001.

4. If the interrupt handler does not expect any more interrupts, it will instead clear the interrupt
from the controller by writing a 32’h0001 0001 to the controller.

www.opencores.com Rev. 1.1 57

Gisselquist Technology, LLC Specification 2018/12/21

Bit # Access Description

31 R/W Auto-Reload
30. . . 0 R/W Current timer value

Table 5.3: Timer Register Bits

Bit # Access Description

31. . . 0 R Current jiffy value
31. . . 0 W Value/time of next interrupt

Table 5.4: Jiffies Register Bits

5. Once all interrupts have been handled, the supervisor will write a 32’h8000 0000 to the
interrupt register to re-enable interrupt generation.

6. The supervisor should also check the user trap bit, and possible soft interrupt bits here, but
this action has nothing to do with the interrupt control register.

7. The supervisor will then leave interrupt mode, possibly adjusting whichever task is running,
by executing a return from interrupt command.

5.1.2 Timer Register

Leaving the interrupt controller, we show the timer registers bit definitions in Tbl. 5.3. As you may
recall, the timer just counts down to zero and then trips an interrupt. Writing to the current timer
value sets that value, and reading from it returns that value. Writing to the current timer value
while also setting the auto–reload bit will send the timer into an auto–reload mode. In this mode,
upon setting its interrupt bit for one cycle, the timer will also reset itself back to the value of the
timer that was written to it when the auto–reload option was written to it. To clear and stop the
timer, just simply write a ‘32’h00’ to this register.

5.1.3 Jiffies

The Jiffies register is first and foremost a counter. It counts up one on every clock. Reads from this
register, as shown in Tbl. 5.4, always return the time value contained in the register.

The register accepts writes as well. Writes to the register set the time of the next Jiffy interrupt.
If the next interrupt is between 0 and 231 clocks in the past, the peripheral will immediately create an
interrupt. Otherwise, the register will compare the new value against the currently stored interrupt
value. The value nearest in time to the current jiffies value will be kept, and so the jiffies register
will trip at that value. Prior values are forgotten.

When the Jiffy counter value equals the value in its trigger register, then the jiffies peripheral will
trigger an interrupt. At this point, the internal register is cleared. It will create no more interrupts
unless a new value is written to it.

www.opencores.com Rev. 1.1 58

Gisselquist Technology, LLC Specification 2018/12/21

Bit # Access Description

31. . . 0 R/W Current counter value

Table 5.5: Counter Register Bits

5.1.4 Performance Counters

The ZipCPU also supports several counter peripherals, mostly for the purpose of process accounting.
These counters each contain a single register, as shown in Tbl. 5.5. Writes to this register set the
new counter value. Reads read the current counter value.

These counters can be configured to count upwards upon any event. Using this capability, eight
counters have been assigned the task of performance counting. Two sets of four registers are available
for keeping track of performance. The first set tracks master performance, including both supervisor
as well as user CPU statistics. The second set tracks user statistics only, and will not count in
supervisor mode.

Of the four registers in each set, the first is a task counter that just counts clock ticks. The
second counter is a prefetch stall counter, then an master stall counter. These allow the CPU to be
evaluated as to how efficient it is. The fourth and final counter in each set is an instruction counter,
which counts how many instructions the CPU has issued.

It is envisioned that these counters will be used as follows: First, every time a master counter
rolls over, the supervisor (Operating System) will record the fact. Second, whenever activating a
user task, the Operating System will set the four user counters to zero. When the user task has
completed, the Operating System will read the timers back off, to determine how much of the CPU
the process had consumed. To keep this accurate, the user counters will only increment when the
GIE bit is set to indicate that the processor is in user mode.

5.1.5 DMA Controller

The final peripheral to discuss is the DMA controller. This controller has four registers. Of these
four, the length, source and destination address registers should need no further explanation. They
are full 32–bit registers specifying the entire transfer length, the starting address to read from, and
the starting address to write to. The registers can be written to when the DMA is idle, and read at
any time. The control register, however, will need some more explanation.

The bit allocation of the control register is shown in Tbl. 5.6. This control register has been
designed so that the common case of memory access need only set the key and the transfer length.
Hence, writing a 32’h0fed0000 to the control register will start any memory transfer. On the other
hand, if you wished to read from a serial port (constant address) and put the result into a buffer
every time a word was available, you might wish to write 32’h2fed8001–this assumes, of course, that
you have a serial port wired to the zero bit of this interrupt control. (The DMA controller does not
use the interrupt controller, and cannot clear interrupts.) As a third example, if you wished to write
to an external FIFO anytime it was less than half full (had fewer than 512 items), and interrupt line
3 indicated this condition, you might wish to issue a 32’h1fed8dff to this port.

www.opencores.com Rev. 1.1 59

Gisselquist Technology, LLC Specification 2018/12/21

Bit # Access Description

31 R DMA Active
30 R Wishbone error, transaction aborted. This bit is cleared the next

time this register is written to.
29 R/W Set to ‘1’ to prevent the controller from incrementing the source

address, ‘0’ for normal memory copy.
28 R/W Set to ‘1’ to prevent the controller from incrementing the desti-

nation address, ‘0’ for normal memory copy.
27 . . . 16 W The DMA Key. Write a 12’hfed to these bits to start the activate

any DMA transfer.
27 R Always reads ‘0’, to force the deliberate writing of the key.
26 . . . 16 R Indicates the number of items in the transfer buffer that have yet

to be written.
15 R/W Set to ‘1’ to trigger on an interrupt, or ‘0’ to start immediately

upon receiving a valid key.
14. . . 10 R/W Select among one of 32 possible interrupt lines.
9. . . 0 R/W Intermediate transfer length. Thus, to transfer one item at a time

set this value to 1. To transfer the maximum number, 1024, at
a time set it to 0.

Table 5.6: DMA Control Register Bits

5.2 Debug Port Registers

Accessing the ZipSystem via the debug port isn’t as straight forward as accessing the system via
the wishbone bus. The debug port itself has been reduced to two addresses, as outlined earlier in
Tbl. 5.7.

Name Address Width Access Description

ZIPCTRL 0 32 R/W Debug Control Register
ZIPDATA 4 32 R/W Debug Data Register

Table 5.7: ZipSystem Debug Registers

Access to the ZipSystem begins with the Debug Control register, shown in Tbl. 5.8.
The first step in debugging access is to determine whether or not the CPU is halted, and to halt

it if not. To do this, first write a ‘1’ to the Command HALT bit. This will halt the CPU and place
it into debug mode. Once the CPU is halted, the stall status bit will drop to zero. Thus, if bit 10
is high and bit 9 low, the debug port is open to examine the internal state of the CPU.

At this point, the external debugger may examine internal state information from within the
CPU. To do this, first write again to the command register a value (with command halt still high)
containing the address of an internal register of interest in the bottom 6 bits. Internal registers that
may be accessed this way are listed in Tbl. 5.9. Primarily, these “registers” include access to the

www.opencores.com Rev. 1.1 60

Gisselquist Technology, LLC Specification 2018/12/21

Bit # Access Description

31. . . 14 R External interrupt state. Bit 14 is valid for one interrupt only,
bit 15 for two, etc.

13 R CPU GIE setting
12 R CPU is sleeping
11 W Command clear PF cache
10 R/W Command HALT, Set to ‘1’ to halt the CPU
9 R Stall Status, ‘1’ if CPU is busy (i.e., not halted yet)
8 R/W Step Command, set to ‘1’ to step the CPU, also sets the halt bit
7 R Interrupt Request Pending
6 R/W Command RESET
5. . . 0 R/W Debug Register Address

Table 5.8: Debug Control Register Bits

entire CPU register set, as well as the internal peripherals. To read one of these registers once the
address is set, simply issue a read from the data port. To write one of these registers or peripheral
ports, simply write to the data port after setting the proper address.

In this manner, all of the CPU’s internal state may be read and adjusted.
As an example of how to use this, consider what would happen in the case of an external break

point. If and when the CPU hits a break point that causes it to halt, the Command HALT bit will
activate on its own, the CPU will then raise an external interrupt line and wait for a debugger to
examine its state. After examining the state, the debugger will need to remove the breakpoint by
writing a different instruction into memory and by writing to the command register while holding
the clear cache, command halt, and step CPU bits high, (32’hd00). The debugger may then replace
the breakpoint now that the CPU has gone beyond it, and clear the cache again (32’h500).

To leave this debug mode, simply write a ‘32’h0’ value to the command register.

www.opencores.com Rev. 1.1 61

Gisselquist Technology, LLC Specification 2018/12/21

Name Address Width Access Description

sR0 0 32 R/W Supervisor Register R0
sR1 0 32 R/W Supervisor Register R1
sSP 13 32 R/W Supervisor Stack Pointer
sCC 14 32 R/W Supervisor Condition Code Register
sPC 15 32 R/W Supervisor Program Counter
uR0 16 32 R/W User Register R0
uR1 17 32 R/W User Register R1
uSP 29 32 R/W User Stack Pointer
uCC 30 32 R/W User Condition Code Register
uPC 31 32 R/W User Program Counter
PIC 32 32 R/W Primary Interrupt Controller
WDT 33 32 R/W Watchdog Timer
WBUS 34 32 R Last Bus Error
CTRIC 35 32 R/W Secondary Interrupt Controller
TMRA 36 32 R/W Timer A
TMRB 37 32 R/W Timer B
TMRC 38 32 R/W Timer C
JIFF 39 32 R/W Jiffies peripheral
MTASK 40 32 R/W Master task clock counter
MMSTL 41 32 R/W Master memory stall counter
MPSTL 42 32 R/W Master Pre-Fetch Stall counter
MICNT 43 32 R/W Master instruction counter
UTASK 44 32 R/W User task clock counter
UMSTL 45 32 R/W User memory stall counter
UPSTL 46 32 R/W User Pre-Fetch Stall counter
UICNT 47 32 R/W User instruction counter
DMACMD 48 32 R/W DMA command and status register
DMALEN 49 32 R/W DMA transfer length
DMARD 50 32 R/W DMA read address
DMAWR 51 32 R/W DMA write address

Table 5.9: Debug Register Addresses

www.opencores.com Rev. 1.1 62

Gisselquist Technology, LLC Specification 2018/12/21

6.

Wishbone Datasheets

The ZipSystem supports two wishbone ports, a slave debug port and a master port for the system
itself. These are shown in Tbl. 6.1 and Tbl. 6.2 respectively. I do not recommend that you connect

Description Specification

Revision level of wishbone WB B4 spec
Type of interface Slave, Read/Write, single words only
Address Width 1–bit
Port size 32–bit
Port granularity 32–bit
Maximum Operand Size 32–bit
Data transfer ordering (Irrelevant)
Clock constraints Works at 100 MHz on a Basys–3 board,

and 80 MHz on a XuLA2–LX25

Signal Names

Signal Name Wishbone Equivalent
i clk CLK I

i dbg cyc CYC I

i dbg stb (CYC I)&(STB I)

i dbg we WE I

i dbg addr ADR I

i dbg data DAT I

o dbg ack ACK O

o dbg stall STALL O

o dbg data DAT O

Table 6.1: Wishbone Datasheet for the Debug Interface

these together through the interconnect, since 1) it doesn’t make sense that the CPU should be
able to halt itself, and 2) it helps to be able to reboot the CPU in case something has gone terribly
wrong and the CPU is stalling the entire interconnect. Rather, the debug port of the CPU should
be accessible regardless of the state of the master bus.

You may wish to notice that neither the LOCK nor the RTY (retry) wires have been connected to
the CPU’s master interface. If necessary, a rudimentary LOCK may be created by tying this wire to
the wb cyc line. As for the RTY, all the CPU recognizes at this point are bus errors—it cannot tell
the difference between a temporary and a permanent bus error. Therefore, one might logically OR
the bus error and bus retry flags on input to the CPU if necessary.

www.opencores.com Rev. 1.1 63

Gisselquist Technology, LLC Specification 2018/12/21

Description Specification

Revision level of wishbone WB B4 spec
Type of interface Master, Read/Write, pipelined
Address Width (ZipSystem parameter, up to 30 bits)
Port size 32–bit
Port granularity 8–bit
Maximum Operand Size 32–bit
Data transfer ordering Big–Endian
Clock constraints Works at 100 MHz on a Basys–3 board,

and 80 MHz on a XuLA2–LX25

Signal Names

Signal Name Wishbone Equivalent
i clk CLK O

o wb cyc CYC O

o wb stb (CYC O)&(STB O)

o wb we WE O

o wb addr ADR O

o wb data DAT O

o wb sel SEL O

i wb ack ACK I

i wb stall STALL I

i wb data DAT I

i wb err ERR I

Table 6.2: Wishbone Datasheet for the CPU as Master

www.opencores.com Rev. 1.1 64

Gisselquist Technology, LLC Specification 2018/12/21

The final simplification made of the standard wishbone bus B4 specification, is that the strobe
lines are assumed to be zero in any slave if CYC I is zero, and the master is responsible for ensuring
that STB O is never true when CYC O is true in order to make this work. All of the ZipCPU and
ZipSystem masters and peripherals have been created with this assumption. Converting peripherals
that have made this assumption to work with masters that don’t guarantee this property is as simple
as anding the slave’s CYC I and STB I lines together. No change needs to be made to any ZipCPU
master, however, in order to access any peripheral that hasn’t been so simplified.

www.opencores.com Rev. 1.1 65

Gisselquist Technology, LLC Specification 2018/12/21

7.

Clocks

This core has now been tested and proven on the Xilinx Spartan 6 FPGA as well as the Artix–7
FPGA. I hesitate to suggest that the core can run faster than 100 MHz, since I have had struggled

Name Source Rates (MHz) Description
Max Min

i clk External 100 MHz System clock, Artix–7/35T
80 MHz System clock, Spartan 6

Table 7.1: List of Clocks

with various timing violations to keep it at 100 MHz. So, for now, I will only state that it can run
at 100 MHz.

On a SPARTAN 6, the clock can run successfully at 80 MHz.
A second Artix–7 design on the Digilent’s Arty board is limited to 81.25 MHz by the memory

interface generated core used to access SDRAM.

www.opencores.com Rev. 1.1 66

Gisselquist Technology, LLC Specification 2018/12/21

8.

I/O Ports

This chapter presents and outlines the various I/O lines in and out of the ZipSystem. Since the
ZipCPU needs to be a component of such a larger part, this makes sense.

The I/O ports to the ZipSystem may be grouped into three categories. The first is that of
the master wishbone used by the CPU, then the slave wishbone used to command the CPU via a
debugger, and then the rest. The first two of these were already discussed in the wishbone chapter.
They are listed here for completeness in Tbl. 8.1 and 8.2 respectively.

There are only four other lines to the CPU: the external clock, external reset, incoming external
interrupt line(s), and the outgoing debug interrupt line. These are shown in Tbl. 8.3. The clock line
was discussed briefly in Chapt. 7. The reset line is an active high reset. When asserted, the CPU will
start running again from its RESET ADDRESS in memory. Further, depending upon how the CPU is
configured and specifically based upon how the START HALTED parameter is set, the CPU may or may
not start running automatically following a reset. The i ext int bus is for set of external interrupt
lines to the ZipSystem. This line may actually be as wide as 16 external interrupts, depending upon
the setting of the EXTERNAL INTERRUPTS parameter. Finally, the ZipSystem produces one external
interrupt whenever the entire CPU halts to wait for the debugger.

The I/O lines to the ZipBones package are identical to those of the ZipSystem, with the only
exception that the ZipBones package has only a single interrupt line input. This means that the
ZipBones implementation practically depends upon an external interrupt controller.

www.opencores.com Rev. 1.1 67

Gisselquist Technology, LLC Specification 2018/12/21

Port Width Direction Description

o wb cyc 1 Output Indicates an active Wishbone cycle
o wb stb 1 Output WB Strobe signal
o wb we 1 Output Write enable
o wb addr 30 Output Bus address
o wb data 32 Output Data on WB write
o wb sel 4 Output Select lines
i wb ack 1 Input Slave has completed a R/W cycle
i wb stall 1 Input WB bus slave not ready
i wb data 32 Input Incoming bus data
i wb err 1 Input Bus Error indication

Table 8.1: CPU Master Wishbone I/O Ports

Port Width Direction Description

i dbg cyc 1 Input Indicates an active Wishbone cycle
i dbg stb 1 Input WB Strobe signal
i dbg we 1 Input Write enable
i dbg addr 1 Input Bus address, command or data port
i dbg data 32 Input Data on WB write
o dbg ack 1 Output Slave has completed a R/W cycle
o dbg stall 1 Output WB bus slave not ready
o dbg data 32 Output Incoming bus data

Table 8.2: CPU Debug Wishbone I/O Ports

Port Width Direction Description

i clk 1 Input The master CPU clock
i rst 1 Input Active high reset line
i ext int 1. . . 16 Input Incoming external interrupts, actual value set by imple-

mentation parameter. This is only ever one for the Zip-
Bones implementation.

o ext int 1 Output CPU Halted interrupt

Table 8.3: I/O Ports

www.opencores.com Rev. 1.1 68

Gisselquist Technology, LLC Specification 2018/12/21

9.

Initial Assessment

Having now worked with the ZipCPU for a while, it is worth offering an honest assessment of how
well it works and how well it was designed. At the end of this assessment, I will propose some
changes that may take place in a later version of this ZipCPU to make it better.

9.1 The Good

• The ZipCPU was designed to be a simple and light weight CPU. It has achieved this end
nicely. The proof of this is the full multitasking operating system built for Digilent’s CMod
S6 board, based around a very small Spartan 6/LX4 FPGA.

As a result, the ZipCPU also makes a good starting point for anyone who wishes to build a
general purpose CPU and then to experiment with building and adding particular features.
Modifications should be simple enough.

Indeed, a non–pipelined version of the bare ZipBones (with no peripherals) has been built that
only uses 1.3k 6–LUTs. When using pipelining, the full cache, and all of the peripherals, the
ZipSystem can take up to 4.5 k LUTs. Where it fits in between is a function of your needs.

A new implementation using an iCE40 FPGA suggests that the ZipCPU will fit within the
4k 4–way LUTs of the iCE40 HK4X FPGA, but only just barely.

• The ZipCPU was designed to be an implementable soft core that could be placed within an
FPGA, controlling actions internal to the FPGA. This version of the CPU in particular has
been updated so that it would support a more general purpose CPU, since as of version 2.0
the ZipCPU now supports octet level access across the bus.

Still, it fits this role rather nicely. Other capabilities common to more general purpose CPUs,
such as double–precision floating point capability, vector registers and vector operations have
been left out. However, it was never designed to be such a general purpose CPU but rather a
system within a chip.

• The extremely simplified instruction set of the ZipCPU was a good choice. Although it does
not have many of the commonly used instructions, PUSH, POP, JSR, and RET among them,
the simplified instruction set has demonstrated an amazing versatility. I will contend therefore
and for anyone who will listen, that this instruction set offers a full and complete capability
for whatever a user might wish to do with the only exception being accelerated floating-point
support.

www.opencores.com Rev. 1.1 69

Gisselquist Technology, LLC Specification 2018/12/21

• The burst load/store approach using the wishbone pipelining mode is novel, and can be used
to greatly increase the speed of the processor.

• The novel approach to interrupts greatly facilitates the development of interrupt handlers from
within high level languages.

The approach involves a single interrupt “vector” only, and simply switches the CPU back to
the instruction it left off at. By using this approach, interrupt handlers no longer need careful
assembly language scripting in order to save their context upon any interrupt.

At the same time, if most modern systems handle interrupt vectoring in software anyway, why
maintain complicated hardware support for it?

• Both GCC and binutils back ends exist for the ZipCPU.

• As of this version of the CPU, a newlib veresion of the C–library now exists.

9.2 The Not so Good

• The ZipCPU does not (yet) support a data cache. One is currently under development.

The ZipCPU compensates for this lack via its burst memory capability. Further, performance
tests using Dhrystone suggest that the ZipCPU is no slower than other processors containing
a data cache.

• Many other instruction sets offer three operand instructions, whereas the ZipCPU only offers
two operand instructions. This means that it may take the ZipCPU more instructions to do
many of the same operations. The good part of this is that it gives the ZipCPU a greater
amount of flexibility in its immediate operand mode, although that increased flexibility isn’t
necessarily as valuable as one might like.

The impact of this lack of three operand instructions is application dependent, but does not
appear to be too severe.

• The ZipCPU doesn’t support out of order execution.

I suppose it could be modified to do so, but then it would no longer be the “simple” and low
LUT count CPU it was designed to be.

• Although switching to an interrupt context in the ZipCPU design doesn’t require a tremendous
swapping of registers, in reality it still does–since any task swap (such as swapping to a task
waiting on an interrupt) still requires saving and restoring all 16 user registers. That’s a lot
of memory movement just to service an interrupt.

This isn’t nearly as bad as it sounds, however, since most RISC architectures have 32 registers
that will need to be swapped upon any context swap.

• The ZipCPU is by no means generic: it will never handle addresses larger than 32-bits (4GB)
without a complete and total redesign. This may limit its utility as a generic CPU in the
future, although as an embedded CPU within an FPGA this isn’t really much of a restriction.

www.opencores.com Rev. 1.1 70

Gisselquist Technology, LLC Specification 2018/12/21

• While a toolchain does exist for the ZipCPU, it isn’t yet fully featured. The ZipCPU does not
yet have any support for soft floating point arithmetic, nor does it have gdb support. These
may be provided in future versions.

9.3 The Next Generation

This section could also be labeled as my “To do” list. It outlines where you may expect features in
the future. Currently, there are five primary items on my to do list:

1. Soft Floating Point capability

The lack of any floating point capability, either hard or soft, makes porting math software to
the ZipCPU difficult. Simply building a soft floating point library will solve this problem.

2. A data cache

A preliminary data cache implemented as a write through cache has been developed. Adding
this into the CPU should require few changes internal to the CPU. I expect future versions of
the CPU will permit this as an option.

3. A Memory Management Unit

The first version of such an MMU has already been written. It is available for examination
in the ZipCPU repository. This MMU exists as a peripheral of the ZipCPU. Integrating
this MMU into the ZipCPU will involve slowing down memory stores so that they can be
accomplished synchronously, as well as determining how and when particular cache lines need
to be invalidated.

4. An integrated floating point unit (FPU)

Why a small scale CPU needs a hefty floating point unit, I’m not certain, but many application
contexts require the ability to do floating point math.

www.opencores.com Rev. 1.1 71

	Introduction
	Characteristics of a SwiC
	Scope

	CPU Architecture
	Build Options/defines
	Internal Architecture
	Register Set
	The Status Register, CC
	Instruction Format
	Instruction OpCodes
	Conditional Instructions
	Modifying Conditions
	Operand B
	Address Modes
	Move Operands
	Multiply Operations
	Divide Unit

	CIS Instructions
	BREAK, Bus LOCK, SIM, and NOOP Instructions
	Floating Point
	Derived Instructions
	Interrupt Handling
	Pipeline Stages
	Pipeline Stalls

	External Architecture
	Simplified Wishbone Bus
	Memory Model
	ZipSystem

	Debug Interface

	Application Binary Interface
	Executable File Format
	Stack
	Relocations
	Call format
	Built-ins
	Linker Scripts
	Memory Types
	The Entry Function
	Bootloader Tags
	Other required linker symbols

	Loading ZipCPU Programs
	Starting a ZipCPU program
	CRT0
	The Bootloader
	Kernel Entry
	Kernel Main

	Operation
	CRT0
	System High
	A Programmable Delay
	Traditional Interrupt Handling
	Idle Task
	Memory Copy
	Memset
	Context Switch

	Registers
	ZipSystem Peripheral Registers
	Interrupt Controller(s)
	Timer Register
	Jiffies
	Performance Counters
	DMA Controller

	Debug Port Registers

	Wishbone Datasheets
	Clocks
	I/O Ports
	Initial Assessment
	The Good
	The Not so Good
	The Next Generation

