[
@ Gisselquist
Technology, LLC

Z1PCPU
SPECIFICATION

Dan Gisselquist, Ph.D.
dgisselq (at) opencores.org

November 4, 2016

Gl Gisselquist Technology, LLC Specification 2016/11/04

Copyright (C) 2016, Gisselquist Technology, LLC

This project is free software (firmware): you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTIBILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see <http://www.gnu.org/licenses/> for a copy.

WWW.opencores.com Rev. 1.0 ii

Gl Gisselquist Technology, LLC

Specification 2016/11/04

Revision History

] Rev. Date Author Description

1.0 11/4/2016 Gisselquist Major rewrite, includes compiler info

0.91 7/16/2016 Gisselquist Described three more CC bits

0.9 4/20/2016 Gisselquist Modified ISA: LDIHI replaced with MPY,
MPYU and MPYS replaced with MPYUHI, and
MPYSHI respectively. LOCK instruction now
permits an intermediate ALU operation.

0.8 1/28/2016 Gisselquist Reduced complexity early branching

0.7 12/22/2015 Gisselquist New Instruction Set Architecture

0.6 11/17/2015 Gisselquist Added graphics to illustrate pipeline discussion.

0.5 9/29/2015 Gisselquist Added pipelined memory access discussion.

0.4 9/19/2015 Gisselquist Added DMA controller, improved stall informa-
tion, and self-assessment info.

0.3 8/22/2015 Gisselquist First completed draft

0.2 8/19/2015 Gisselquist Still Draft, more complete

0.1 8/17/2015 Gisselquist Incomplete First Draft

WWW.Oopencores.com

Rev. 1.0 iii

Gl Gisselquist Technology, LLC Specification 2016/11/04

2.

= =
DO =

oo
b =

O Ui Lo b =

o w
0 ~1

3

Contents

Page
Introduction L e e e 1
Characteristics of a SwiC 2
SCOPE . v 3
CPU Architecture e e e e e 4
Build Options/defines e 4
Internal Architecture 7
2.2.1 Register Set e 7
2.2.2 The Status Register, CC o 8
2.2.3 Imstruction Format Lo o 10
2.2.4 Instruction OpCodes 11
2.2.5 Conditional Instructions oL 13
2.2.6 Modifying Conditions 14
227 Operand B 14
2.2.8 Address Modes 15
229 Move Operands L 15
2.2.10 Multiply Operations e 16
2.2.11 Divide Unit00 16
2.2.12 NOOP, BREAK, and Bus LOCK Instruction 16
2.2.13 Floating Point Lo 17
2.2.14 Load/Store byte 17
2.2.15 Derived Instructions 17
2.2.16 Interrupt Handling L Lo 18
2.2.17 Pipeline Stageso 18
2.2.18 Pipeline Stalls 23
External Architecture 29
2.3.1 Simplified Wishbone Bus o oo 29
2.3.2 Memory Model 29
2.3.3 ZipSystem 29
Debug Interfaceo 33
Application Binary Interface L L 34
Executable File Format 34
Stack . . . o 34
Relocations L e 35
Call format e 35
Built-ins e e 35
Linker Scripts L 36
3.6.1 Memory Types L 36
3.6.2 The Entry Function 37
3.6.3 Bootloader Tags 37
3.6.4 Other required linker symbols oo oL 38
Loading ZipCPU Programs e 38
Starting a ZipCPU program 39
3.8.1 CRTO e 39
3.8.2 The Bootloader 39
3.8.3 Kernel Entry o 39
3.8.4 Kernel Main e 40

WWW.opencores.com Rev. 1.0 iv

Gl Gisselquist Technology, LLC Specification 2016/11/04

4 Operation o e e 41
4.1 CRTO e 41
4.2 System High e 41
4.3 A Programmable Delay 43
4.4 Traditional Interrupt Handling 44
4.5 Idle Task e 46
4.6 Memory Copy - .« v v v i e 47
4.7 Memset e e e 50
4.8 String Operations oL 52
4.9 Context Switch e e 55

5 Registers Lo 60
5.1 ZipSystem Peripheral Registers L o 60

5.1.1 Interrupt Controller(s) 61
5.1.2 Timer Register L 62
5.1.3 Jiffieso e e 62
5.1.4 Performance Counters 63
5.1.5 DMA Controller e 63
5.2 Debug Port Registers. L 64

6 Wishbone Datasheets L 67

7 Clocks o o e 70

8 I/OPorts oo 71

9 Initial Assessment L e 73
9.1 The Good e e 73
9.2 The Not so Good o e 74
9.3 The Next Generation i i it e e e e 75

WWW.opencores.com Rev. 1.0 v

Gl Gisselquist Technology, LLC Specification 2016/11/04

Figures

Figure Page
1.1. ZipCPU internal pipeline architecture L. 2
2.1. ZipCPU Register File o 7
2.2. Zip Instruction Set Format 11
2.3. NOOP/Break/LOCK Instruction Format 17
2.4. A conditional branch generates 4 stall cycles 24
2.5. An expedited branch costs a single stall cycle. L. 24
2.6. Pipeline handling of a load instruction 26
2.7. Pipeline handling of a store instruction, 27
2.8. Pipeline handling of a store followed by a load instruction 28
2.9. ZipSystem Peripherals oo oo 30

WWW.opencores.com Rev. 1.0 vi

Gl Gisselquist Technology, LLC Specification 2016/11/04

Tables

Table Page
2.1. Condition Code Register Bit Assignment 8
2.2. ZipCPU OpCodes o e e 12
2.3. Conditions for conditional operand execution 13
2.4. An example of a double conditional oL 13
2.5. VLIW Conditions o e 14
2.6. Modifying conditions 14
2.7. Bit allocation for Operand B o o 15
2.8. Derived Instructions oL 19
2.9. Derived Instructions, continuedo L 20
2.10. Derived Instructions, continued Lo Lo 21
2.11. Derived Instructions, continued 22
4.1. Setting up a stack frame and starting the CPU 42
4.2. Executing an idle from supervisor mode 43
4.3. Waiting on a timer Lo 44
4.4. Traditional Interrupt handling oo 45
4.5. Example Idle Task in Assembly 46
4.6. Example Idle Task in C 47
4.7. Example Memory Copy code in C 47
4.8. Example Memory Copy code in Zip Assembly, Unoptimized 48
4.9. Example Memory Copy code in Zip Assembly, Hand Optimized 49
4.10. Example Memory Copy code using the DMA 50
4.11. Example Memset code 50
4.12. Example Memset code, minimally optimized, 51
4.13. Example Memset after loop unrolling, using pipelined memory ops. 51
4.14. Example Memset code, only this time with the DMA 52
4.15. Example string compare function o 0oL 53
4.16. Example string compare function 0L 0oL oL 53
4.17. Example string copy function Lo L oo 53
4.18. String packing function L L 54
4.19. Packed string compare function 0oL oL oL 54
4.20. Packed string subcharacter length function 55
4.21. Checking for whether the user task needs our attention 56
4.22. Example Storing User Task Context 57
4.23. Example Restoring User Task Context 59
5.1. ZipSystem Internal/Peripheral Registers 60
5.2. Interrupt Controller Register Bits 61
5.3. Timer Register Bitso oo 62
5.4. Jiffies Register Bits L 62
5.5. Counter Register Bits 63
5.6. DMA Control Register Bits. 64
5.7. ZipSystem Debug Registers o 64
5.8. Debug Control Register Bits 65
5.9. Debug Register Addresses 66

WWW.opencores.com Rev. 1.0 vii

Gl Gisselquist Technology, LLC Specification 2016/11/04

6.1 Wishbone Datasheet for the Debug Interface 67
6.2 Wishbone Datasheet for the CPU as Master 68
7.1. List of Clocks o . e 70
8.1 CPU Master Wishbone I/O Ports 71
8.2 CPU Debug Wishbone I/O Ports 72
8.3 T/OPorts. . . o oo 72

WWW.opencores.com Rev. 1.0 viii

Gl Gisselquist Technology, LLC Specification 2016/11/04

Preface

Many people have asked me why I am building the ZipCPU. ARM processors are good and effective.
Xilinx makes and markets Microblaze, Altera Nios, and both have better toolsets than the ZipCPU
will ever have. OpenRISC is also available, RISC—V may be replacing it. Why build a new processor?

The easiest, most obvious answer is the simple one: Because I can.

There’s more to it though. There’s a lot of things that I would like to do with a processor, and I
want to be able to do them in a vendor independent fashion. First, I would like to be able to place
this processor inside an FPGA. Without paying royalties, ARM is out of the question. I would then
like to be able to generate Verilog code, both for the processor and the system it sits within, that
can run equivalently on both Xilinx, Altera, and Lattice chips, and that can be easily ported from
one manufacturer’s chipsets to another. Even more, before purchasing a chip or a board, I would
like to know that my soft core works. I would like to build a test bench to test components with,
and Verilator is my chosen test bench. This forces me to use all Verilog, and it prevents me from
using any proprietary cores. For this reason, Microblaze and Nios are out of the question.

Why not OpenRISC? Because the ZipCPU has different goals. OpenRISC is designed to be a full
featured CPU. The ZipCPU was designed to be a simple, resource friendly, CPU. The result is that
it is easy to get a ZipCPU program running on bare hardware for a special purpose application—such
as what FPGAs were designed for, but getting a full featured Linux distribution running on the
ZipCPU may just be beyond my grasp. Further, the OpenRISC ISA is very complex, defining over
200 instructions—even though it has never been fully implemented. The ZipCPU on the other hand
has only a small handful of instructions, and all but the Floating Point instructions have already
been fully implemented.

My final reason is that I'm building the ZipCPU as a learning experience. The ZipCPU has
allowed me to learn a lot about how CPUs work on a very micro level. For the first time, I am
beginning to understand many of the Computer Architecture lessons from years ago.

To summarize: Because I can, because it is open source, because it is light weight, and as an
exercise in learning.

Dan Gisselquist, Ph.D.

WWW.opencores.com Rev. 1.0 ix

Gl Gisselquist Technology, LLC Specification 2016/11/04

1.

Introduction

The goal of the ZipCPU was to be a very simple CPU. You might think of it as a poor man’s
alternative to the OpenRISC architecture. You might also think of it as an Open Source microcon-
troller. For this reason, all instructions have been designed to be as simple as possible, and the base
instructions are all designed to be executed in one instruction cycle per instruction, barring pipeline
stalls.! Indeed, even the bus has been simplified to a constant 32-bit width, with no option for
more or less. This has resulted in the choice to drop push and pop instructions, pre-increment and
post-decrement addressing modes, the integrated memory management unit (MMU), and more.?
For those who like buzz words, the ZipCPU is:

e A 32-bit CPU: All registers are 32-bits, addresses are 32-bits, instructions are 32-bits wide,
etc. Indeed, the “byte size” for this processor, as per the C—language definition of a “byte”
being the smallest addressable unit, is 32-bits.

A RISC CPU. There is no microcode for executing instructions. All instructions are designed
to be completed in one clock cycle.

A Load/Store architecture. (Only load and store instructions can access memory.)

Wishbone compliant. All peripherals are accessed just like memory across this bus.

A Von-Neumann architecture. The instructions and data share a common bus.

A pipelined architecture, having stages for Prefetch, Decode, Read-Operand, a combined
stage containing the ALU, Memory, Divide, and Floating Point units, and then the final
Write-back stage. See Fig. 1.1 for a diagram of this structure.

e Completely open source, licensed under the GPL.?

The ZipCPU also has one very unique feature: the ability to do pipelined loads and stores. This
allows the CPU to access on-chip memory at one access per clock, minus any stalls for the initial
access.

1The exceptions to this rule are the multiply, divide, and load/store instructions. Once the floating point unit is
built, I anticipate these will also be exceptions to this rule.

2A not—so integrated MMU is currently under development.

3Should you need a copy of the ZipCPU licensed under other terms, please contact me.

WWW.opencores.com Rev. 1.0 1

Gl Gisselquist Technology, LLC Specification 2016/11/04

()
Pre-Fetch & Cache <——

g: V74)
Decode

¥

—) Read Operands

Wishbonce

\ 4

Arithmetic Logic Memory Access =

Flags

| Divide | Floating Point Unit

-
C— Write-Back G I

\. J

Register File

Figure 1.1: ZipCPU internal pipeline architecture

1.1 Characteristics of a SwiC

This section might also be called the ZipCPU philosophy. It discusses the basis for the ZipCPU
design decisions, and why a low logic count CPU is or can be a good thing.

Many other FPGA processors have been defined to be good Systems on a Chip, or SoC’s. The
entire goal of such designs, then, is to provide an interface to the processor and its external environ-
ment. This is not the case with the ZipCPU. Instead, we shall define a new concept, that of a soft
core internal to an FPGA, as a “System within a Chip,” or a SwiC. SwiCs have some very unique
properties internal to them that have influenced the design of the ZipCPU. Among these are the
bus, memory, and available peripherals.

Many other approaches to soft core CPU’s employ a Harvard architecture. This allows these
other CPU’s to have two separate bus structures: one for the program fetch, and the other for the
memory. Indeed, Xilinx’s proprietary Microblaze processor goes so far as to support four busses:
two for cacheable memory, and two for peripherals, with each of those split between instructions
and data. The ZipCPU on the other hand is fairly unique in its approach because it uses a Von
Neumann architecture, requiring only one bus within any FPGA. This structure was chosen for its
simplicity. Having only the one bus helps to minimize real-estate, logic, and the number of wires
that need to be passed back and forth, while maintaining a high clock speed. The disadvantage is
that both prefetch and memory access units need to contend for time on the same bus.

Soft core’s within an FPGA have an additional characteristic regarding memory access: it is
slow. While memory on chip may be accessed at a single cycle per access, small FPGA’s often have
only a limited amount of memory on chip. Going off chip, however, is expensive. Two examples
will prove this point. On the XuLLA2 board, Flash can be accessed at 128 cycles per 32-bit word,
or 64 cycles per subsequent word in a pipelined architecture. Likewise, the SDRAM chip on the
XuL A2 board allows a 6 cycle access for a write, 10 cycles per read, and 2 cycles for any subsequent

WWW.opencores.com Rev. 1.0 2

Gl Gisselquist Technology, LLC Specification 2016/11/04

pipelined access read or write. Either way you look at it, this memory access will be slow and this
doesn’t account for any logic delays should the bus implementation logic get complicated.

As may be noticed from the above discussion about memory speed, a second characteristic of
memory is sequential memory accesses may be optimized for minimal delays (pipelined), and that
pipelined memory access is faster than non—pipelined access. Therefore, a SwiC soft core should
support pipelined operations, but it should also allow a higher priority subsystem to get access to
the bus (no starvation).

As a further characteristic of SwiC memory options, on-chip cache’s are expensive. If you want
to have a minimum of logic, cache logic may not be the highest on the priority list. Any SwiC
capable processor must be able to either be built without caches, or to scale up or down the logic
required by any cache.

In sum, memory is slow. While one processor on one FPGA may be able to fill its pipeline, the
same processor on another FPGA may struggle to get more than one instruction at a time into the
pipeline. Any SwiC must be able to deal with both cases: fast and slow memories.

A final characteristic of SwiC’s within FPGA'’s is the peripherals. Specifically, FPGA’s are highly
reconfigurable. Soft peripherals can easily be created on chip to support the SwiC if necessary. As
an example, a simple 30-bit peripheral could easily support reversing 30-bit numbers: a read from
the peripheral returns its bit—reversed address. This is cheap within an FPGA, but expensive in
instructions. Reading from another 16-bit peripheral might calculate a sine function, where the
16-bit address internal to the peripheral was the angle of the sine wave.

Indeed, anything that must be done fast within an FPGA is likely to already be done—elsewhere
in the fabric. Further, the application designer gets to choose what tasks are so important they need
fabric dedicated to them, and which ones can be done more slowly in a CPU. This leaves the CPU
with the simple role of solely handling sequential tasks, and tasks that need a lot of state.

This means that the SwiC needs to live within a very unique environment, separate and different
from the traditional SoC. That isn’t to say that a SwiC cannot be turned into a SoC, just that this
SwiC has not been designed for that purpose. Indeed, some of the best examples of the ZipCPU are
System on a Chip examples.

1.2 Scope

The ZipCPU is itself nothing more than a CPU that can be placed within a larger design. It is not
a System on a Chip, but it can be used to create a system on a chip. As a result, this document
will not discuss more than a small handful of CPU-related peripherals, as the actual peripherals
used within a design will vary from one design to the next. Further, because control access will vary
from one environment to the next, this document will not discuss any host control programs, leaving
those to be discussed and defined together with the environments the ZipCPU is placed within.

WWW.Opencores.com Rev. 1.0 3

Gl Gisselquist Technology, LLC Specification 2016/11/04

2.

CPU Architecture

This chapter describes the general architecture of the ZipCPU. It first discusses the configuration
options to the CPU and then breaks into two threads. These last two threads are a discussion of the
internals of the ZipCPU, such as its instruction set architecture and the details and consequences of
it, and then the external architecture describing how the ZipCPU fits into the systems surrounding
it, and what those systems must do to support it. Specifically, the external architecture section will
discuss both the ZipSystem, the peripherals provided by it, as well as the debug interface.

2.1 Build Options/defines

One problem with a simple goal such as being light on logic, is that some architectures have some
needs, others have other needs. What is light logic in some architectures might consume all the
available logic in others. As an example, the CMod S6 board built by Digilent uses a very spare
Xilinx Spartan 6 LX4 FPGA. This FPGA doesn’t have enough look up tables (LUTs) to support
pipelined mode, whereas another project running on a XuLLA2 LX25 board made by Xess, having a
Spartan 6 LX25 on board, has more than enough logic to support a pipelined mode. Very quickly
it becomes clear that LUTs can be traded for performance.

To make this possible, the ZipCPU has both a configuration file as well as a set of parameters
that it can be built with. Often, those parameters can override the configuration file, but not all
configuration file changes can be overridden. Several options are available within the configuration
file, such as making the Zip CPU pipelined or not, able to handle a faster clock with more stalls or
a slower clock with no stalls, etc.

The cpudefs.v file encapsulates those control options. It contains a series of ‘define statements
that can either be commented or left active. If active, the option is considered to be in effect. The
number of LUTSs the Zip CPU uses varies dramatically with the options defined in this file. This
section will outline the various configuration options captured by this file.

The first couple of options control the Zip CPU instruction set, and how it handles various
instructions within the set:

OPT_MULTIPLY controls whether or not the multiply is built and included in the ALU by default,
and if it is which of several multiply options is selected. Unlike many of the defines that follow
within cpudefs.v that are either defined or not, this option requires a value. A value of zero means
no multiply support, whereas a value of one, two, or three, means that a multiply will be included
that takes one, two, or three clock cycles to complete. The option, however, only controls the
default value that the IMPLEMENT MPY parameter to the CPU, having the same interpretation, is
given. Because this is just the default value, it can easily be overridden upon instantiation. If the

WWW.opencores.com Rev. 1.0 4

Gl Gisselquist Technology, LLC Specification 2016/11/04

IMPLEMENT MPY parameter is set to zero, then any attempt to execute a multiply instruction will
cause an illegal instruction exception.

OPT_DIVIDE controls whether or not the divide instruction is built and included into the ZipCPU
by default. Set this option and the IMPLEMENT DIVIDE parameter will have a default value of one,
meaning that unless it is overridden with zero, the divide unit will be included. If the divide is not
included, then any attempt to use a divide instruction will create an illegal instruction exception
that will send the CPU into supervisor mode.

OPT_IMPLEMENT FPU will (one day) control whether or not the floating point unit (once I have one)
is built and included into the ZipCPU by default. This option sets the IMPLEMENT _FPU parameter
to one, so alternatively it can be set and adjusted upon instantiation. If the floating point unit is
not included then, as with the multiply and divide, any floating point instruction will result in an
illegal instruction exception that will send the CPU into supervisor mode.

OPT_SINGLE_FETCH controls whether or not the prefetch has a cache, and whether or not it can
issue one instruction per clock. When set, the prefetch has no cache, and only one instruction is
fetched at any given time. This effectively sets the CPU so that only one instruction is ever in the
pipeline at a time, and hence you may think of this as a “no pipeline” option. However, since the
pipeline uses so much area on the FPGA, this is an important option to use in trimming down used
logic if necessary. Hence, it needs to be maintained for that purpose. Be aware, though, setting this
option will disable all pipelining, and therefore will drop your performance by a factor of 8x or even
more.

I recommend only defining or enabling this option if you need to, such as if area is tight and
speed isn’t as important. Otherwise, leave the option undefined since the pipelined options have a
much better speed performance.

The next several options are pipeline optimization options. They make no sense in a single
instruction fetch mode, hence they are all disabled if OPT_SINGLE_FETCH is defined.

OPT_PIPELINED is the natural result and opposite of using the single instruction fetch unit. It
is an internal parameter that doesn’t need user adjustment, but if you look through the cpudefs.v
file you may see and notice it. If you have not set the OPT_SINGLE_FETCH parameter, cpudefs.v will
set the OPT_PIPELINED option. This is more for readability than anything else, since 0PT_PIPELINED
makes more intuitive readability sense than OPT_SINGLE_FETCH. In other words, define or comment
out OPT_SINGLE_FETCH, and let OPT_PIPELINED be taken care of automatically.

Assuming you have chosen not to define OPT_SINGLE_FETCH, OPT_TRADITIONAL_PFCACHE allows
you to switch between one of two prefetch cache modules. If enabled (recommended), a more
traditional cache will be implemented in the CPU. This more traditional cache reduces the stall
count tremendously over the alternative pipeline cache, and its LUT usage is quite competitive. As
there is little downside to defining this option if pipelining is enabled, I would recommend including
it.

The alternative prefetch and cache, sometimes called the pipeline cache, tries to read instructions
ahead of where they are needed, while maintaining what it has read in a cache. That cache is cleared
anytime you jump outside of its window, and it often competes with the CPU for access to the bus.
These two characteristics make this alternative bus often less than optimal.

OPT_EARLY BRANCHING is an attempt to execute a BRA (branch or jump) statement as early in
the pipeline as possible, to avoid as many pipeline stalls on a branch as possible. As an example, if
you have OPT_TRADITIONAL _PFCACHE defined as well, then branches within the cache will only cost
a single stall cycle. Indeed, using early branching, a BRA instruction can be used as the compiler’s
branch prediction optimizer: BRA’s barely stall, while branches on conditions will always suffer about

WWW.Opencores.com Rev. 1.0 5

Gl Gisselquist Technology, LLC Specification 2016/11/04

6 stall cycles. Setting this option causes the parameter, EARLY BRANCHING, to be set to one, so it
can be overridden upon instantiation.

Given the performance benefits achieved by early branching, setting this flag is highly recom-
mended.

OPT_PIPELINED_BUS_ACCESS controls whether or not LOD/STO instructions can take advantage of
the pipelined wishbone bus. To be eligible, the operations to be pipelined must be adjacent, must
be all LODs or all STOs, and the addresses must all use the same base address register and either
have identical immediate offsets, or immediate offsets that increase by one for each instruction.
Further, the LOD/STO string of instructions must all have the same conditional (if any). Currently,
this approach and benefit is most effectively used when saving registers to or restoring registers from
the stack at the beginning/end of a procedure, when using assembly optimized programs, or when
doing a context swap.

I recommend setting this flag, for performance reasons, especially if your wishbone bus im-
plementation can handle pipelined bus accesses. The logic impact of this setting is minimal, the
performance impact can be significant.

OPT_VLIW includes within the instruction set the Very Long Instruction Word packing, which
packs up to two instructions within each instruction word. Non—packed instructions will still execute
as normal, this just enables the decoding and running of packed instructions.

The two next options, INCLUDE_DMA_CONTROLLER and INCLUDE_ACCOUNTING_COUNTERS control
whether the DMA controller is included in the ZipSystem, and whether or not the eight accounting
timers are also included. Set these to include the respective peripherals, comment them out not to.
These only affect the ZipSystem implementation, and not any ZipBones implementations.

Finally, if you find yourself needing to debug the core and specifically needing to get a trace from
the core to find out why something specifically failed, you may find it useful to define DEBUG_SCOPE.
This will add a 32-bit debug output from the core, as the last argument to the core, to the ZipSystem,
or even to ZipBones. The actual definition and composition of this debugging bit—field changes from
one implementation to the next, depending upon needs and necessities, so please look at the code
at the bottom of zipcpu.v for more details.

That ends our discussion of CPU options, but there remain several implementation parameters
that can be defined with the CPU as well. Some of these, such as IMPLEMENT MPY, IMPLEMENT DIVIDE,
IMPLEMENT_FPU, and EARLY_BRANCHING have already been discussed. The remainder shall be dis-
cussed quickly here.

The RESET_ADDRESS parameter controls what address the CPU attempts to fetch its first instruc-
tion from upon any CPU reset. The default value is not likely to be particularly useful, so overriding
the default is recommended for every implementation.

The ADDRESS_WIDTH parameter can be used to trim down the width of addresses used by the
CPU. For example, although the Wishbone Bus definition used by the CPU has 32-address lines,
particular implementations may have fewer. By setting this value to the actual number of wires in
the address bus, some logic can be spared within the CPU. The default is a 32-bit wide bus.

The LGICACHE parameter specifies the log base two of the instruction cache size. If no instruction
cache is used, this option has no effect. Otherwise it sets the size of the instruction cache to be
2 wwords. The traditional prefetch cache, if used, will split this cache size into up to thirty two
separate cache lines.

The IMPLEMENT_LOCK parameter controls whether or not the LOCK instruction is implemented.
If set to zero, the LOCK instruction will cause an illegal instruction exception, otherwise it will be
implemented if pipelining is enabled.

WWW.Opencores.com Rev. 1.0 6

Gl Gisselquist Technology, LLC Specification 2016/11/04

Supervisor Register Set User Register Set
#’s 0-15 #’s 16-31

sRO(LR) sR8 uRO(LR) uR8
sR1 sR9 uR1 uR9
sR2 sR10 uR2 uR10
sR3 sR11 uR3 uR11
sR4 sR12(FP) uR4 uR12(FP)
sRb sSP uR5 uSP
sR6 sCC uR6 uCC
sR7 sPC uR7 uPC
Interrupts Disabled Interrupts Enabled

Figure 2.1: ZipCPU Register File

Other parameters are defined within the ZipSystem parent module, and affect the performance
of the system as a whole.

The START_HALTED parameter, if set to non—zero, will cause the CPU to be halted upon startup.
This is useful for debugging, since it prevents the CPU from doing anything without supervision.
Of course, once all pieces of your design are in place and proven, you’ll probably want to set this to
Z€ro.

The EXTERNAL_INTERRUPTS parameter controls the number of interrupt wires coming into the
CPU. This number must be between one and sixteen, or if the performance counters are disabled,
between one and twenty four.

2.2 Internal Architecture

This section discusses the general architecture of the CPU itself, separated from its environment.
As such, it focuses on the instruction set layout and how those instructions are implemented.

2.2.1 Register Set

Fundamental to the understanding of the ZipCPU is its register set, and the performance model
associated with it. The ZipCPU register set contains two sets of sixteen 32-bit registers, a supervisor
and a user set as shown in Fig. 2.1. The supervisor set is used when interrupts are disabled, whereas
the user set is used any time interrupts are enabled. This choice makes it easy to set up a working
context upon any interrupt, as the supervisor register set remains what it was when interrupts were
enabled. This sets up one of two modes the CPU can run within: a supervisor mode, which runs
with interrupts disabled using the supervisor register set, and user mode, which runs with interrupts
enabled using the user register set.

This separation is so fundamental to the CPU that it is impossible to enable interrupts without
switching to the user register set. Further, on any interrupt, exception, or trap, the CPU simply
clears the pipeline and switches instruction sets.

In each register set, the Program Counter (PC) is register 15, whereas the status register (SR)
or condition code register (CC) is register 14. All other registers are identical in their hardware

WWW.Opencores.com Rev. 1.0 7

Gl Gisselquist Technology, LLC Specification 2016/11/04

] Bit # ‘ Access ‘ Description ‘

31...23 | R Reserved for future uses

22...16 | R/W Reserved for future uses

15 R Reserved for MMU exceptions

14 W Clear I-Cache command, always reads zero

13 R VLIW instruction phase (1 for first half)

12 R (Reserved for) Floating Point Exception

11 R Division by Zero Exception

10 R Bus-Error Flag

9 R Trap Flag (or user interrupt). Cleared on return to userspace.

8 R Illegal Instruction Flag

7 R/W Break—Enable (sCC), or user break (uCC)

6 R/W Step

5 R/W Global Interrupt Enable (GIE)

4 R/W Sleep. When GIE is also set, the CPU waits for an interrupt.

3 R/W Overflow

2 R/W Negative. The sign bit was set as a result of the last ALU in-
struction.

1 R/W Carry

0 R/W Zero. The last ALU operation produced a zero.

Table 2.1: Condition Code Register Bit Assignment

functionality. By convention, the stack pointer is register 13 and noted as (SP)-although there is
nothing special about this register other than this convention. Also by convention, if the compiler
needs a frame pointer it will be placed into register 12, and may be abbreviated by FP. Finally, by
convention, RO will hold a subroutine’s return address, sometimes called the link register (LR).

When the CPU is in supervisor mode, instructions can access both register sets via the MOV
instruction, whereas when the CPU is in user mode, MOV instructions will only offer access to user
registers. We’ll discuss this further in subsection. 2.2.9.

2.2.2 The Status Register, CC

The status register (CC) is special, and bears further mention. As shown in Fig. 2.1, the lower
sixteen bits of the status register form a set of CPU state and condition codes. The other bits are
reserved for future uses.

Of the condition codes, the bottom four bits are the current flags: Zero (Z), Carry (C), Negative
(N), and Overflow (V). These flags maintain their usual definition from other CPUs that use them,
for all but the shift right instructions. On those instructions that set the flags, these flags will be
set based upon the output of certain instructions. If the result is zero, the Z (zero) flag will be
set. If the high order bit is set, the N (negative) flag will be set. If the instruction caused a bit to

1 Jumps to RO, an instruction used to implement a return from a subroutine, may be optimized in the future within
the early branch logic.

WWW.Opencores.com Rev. 1.0 8

Gl Gisselquist Technology, LLC Specification 2016/11/04

fall off the end, the carry bit will be set. In comparisons, this is equivalent to a less—than unsigned
comparison. Finally, if the instruction causes a signed integer overflow, the V (overflow) flag will be
set afterwards.

We’ll walk through the next many bits of the status register in order from least significant to
most significant.

4. The next bit is a sleep bit. Set this bit to one to disable instruction execution and place the
CPU to sleep, or to zero to keep the pipeline running. Setting this bit will cause the CPU
to wait for an interrupt (if interrupts are enabled), or to completely halt (if interrupts are
disabled). This leads to the WAIT and HALT opcodes which will be discussed more later. In
order to prevent users from halting the CPU, only the supervisor is allowed to both put the
CPU to sleep and disable interrupts. Any user attempt to do so will simply result in a switch
to supervisor mode.

5. The sixth bit is a global interrupt enable bit (GIE). This bit also forms the top, or fifth, bit
of any register address. When this sixth bit is a ‘1’ interrupts will be enabled, else disabled.
When interrupts are disabled, the CPU will be in supervisor mode, otherwise it is in user
mode. Thus, to execute a context switch, one only need enable or disable interrupts. (When
an interrupt line goes high, interrupts will automatically be disabled, as the CPU goes and
deals with its context switch.) Special logic has been added to keep the user mode from setting
the sleep register and clearing the GIE register at the same time, with clearing the GIE register
taking precedence.

Whenever read, the supervisor CC register will always have this bit cleared, whereas the user
CC register will always have this bit set.

6. The seventh bit is a step bit in the user CC register, and zero in the supervisor CC director.
This bit can only be set from supervisor mode. After setting this bit, should the supervisor
mode process switch to user mode, it would then accomplish one instruction in user mode
before returning to supervisor mode. This bit has no effect on the CPU while in supervisor
mode.

This functionality was added to enable a userspace debugger functionality on a user process,
working through supervisor mode of course.

The CPU can be stepped in supervisor mode. Doing so requires the CPU debug functionality,
not the step bit.

7. The eighth bit is a break enable bit. When applied to the supervisor CC register, this controls
whether a break instruction in user mode will halt the processor for an external debugger
(break enabled), or whether the break instruction will simply send send the CPU into interrupt
mode. This bit can only be set within supervisor mode. However, when applied to the user CC
register, from supervisor mode, this bit will indicate whether or not the reason the CPU entered
supervisor mode was from a break instruction or not. This break reason bit is automatically
cleared upon any transition to user mode, although it can also be cleared by the supervisor
writing to the user CC register.

Encountering a break in supervisor mode will halt the CPU independent of the break enable
bit.

WWW.Opencores.com Rev. 1.0 9

Gl Gisselquist Technology, LLC Specification 2016/11/04

10.

11.

12.

13.

14.

15.

This functionality was added to enable a debugger to set and manage breakpoints in a user
mode process.

The ninth bit is an illegal instruction bit. When the CPU tries to execute either a non-existent
instruction, or an instruction from an address that produces a bus error, the CPU will (if
implemented) switch to supervisor mode while setting this bit. The bit will automatically be
cleared upon any return to user mode.

The tenth bit is a trap bit. It is set whenever the user requests a soft interrupt, and cleared
on any return to userspace command. This allows the supervisor, in supervisor mode, to
determine whether it got to supervisor mode from a trap, from an external interrupt or both.

The eleventh bit is a bus error flag. If the user program encountered a bus error, this bit will
be set in the user CC register and the CPU will switch to supervisor mode. The bit may be
cleared by the supervisor, otherwise it is automatically cleared upon any return to user mode.
If the supervisor encounters a bus error, this bit will be set in the supervisor CC register and
the CPU will halt. In that case, either a CPU reset or a write to the supervisor CC register
will clear this register.

The twelfth bit is a division by zero exception flag. This operates in a fashion similar to the
bus error flag. If the user attempts to use the divide instruction with a zero denominator,
the system will switch to supervisor mode and set this bit in the user CC register. The bit is
automatically cleared upon any return to user mode, although it can also be manually cleared
by the supervisor. In a similar fashion, if the supervisor attempts to execute a divide by zero,
the CPU will halt and set the zero exception flag in the supervisor’s CC register. This will
automatically be cleared upon any CPU reset, or it may be manually cleared by the external
debugger writing to this register.

The thirteenth bit will operate in a similar fashion to both the bus error and division by zero
flags, only it will be set upon a (yet to be determined) floating point error.

In the case of VLIW instructions, if an exception occurs after the first instruction but before
the second, the fourteenth bit of the CC register will be set to indicate this fact.

The fifteenth bit references a clear cache bit. The supervisor may write a one to this bit in
order to clear the CPU instruction cache. The bit always reads as a zero.

Last, but not least, the sixteenth bit is reserved for a page not found memory exception to be
created by the memory management unit.

Some of the upper bits have been temporarily assigned to indicate CPU capabilities. This is not
a permanent feature, as these upper bits officially remain reserved.

2.2.3 Instruction Format

All ZipCPU instructions fit in one of the formats shown in Fig. 2.2. The basic format is that some
operation, defined by the OpCode, is applied if a condition, Cnd, is true in order to produce a result
which is placed in the destination register (DR). There are three basic exceptions to this model. The
first is the MOV instruction, which steals bits 13 and 18 to allow supervisor access to user registers.

WWW.OpPencores.com Rev. 1.0 10

Gl Gisselquist Technology, LLC Specification 2016/11/04

31 30 29 28 27 26 25 24 23 2221201918 1716 151413121110 9 8 7 6 5 4 3 2 1 0

DR | OpCode | Cnd |0 18-bit Signed Immediate
Standard
0| DR 1| BR 14-bit Signed Immediate
MOV { |0/ DR 5hf |Cnd|A| BR |B|13-bit Signed Immediate
Loi{ lo| bR | 4mb | 23-bit Signed Tmmediate
NOOP { |0|3'h7 | 11 | XXX Ignored
1| DR |OpCode | Cnd [0 Imm. —
1 1| BR —
1 4’hb 5’b Imm -
VLIW
1 - Cnd — DR | OpCode [0| Imm
1 — — 1| Reg
1 — — 4’hb 5b Imm

Figure 2.2: Zip Instruction Set Format

The second is the load 23-bit signed immediate instruction (LDI), in that it accepts no conditions
and uses only a 4-bit opcode. The last exception is the NOOP instruction group, containing the NOOP,
BREAK, and LOCK opcodes. These instructions ignore their register and immediate settings.?

The ZipCPU also supports a very long instruction word (VLIW) set of instructions. These
aren’t truly VLIW instructions in the sense that the CPU still only issues one instruction at a time,
but they do pack two instructions into a single instuction word. The number of bits used by the
immediate field are adjusted to make space for these instruction words. Other than instruction
format, the only basic difference between VLIW and normal instructions is that the CPU will not
switch to interrupt mode in between the two instructions, unless an exception is generated by the
first instruction. Likewise a new job given to the assembler is that of automatically packing as many
instructions as possible into the VLIW format.

The disassembler will represent VLIW instructions by placing a vertical bar between the two
components, but still leaving them on the same line.

2.2.4 Instruction OpCodes

With a 5-bit opcode field, there are 32—possible instructions as shown in Thl. 2.2. Of these opcodes,
ROL and POPC are experimental and may be replaced in future revisions. (If you have a reason to like
or wish to keep these opcodes, please contact me. If you know of alternatives that might be better,
please let me know as well.) There is also room for six more register-less instructions in the NOOP
instruction space, and two floating point instruction opcodes have been reserved for future use.

2A future version of the CPU may repurpose the immediate bits within the NOOP instruction to be simulator
commands, while the immediate/register bits within the BREAK instruction may be used by the debugger for whatever
purpose it chooses to use them for—such as a breakpoint table index.

WWW.opencores.com Rev. 1.0 11

Gl Gisselquist Technology, LLC Specification 2016/11/04

| OpCode | | Instruction | Sets CC |
5’h00 SUB Subtract
5’h01 AND Bitwise And
5h02 ADD Add two numbers
5'h03 OR Bitwise Or Y
5h04 XOR Bitwise Exclusive Or
5h05 LSR Logical Shift Right
5’h06 LSL Logical Shift Left
5’h07 ASR Arithmetic Shift Right
5’h08 MPY 32x32 bit multiply Y
5’h09 LDILO Load Immediate Low N
5h0a MPYUHI | Upper 32 of 64 bits from an unsigned 32x32 multiply
5’h0b MPYSHI | Upper 32 of 64 bits from a signed 32x32 multiply Y
5h0c BREV Bit Reverse B operand into result
5’h0d POPC Population Count
5’h0e ROL Rotate Ra left by OpB bits
5h0f MOV Move OpB into Ra N
5h10 CMP Compare (Ra-OpB) to zero Y
5h1l TST Test (AND w/o setting result)
5h12 LOD Load Ra from memory (OpB) N
5h13 STO Store Ra into memory at (OpB)
5’h14 DIVU Divide, unsigned Y
5’h15 DIVS Divide, signed

| 5'h16/7 | LDI | Load 23-bit signed immediate N
5'h18 FPADD Floating point add
5'h19 FPSUB Floating point subtract
5hla FPMPY Floating point multiply Y
5h1b FPDIV Floating point divide
5’hlc FPI2F | Convert integer to floating point
5’h1d FPF2I Convert floating point to integer
5hle Reserved for future use
5h1f Reserved for future use
5h18 NOOP (A-register = PC)
5’h19 BREAK (A-register = PC) N
5’hla LOCK (A-register = PC)

Table 2.2: ZipCPU OpCodes
WWW.opencores.com Rev. 1.0 12

Gl Gisselquist Technology, LLC Specification 2016/11/04

Code | Mnemonic | Condition

3’h0 | None Always execute the instruction

3hl | .LT Less than ("N’ set)

3'h2 .Z Only execute when 'Z’ is set

3’h3 .NZ Only execute when 'Z’ is not set

3h4 | .GT Greater than ("N’ not set, "Z’ not set)

3h5 | .GE Greater than or equal ("N’ not set, 'Z’ irrelevant)
3h6 | .C Carry set (Also known as less-than unsigned)
3’h7 | .V Overflow set

Table 2.3: Conditions for conditional operand execution

CMP 1,RO

; Condition codes are now set based upon RO-1

CMP.Z 2,R1

; If RO # 1, conditions are unchanged, Z is still false.

; If RO = 1, conditions are now set based upon RI1-2.

; Now some instruction could be done based upon the conjunction

; of both conditions.

; While we use the example of a STO, it could easily be any instruction.
STO0.Z RO, (R2)

Table 2.4: An example of a double conditional

2.2.5 Conditional Instructions

Most, although not quite all, instructions may be conditionally executed. The 23-bit load immediate
instruction, together with the NOOP, BREAK, and LOCK instructions are the exceptions to this rule.
All other instructions may be conditionally executed.

From the four condition code flags, eight conditions are defined for standard instructions. These
are shown in Tbl. 2.3. There is no condition code for less than or equal, not C or not V—there
just wasn’t enough space in 3-bits. Ways of handling non—supported conditions are discussed in
Sec. 2.2.6.

With the exception of CMP and TST instructions, conditionally executed instructions will not fur-
ther adjust the condition codes. Conditional CMP or TST instructions will adjust conditions whenever
they are executed. In this way, multiple conditions may be evaluated without branches, creating a
sort of logical and—but only if all the conditions are the same. For example, to do something if RO
is one and R1 is two, one might try code such as Tbhl. 2.4.

The real utility of conditionally executed instructions is that, unlike conditional branches, con-
ditionally executed instructions will not stall the bus if they are not executed.

In the case of VLIW instructions, only four conditions are defined as shown in Tbl. 2.5. Further,
the first bit of the three is given a special meaning: If the first bit is set, the conditions apply
to the second half of the instruction, otherwise the conditions will only apply to the first half of a

WWW.OpPencores.com Rev. 1.0 13

Gl Gisselquist Technology, LLC

Specification

2016/11/04

Code ‘ Mnemonic ‘ Condition

2’h0 | None Always execute the instruction
2hl | .LT Less than ("N’ set)

2’h2 .Z Only execute when 'Z’ is set
2’h3 .NZ Only execute when ’Z’ is not set

Table 2.5: VLIW Conditions

Original \ Modified \ Name
CMP Rx,Ry CMP 1+Rx,Ry Less-than or equal (signed, Z or N set)
BLE label BLT label
CMP Rx,Ry CMP 1+Rx,Ry Less-than or equal unsigned
BLEU label BC label
CMP Rx,Ry CMP Ry,Rx Greater-than unsigned
BGTU label BC label
CMP Rx,Ry CMP 1+Ry,Rx Greater-than equal unsigned
BGEU label BC label
CMP A+Rx,Ry CMP (1-A)+Ry,Rx Greater-than equal unsigned (with offset)
BGEU label BC label
CMP A,Ry LDI (A-1),Rx Greater-than equal comparison with a constant
BGEU label CMP Ry,Rx
BC label

Table 2.6: Modifying conditions

conditional instruction. Of course, the other conditions are still available by mingling the non—-VLIW
instructions with VLIW instructions.

2.2.6 Modifying Conditions

A quick look at the list of conditions supported by the ZipCPU and listed in Tbhl. 2.3 reveals that the
ZipCPU does not have a full set of conditions. In particular, only one explicit unsigned condition is
supported. Therefore, Tbl. 2.6 shows examples of how these unsupported conditions can be created
simply by adjusting the compare instruction, for no extra cost in clocks. Of course, if the compare
originally had an immediate within it, that immediate would need to be loaded into a register in
order to do make some of these adjustments. That case is shown as the last case above.

Many of these alternate conditions are chosen by the compiler implementation.

Users should be aware of any signed overflow that might take place within the modified conditions,
especially when numbers close to the limit are used.

2.2.7 Operand B

Many instruction forms have a 19-bit source “Operand B”, or OpB for short, associated with them.
This “Operand B” is shown in Fig. 2.2 as part of the standard instructions. An Operand B is

Rev. 1.0 14

WWW.Oopencores.com

Gl Gisselquist Technology, LLC Specification 2016/11/04

181716151413121110 9 8 7 6 5 4 3 2 1 0

0 18-bit Signed Immediate
1| Reg | 14-bit Signed Immediate

Table 2.7: Bit allocation for Operand B

either equal to a register plus a 14-bit signed immediate offset, or an 18-bit signed immediate offset
by itself. This value is encoded as shown in Tbl. 2.7. This format represents a deviation from
many other RISC architectures that use RO to represent zero, such as OpenRISC and RISC-V. Here,
instead, we use a bit within the instruction to note whether or not an immediate is used. The result
is that ZipCPU instructions can encode larger immediates within their instruction space.

In those cases where a fourteen or eighteen bit immediate doesn’t make sense, such as for LDILO,
the extra bits associated with the immediate are simply ignored. (This rule does not apply to the
shift instructions, ASR, LSR, and LSL—which all use all of their immediate bits.)

VLIW instructions still use the same operand B as regular instructions, only there was no room
for any instruction plus immediate addressing. Therefore, VLIW instructions have either a register
or a 4-bit signed immediate as their operand B. The only exception is the load immediate instruction,
which permits a 5-bit signed operand B.3

2.2.8 Address Modes

The ZipCPU supports two addressing modes: register plus immediate, and immediate addressing.
Addresses are encoded in the same fashion as Operand B’s, discussed above.
The VLIW instruction set only offers register addressing.

2.2.9 Move Operands

The previous set of operands would be perfect and complete, save only that the CPU needs access
to non-supervisory registers while in supervisory mode. The MOV instruction has been modified
to fit that purpose. The two bits, shown as A and B in Fig. 2.2 above, are designed to contain the
high order bit of the 5-bit register index. If the B bit is a ‘1’, the source operand comes from the
user register set. If the A bit is a ‘1’, the destination operand is in the user register set. A zero bit
indicates the current register set.

This encoding has been chosen to keep the compiler simple. For the most part, the extra bits
are quietly set to zero by the compiler. Assembly instructions, or particular built—in instructions,
can be used to get access to these cross register set move instructions.

Further, the MOV instruction lacks the full OpB capability to use a register or a register plus
immediate as a source, since a load immediate instruction already exists. As a result, all moves
come from a register plus a potential offset.

3 Although the space exists to extend this VLIW load immediate instruction to six bits, the 5-bit limit was chosen
to simplify the disassembler. This may change in the future.

WWW.OpPencores.com Rev. 1.0 15

Gl Gisselquist Technology, LLC Specification 2016/11/04

2.2.10 Multiply Operations

The ZipCPU supports three separate 32x32-bit multiply instructions: MPY, MPYUHI, and MPYSHI. The
first of these produces the low 32-bits of a 32x32-bit multiply result. The second two produce the
upper 32-bits. The first, MPYUHI, produces the upper 32-bits assuming the multiply was unsigned,
whereas MPYSHI assumes it was signed. Each multiply instruction is independent of every other in
execution, although the compiler is likely to use them in a dependent fashion.

In an effort to maintain a fast clock speed, all three of these multiplies have been slowed down in
logic. Thus, depending upon the setting of OPT_MULTIPLY within cpudefs.v, or the corresponding
IMPLEMENT MPY parameter that may override it, the multiply instructions will either 1) cause an
ILLEGAL instruction error (OPT_-MULTIPLY=0, or no multiply support), 2) take one additional clock
(OPT_MULTIPLY=2), or 3) take two additional clock cycles (OPT_MULTIPLY=3).*

2.2.11 Divide Unit

The ZipCPU also has an optional divide unit which can be built alongside the ALU. This divide
unit provides the ZipCPU with another two instructions that cannot be executed in a single cycle:
DIVS, or signed divide, and DIVU, the unsigned divide. These are both 32-bit divide instructions,
dividing one 32-bit number by another. In this case, the Operand B field, whether it be register or
register plus immediate, constitutes the denominator, whereas the numerator is given by the other
register.

As with the multiply, the divide instructions are also a multi—clock instructions. While the divide
is running, the ALU, any memory loads, and the floating point unit (if installed) will be idle. Once
the divide completes, other units may continue.

Of course, any divide instruction can result in a division by zero exception. If this happens the
CPU will either suddenly transition from user mode to supervisor mode, or it will halt if the CPU
is already in supervisor mode. Upon exception, the divide by zero bit will be set in the CC register.
In the case of a user mode divide by zero, this will be cleared by any return to user mode command.
The supervisor bit may be cleared either by a reboot or by the external debugger.

2.2.12 NOOP, BREAK, and Bus LOCK Instruction

Three instructions within the opcode list in Tbhl. 2.2, are somewhat special. These are the NOOP,
BREAK, and bus LOCK instructions. These are encoded according to Fig. 2.3.

The NOOP instruction is just that: an instruction that does not perform any operation. While
many other instructions, such as a move from a register to itself, could also fit this role, only the
NOOP instruction guarantees that it will not stall waiting for a register to be available. For this
reason, it gets its own place in the instruction set. Bits 21-0 of this instruction are reserved for
commands which may be given to a simulator, such as simulator exit, should the code be run from
a simulator. However, such simulation codes have not yet been defined.

The BREAK instruction is useful for creating a debug instruction that will halt the CPU without
executing. If in user mode, depending upon the setting of the break enable bit, it will either switch
to supervisor mode or halt the CPU-depending upon where the user wishes to do his debugging.
The lower 22 bits of this instruction are likewise reserved for the debuggers use.

4Support also exists for a one clock multiply (no clock slowdown), or a four clock multiply, and I am anticipating
supporting a much longer multiply for FPGA architectures with no accelerated hardware multiply support.

WWW.OpPencores.com Rev. 1.0 16

Gl Gisselquist Technology, LLC Specification 2016/11/04

31 30 29 28 27 26 25 24 23 2221201918 1716 151413121110 9 8 7 6 5 4 3 2 1 0

0| 3’h7 11| 000 Reserved for Simulator
NOOP ¢ |1|3h7| |11 000 —

1 — — |~ [3wr| 11| 001 | Rervd
BREAK { |0|3'h7| |11 001 Reserved for debugger
LOCK { |0|3h7| |11] 010 Ignored

Figure 2.3: NOOP/Break/LOCK Instruction Format

Finally, the LOCK instruction was added in order to provide for atomic operations. The LOCK
instruction only works when the CPU is configured for pipeline mode. It works by stalling the ALU
pipeline stack until all prior stages are filled, and then it guarantees that once a bus cycle is started,
the wishbone CYC line will remain asserted until the LOCK is deasserted. This allows the execution
of three instructions, one memory (ex. LOD), one ALU (ex. ADD), and another memory instruction
(ex. STO), to take place in an unbreakable fashion. Example uses of this capability include an atomic
increment, such as LOCK, LOD (Rx),Ry, ADD #,Ry, and then STO Ry, (Rx), or even a two instruction
pair such as a test and set sequence: LDI 1,Rz, LOCK, LOD (Rx),Ry, STO Rz, (Rx).

2.2.13 Floating Point

Although the ZipCPU does not (yet) have a floating point unit, the current instruction set offers
eight opcodes for floating point operations, and treats floating point exceptions like divide by zero
errors. Once this unit is built and integrated together with the rest of the CPU, the ZipCPU will
support 32-bit floating point instructions natively. Any 64-bit floating point instructions will either
need to be emulated in software, or else they will need an external floating point peripheral.

Until the FPU is built and integrated, of even afterwards if the floating point unit is not installed
by option, floating point instructions will trigger an illegal instruction exception, which may be
trapped and then implemented in software.

2.2.14 Load/Store byte

One difference between the ZipCPU and many other architectures is that there are no load byte
LB, store byte SB, load halfword LH or store halfword SH instructions. This lack is by design in an
attempt to keep the 32-bit bus simple.
Because the ZipCPU’s addresses refer to 32-bit values, i.e. address one will refer to a completely
different 32-bit value than address two, simulating these load and store byte instructions is difficult.
This is just the nature of the ZipCPU, as a result of the design choices that were made.

2.2.15 Derived Instructions

The ZipCPU supports many other common instructions by construction, although not all of them
are single cycle instructions. Tables 2.8, 2.9, 2.10 and 2.11 show how these other instructions may

WWW.OpPencores.com Rev. 1.0 17

Gl Gisselquist Technology, LLC Specification 2016/11/04

be implemented on the ZipCPU. Many of these instructions will have assembly equivalents, such as
the branch instructions, to facilitate working with the CPU.

2.2.16 Interrupt Handling

The ZipCPU does not maintain any interrupt vector tables. If an interrupt takes place, the CPU
simply switches to from user to supervisor (interrupt) mode. The supervisor code then continues
from where it left off after executing a return to userspace RTU instruction.

Since the CPU may return from userspace after either an interrupt, a trap, or an exception, it
is up to the supervisor code that handles the transition to determine which of the three has taken
place.

2.2.17 Pipeline Stages

As mentioned in the introduction, and highlighted in Fig. 1.1, the ZipCPU supports a five stage
pipeline.

1. Prefetch: Reads instructions from memory. If the CPU has been configured with a cache,
the cache has been integrated into the prefetch. Stalls are also created here if the instruction
isn’t in the prefetch cache.

The ZipCPU supports one of three prefetch methods, depending upon the flags set at build
time within the cpudefs.v file.

The simplest is a non—cached implementation of a prefetch. This implementation is fairly small,
and ideal for users of the ZipCPU who need the extra space on the FPGA fabric. However,
because this non—cached version has no cache, the maximum number of instructions per clock
is limited to about one per eight—-depending upon the bus/memory delay. This prefetch option
is set by leaving the OPT_SINGLE_FETCH line uncommented within the cpudefs.v file. Using
this option will also turn off the ZipCPU pipeline.

The second prefetch module is a non—traditional pipelined prefetch with a cache. This module
tries to keep the instruction address within a window of valid instruction addresses. While
effective, it is not a traditional cache implementation. A disappointing feature of this imple-
mentation is that it needs an extra internal pipeline stage to be implemented.

The third prefetch and cache module implements a more traditional cache. This cache provides
for the fastest CPU speed. The only drawback is that, when a cache line is loading, the CPU
will be stalled until the cache is completely loaded.

2. Decode: Decodes an instruction into it’s OpCode, register(s) to read, condition code, and
immediate offset. This stage also determines whether the flags will be read or set, whether
registers will be read (and hence the pipeline may need to stall), or whether the result will be
written back. In many ways, simplifying the CPU also meant simplifying this pipeline stage
and hence the instruction set architecture.

3. Read Operands: Read from the register file and applies any immediate values to the result.
There is no means of detecting or flagging arithmetic overflow or carry when adding the
immediate to the operand. This stage will stall if any source operand is pending and the
immediate value is non—zero.

WWW.OpPencores.com Rev. 1.0 18

Gl Gisselquist Technology, LLC Specification 2016/11/04

Mapped Actual Notes

ABS Rx TST -1,Rx Absolute value, depends upon the derived NEG in-
NEG.LT Rx struction below, and so this expands into three

instructions total.

ADD Ra,Rx Add Ra,Rx Add with carry

ADDC Rb,Ry ADD.C $1,Ry
Add Rb,Ry

BRA.x +/-$Addr

ADD.x $Addr+PC,PC

Branch or jump on condition z. Works for 18-bit
signed address offsets.

BUSY

ADD $-1,PC

Execute an infinite loop. This is used within
ZipCPU simulations as the execute simulation on
error instruction.

CLRF.NZ Rx

XOR.NZ Rx,Rx

Clear Rx, and flags, if the Z-bit is not set

CLR Rx

LDI $0,Rx

Clears Rx, leaving the flags untouched. This in-
struction cannot be conditional.

CLR.NZ Rx

BREV.NZ $0,Rx

Clears Rx, leaving the flags untouched. This in-
struction can be executed conditionally. The as-
sembler will quietly choose between LDI and BREV
depending upon the existence of the condition.

EXCH.W Rx

ROL $16,Rx

Exchanges the top and bottom 16’bit words of Rx

HALT

Or $SLEEP,CC

This only works when issued in inter-
rupt/supervisor mode. In user mode this is
simply a wait until interrupt instruction.

This is also used within the simulator as an exit
simulation on success instruction.

INT

LDI $0,CC

This is also known as a trap instruction

IRET

OR $GIE,CC

Also known as an RTU instruction (Return to
Userspace)

JMP R6+$0ffset

MOV $0ffset(R6),PC

Only works for 13-bit offsets. Other offsets require
adding the offset first to R6 before jumping.

LIJMP $Addr

LOD (PC),PC
Address

Although this only works for an unconditional
jump, and it only works in an architecture with
a unified instruction and data address space, this
instruction combination makes for a nice combi-
nation that can be adjusted by a linker at a later
time.

LJMP.x $Addr

LOD.x 2(PC),PC
ADD 1,PC
Address

Long jump, works for a conditional long jump.

Table 2.8: Derived Instructions

WWW.Oopencores.com

Rev. 1.0

19

Gl Gisselquist Technology, LLC Specification 2016/11/04
Mapped Actual Notes
LJSR $Addr MOV $2+PC,RO Similar to LJMP, but it handles the return address
LOD (PC),PC properly.
Address

JSR PC+$0ffset

MOV $1+PC,RO

ADD $0ffset,PC

This is similar to the jump and link instructions
from other architectures, save only that it requires
a specific link instruction, seen here as the MOV
instruction on the left.

LDI $val,Rx

BREV REV(val)&0x0ffff, Rx
LDILO (val&0xO0ffff),Rx

Sadly, there’s not enough instruction space to
load a complete immediate value into any register.
Therefore, fully loading any register takes two cy-
cles. The LDILO (load immediate low) instruction
has been created to facilitate this together with
BREV.

This is also the appropriate means for setting a
register value to an arbitrary 32-bit value in a
post—assembly link operation.

LOD.b $addr,Rx

LDI $addr,Ra
LDI $addr,Rb
LSR $2,Ra
AND $3,Rb
LOD (Ra),Rx
LSL $3,RDb
SUB $32,Rb
ROL Rb,Rx
AND $0ffh,Rx

This CPU is designed for 32’bit word length in-
structions. Byte addressing is not supported by
the CPU or the bus, so it therefore takes more
work to do.

Note also that in this example, $Addr is a byte-
wise address, where all other addresses in this doc-
ument are 32-bit wordlength addresses. For this
reason, we needed to drop the bottom two bits.
This also limits the address space of character ac-
cesses using this method from 16 MB down to

4MB
Logical shift left with carry. Note that the instruc-

LSL $1,Rx LSL $1,Ry
LSLC $1,Ry LSL $1,Rx tion order is now backwards, to keep the condi-
OR.C $1,Ry tions valid. That is, LSL sets the carry flag, so if
we did this the other way with Rx before Ry, then
the condition flag wouldn’t have been right for an
OR correction at the end.
LSR $1,Rx CLR Rz Logical shift right with carry. Unlike the shift
LSRC $1,Ry LSR $1,Ry left, this approach doesn’t extend well to numbers
BREV.C $1,Rz larger than two words.
LSR $1,Rx
OR Rz,Rx

Table 2.9: Derived Instructions, continued

WWW.Oopencores.com

Rev. 1.0

20

Gl Gisselquist Technology, LLC Specification 2016/11/04

NEG Rx XOR $-1,Rx Negates Rx
ADD $1,Rx

NEG.C Rx MOV.C $-1+Rx,Rx Conditionally negates Rx
XOR.C $-1,Rx

NOT Rx XOR $-1,Rx One’s complement

POP Rx LOD $(SP),Rx The compiler avoids the need for this instruction and
ADD $1,SP the similar PUSH instruction when setting up the stack

by coalescing all the stack address modifications into a
single instruction at the beginning of any stack frame.

PUSH Rx SUB $1,SP Note that for pipelined operation, it helps to coalesce
STO Rx,$(SP) all the SUB’s into one command, and place the STQ’s

right after each other. Further, to avoid a pipeline

stall, the immediate value for the first store must be

Z€ero.
PUSH Rx-Ry SUB $n,SP Multiple pushes at once only need the single subtract
STO Rx,$(SP) ... from the stack pointer. This derived instruction is
STO Ry,$(n —1)(SP) analogous to a similar one on the Motorola 68k archi-

tecture, although the Zip Assembler does not support
the combined instruction. This instruction also sup-
ports pipelined memory access.

RESET STO This depends upon the existence of a watchdog
$1,%watchdog(R12) peripheral, and the peripheral base address being
BUSY preloaded into R12. The BUSY instructions are re-

quired because the CPU will continue until the STO
has completed.

Another opportunity might be to jump to the reset
address from within supervisor mode.

RET MOV RO,PC This depends upon the form of the JSR given on the
previous page that stores the return address into RO.
SEX.b Rx LSL 24,Rx Signed extend an 8-bit value into a full word.
ASR 24,Rx
SEX.h Rx LSL 16,Rx Sign extend a 16—bit value into a full word.
ASR 16,Rx
STEP Rr,Rt LSR $1,Rr Step a Galois implementation of a Linear Feedback
XOR.C Rt,Rr Shift Register, Rr, using taps Rt
STEP OR $Stepl|$GIE,CC Steps a user mode process by one instruction

Table 2.10: Derived Instructions, continued

WWW.opencores.com Rev. 1.0 21

Gl Gisselquist Technology, LLC

Specification 2016/11/04

STO.b Rx,$addr LDI $addr,Ra This CPU and its bus are not optimized for byte-
LDI $addr,Rb wise operations.
LSR $2,Ra Note that in this example, $addr is a byte-wise
AND $3,RDb address, whereas in all of our other examples it is
SUB $32,Rb a 32-bit word address. This also limits the address
LOD (Ra),Ry space of character accesses from 16 MB down to
AND $0ffh,Rx 4MB. Further, this instruction implies a byte or-
AND ~$0ffh,Ry dering, such as big or little endian.
ROL Rb,Rx
OR Rx,Ry
STO Ry, (Ra)
SUBR Rx,Ry SUB 1+Rx,Ry Ry is set to Rx-Ry, rather than the normal sub-
XOR -1,Ry tract which sets Ry to Ry-Rx.
SUB Ra,Rx SUB Ra,Rx Subtract with carry. Note that the overflow flag
SUBC Rb,Ry SUB.C $1,Ry may not be set correctly after this operation.
SUB Rb,Ry
SWAP Rx,Ry XOR Ry,Rx While no extra registers are needed, this example
XOR Rx,Ry does take 3-clocks.
XOR Ry,Rx
TRAP #X LDI $x,R1 This works because whenever a user lowers the
AND "$GIE,CC $GIE flag, it sets a TRAP bit within the uCC
register. Therefore, upon entering the supervisor
state, the CPU only need check this bit to know
that it got there via a TRAP. The trap could be
made conditional by making the LDI and the AND
conditional. In that case, the assembler would qui-
etly turn the LDI instruction into a BREV/LDILO
pair, but the effect would be the same.
TS Rx,Ry, (Rz) LDI 1,Rx A test and set instruction. The LOCK instruction
LOCK insures that the next two instructions lock the bus
LOD (Rz),Ry between the instructions, so no one else can use it.
STO Rx, (Rz) Thus guarantees that the operation is atomic.
TST Rx TST $-1,Rx Set the condition codes based upon Rx without
changing Rx. Equivalent to a CMP $0,Rx.
WAIT Or $GIE | $SLEEP,CC Wait until the next interrupt, then jump to super-

visor/interrupt mode.

Table 2.11: Derived Instructions, continued

WWW.Oopencores.com

Rev. 1.0

22

Gl Gisselquist Technology, LLC Specification 2016/11/04

4. At this point, the processing flow splits into one of four tracks: An ALU track which will
accomplish a simple instruction, the MemOps stage which handles LOD (load) and STO (store)
instructions, the divide unit, and the floating point unit.

e Loads will stall instructions in the read operands stage until the entire memory is com-
plete, lest a register be read only to be updated unseen by the Load.

e Condition codes are set upon completion of the ALU, divide, or FPU stage. (Memory
operations do not set conditions.)

e Issuing a non—pipelined memory instruction to the memory unit while the memory unit
is busy will stall the entire pipeline until the memory unit is idle and ready to accept
another instruction.

5. Write-Back: Conditionally write back the result to the register set, applying the condition
and any special CC logic. This routine is quad-entrant: either the ALU, the memory, the
divide, or the FPU may commit a result. The only design rule is that no more than a single
register may be written in any given clock cycle.

This is also the stage where any special condition code logic takes place.

The ZipCPU does not support out of order execution. Therefore, if the memory unit stalls,
every other instruction stalls. The same is true for divide or floating point instructions—all other
instructions will stall while waiting for these to complete. Memory stores, however, can take place
concurrently with non—memory operations, although memory reads (loads) cannot. This is likely to
change with the integration of an memory management unit (MMU), in which case a store instruction
must stall the CPU until it is known whether or not the store address can be mapped by the MMU.

2.2.18 Pipeline Stalls

The processing pipeline can and will stall for a variety of reasons. Some of these are obvious, some
less so. These reasons are listed below:

e When the prefetch cache is exhausted

This reason should be obvious. If the prefetch cache doesn’t have the instruction in memory,
the entire pipeline must stall until an instruction can be made ready. In the case of the
pipefetch windowed approach to the prefetch cache, this means the pipeline will stall until
enough of the prefetch cache is loaded to support the next instruction. In the case of the more
traditional pfcache approach, the entire cache line must fill before instruction execution can
continue.

e While waiting for the pipeline to load following any taken branch, jump, return from interrupt
or switch to interrupt context (4 stall cycles, minimum)

Fig. 2.4 illustrates the situation for a conditional branch. In this case, the branch instruction,
BC, is nominally followed by instructions I1 and so forth. However, since the branch is taken,
the next instruction must be IA. Therefore, the pipeline needs to be cleared and reloaded.
Given that there are five stages to the pipeline, that accounts for the four stalls. (Were the
pipefetch cache chosen, there would be another stall internal to the pipefetch cache.)

WWW.OpPencores.com Rev. 1.0 23

Gl Gisselquist Technology, LLC Specification 2016/11/04

S I O I o A
PF 7% 14 X 1A X 1B X IC X ID X IE X IF
DC 777X 13 XCLRYX IA X 1B X IC X ID X IE
OP 77X 12 XCLRX”X 1A X 1B X IC X ID
ALU 777X 11 XCLRX X 1A X 1B X IC
WB 7/ BC ¥/ 7% 1A X IB

Figure 2.4: A conditional branch generates 4 stall cycles

PF %BR‘X 11 ‘X IA‘X IB ‘X IC ‘X ID‘X IE ‘X i
DC 7% BR CLRY IA X 1B X IC X ID X IE
oP X BR X% 1A X 1B X IC X ID
ALU ‘ ‘ 77X BR XX A X IB X IC
WB X BR XX IA X IB

Figure 2.5: An expedited branch costs a single stall cycle

The decode stage can handle the ADD $X,PC, LDI $X,PC, and LOD (PC),PC instructions spe-
cially, however, when EARLY _BRANCHING is enabled. These instructions, when not conditioned
on the flags, can execute with only a single stall cycle (two for the LOD(PC) ,PC instruction),
such as is shown in Fig. 2.5. In this example, BR is a branch always taken, I1 is the instruction
following the branch in memory, while IA is the first instruction at the branch address. (CLR
denotes a clear—pipeline operation, and does not represent any instruction.)

e When reading from a prior register while also adding an immediate offset

1. OPCODE 7,RA

2. (stall)

3. OPCODE I+RA,RB
Since the addition of the immediate register within OpB decoding gets applied during the read
operand stage so that it can be nicely settled before the ALU, any instruction that will write

back an operand must be separated from the opcode that will read and apply an immediate
offset by one instruction. The good news is that this stall can easily be mitigated by proper

WWW.opencores.com Rev. 1.0 24

Gl Gisselquist Technology, LLC Specification 2016/11/04

scheduling. That is, any instruction that does not add an immediate to RA may be scheduled
into the stall slot.

This is also the reason why, when setting up a stack frame, the top of the stack frame is used
first: it eliminates this stall cycle.® Hence, to save registers at the top of a procedure, one
would write:

1. SUB 2,SP
2. STO R1,(SP)
3. STO R2,1(SP)

Had R1 instead been stored at 1(SP) as the top of the stack, there would’ve been an extra
stall in setting up the stack frame.

When reading from the CC register after setting the flags

1. ALUOP RA,RB ; Ex: a compare opcode
2. (stall)
3. TST sys.ccv,CC

4. BZ somewhere

The reason for this stall is simply performance: many of the flags are determined via combina-
torial logic during the writeback cycle. Trying to then place these into the input for one of the
operands for an ALU instruction during the same cycle created a time delay loop that would
no longer execute in a single 100 MHz clock cycle. (The time delay of the multiply within the
ALU wasn’t helping either ...).

This stall may be eliminated via proper scheduling, by placing an instruction that does not
set flags in between the ALU operation and the instruction that references the CC register.
For example, MOV $addr+PC,uPC followed by an RTU (OR $GIE,CC) instruction will not incur
this stall, whereas an OR $BREAKEN, CC followed by an OR $STEP,CC will incur the stall, while
a LDI $BREAKEN | $STEP, CC will not since it doesn’t read the condition codes before executing.

When waiting for a memory read operation to complete

1. LOD address,RA
2. (multiple stalls, bus dependent, 4 clocks best)
3. OPCODE I+RA,RB

Remember, the ZipCPU does not support out of order execution. Therefore, anytime the
memory unit becomes busy both the memory unit and the ALU must stall until the memory
unit is cleared. This is illustrated in Fig. 2.6, since it is especially true of a load instruction,
which must still write its operand back to the register file. Further, note that on a pipelined
memory operation, the instruction must stall in the decode operand stage, lest it try to read
a result from the register file before the load result has been written to it. Finally, note that
there is an extra stall at the end of the memory cycle, so that the memory unit will be idle for
two clocks before an instruction will be accepted into the ALU. Store instructions are different,

WWW.OpPencores.com Rev. 1.0 25

Gl Gisselquist Technology, LLC Specification 2016/11/04

S /6 I O N I S A e O

PF LC J/i X 12 // X 13 X 14 X 15X 16
pc LB X JIc X 11 // X12 Y13)14)15
op LA X /IB X LC ¥ 777774 11 X 12 X 13 X 14
ALU % % 74 11 X 12 X 13
MEM) i Load Y

ce |/ T\
7 \ I 7

ADR 77X /A X LB X LC ¥/
ACK 7, /[I/ Y

Bus Master
r AY
0
_|
[ws]

§ Stall I\ % 2%
| DATA 7 07/ a B Y .C Y7
WB 7 0177774 LA X LB X LC X/ %

Figure 2.6: Pipeline handling of a load instruction

WWW.Opencores.com Rev. 1.0 26

Gl Gisselquist Technology, LLC Specification 2016/11/04

PF sC X 11 DIZXI3XI4XI5XI6XI7
DC SB_ sc_)z Y3 e s e
op SA s8_J/ (s)z Y13 e {1
ALU U 7X 11) 12 X 13 X 14
MEM 77X // Store / \ %

| o] Ji Ji o
8l s 2727) \ I 1%

2 ADR)\ sa_J XsB)YscYZ

® | DATA 2 sa_J sB)Ysc}Z

of sl 224 |\ 7

o a2 [/ %

WB U % IR EE

Figure 2.7: Pipeline handling of a store instruction

as shown in Fig. 2.7, since they can be busy with the bus without impacting later write back
pipeline stages. Hence, only loads stall the pipeline.

This, of course, also assumes that the memory being accessed is a single cycle memory and that
there are no stalls to get to the memory. Slower memories, such as the Quad SPI flash, will
take longer—perhaps even as long as forty clocks. During this time the CPU and the external
bus will be busy, and unable to do anything else. Likewise, if it takes a couple of clock cycles
for the bus to be free, as shown in both Figs. 2.6 and 2.7, there will be stalls.

e Memory operation followed by a memory operation

1. STO address,RA

2. (multiple stalls, bus dependent, 4 clocks best)

3. LOD address,RB

4. (multiple stalls, bus dependent, 4 clocks best)
In this case, the LOD instruction cannot start until the STO is finished, as illustrated by
Fig. 2.8. With proper scheduling, it is possible to do something in the ALU while the memory

unit is busy with the STO instruction, but otherwise this pipeline will stall while waiting for
it to complete before the load instruction can start.

5This only applies if there is no local memory to allocate on the stack as well.

WWW.OpPencores.com Rev. 1.0 27

Gl Gisselquist Technology, LLC

Specification

2016/11/04

ok LU L L L ru o r e
PP Y 1] | E a5
oc B 1 | 2] EED TS
op AN 18] | L] 12 (3
ALU 2% %)% Y %)% % Ay
MEM 720/ /[store 2y Load %

[e I /] T (A

8| sezZ _ [z] - J %

.| AR R 7 % S

"l oM 7 0 4%

w' sall 2 ||\ 7 2 T\ 7

5| a7 I/ [~

| DATA 7771 0 %00,
ws 7771 4% 77728 X7

Figure 2.8: Pipeline handling of a store followed by a load instruction

The ZipCPU has the capability of supporting a form of burst memory access, often called
pipelined memory access within this document due to its use of the Wishbone B4 pipelined
access mode. When using this mode, the CPU may issue multiple loads or stores at a time, to
the extent that all but the first take only a single clock. Doing this requires several conditions

to be true:

1. Aall accesses within the burst must all be reads or all be writes,

2. All must use the same base register for their address, and

3. There can be no stalls or other instructions between memory access instructions within

the burst.

4. Further, the immediate offset to memory must be either indentical or increasing by one

address each instruction.

These conditions work well for saving or storing registers to the stack in a burst operation.
Indeed, if you noticed, both Fig. 2.6 and Fig. 2.7 illustrated pipelined memory accesses. Beyond
saving and restoring registers to the stack, the compiler does not optimize well (yet) for using

this burst mode.

WWW.Oopencores.com

Rev. 1.0

28

Gl Gisselquist Technology, LLC Specification 2016/11/04

2.3 External Architecture

Having now described the CPU registers, instructions, and instruction formats, we now turn our
attention to how the CPU interacts with the rest of the world. Specifically, we shall discuss how the
bus is implemented, and the memory model assumed by the CPU.

2.3.1 Simplified Wishbone Bus

The bus architecture of the ZipCPU is that of a simplified, pipelined, WISHBONE bus built ac-
cording to the B4 specification. Several changes have been made to simplify this bus. First, all
unnecessary ancillary information has been removed. This includes the retry, tag, lock, cycle type
indicator, and burst indicator signals. It also includes the select lines which would enable the CPU
to act on less than 32-bit words. As a result all operations on the bus are 32-bit operations. The
bus is neither little endian nor big endian. For this reason, all words are 32-bits. All instructions are
also 32-bits wide. Everything has been built around the 32-bit word. Even the byte size (the size
of the minimum addressable unit) is 32-bits. Second, we insist that all accesses be pipelined, and
simplify that further by insisting that pipelined accesses not cross peripherals—although we leave it
to the user to keep that from happening in practice. Finally, we insist that the wishbone strobe line
be zero any time the cycle line is inactive. This makes decoding simpler in slave logic: a transaction
is initiated whenever the strobe line is high and the stall line is low. For those peripherals that do
not generate stalls, only the strobe line needs to be tested for access. The transaction completes
whenever either the ACK or the ERR lines go high.

2.3.2 Memory Model

The memory model of the ZipCPU is that of a uniform 32-bit address space. The CPU knows nothing
about which addresses reference on—chip or off-chip memory, or even which reference peripherals.
Indeed, there is no indication within the CPU if a particular piece of memory can be cached or not,
save that the CPU assumes any and all instruction words can be cached.

The one exception to this rule revolves around addresses beginning with 2°b11 in their high order
word. These addresses are used to access a variety of optional peripherals that will be discussed more
in Sec. 2.3.3, but that are only present within the ZipSystem. When used with the bare ZipBones,
these addresses will cause a bus error.

The prefetch cache currently has no means of detecting an instruction that was changed, save by
clearing the instruction cache. This may be necessary when loading programs into previously used
memory, or when creating self-modifying code.

Should the memory management unit (MMU) be integrated into the ZipCPU, the MMU will be
able to be configured to instruct the ZipCPU as to which addresses may be cached and which not.

This topic is discussed further in the linker section, Sec. 3.6.1 of the ABI chapter, Chap. 3.

2.3.3 ZipSystem

While the previous chapter describes a CPU in isolation, the ZipSystem includes a small minimum
set of peripherals that can be tightly integrated into the CPU. These peripherals are shown in
Fig. 2.9 and described here. They are designed to make the ZipCPU more useful in an Embedded
Operating System environment.

WWW.OpPencores.com Rev. 1.0 29

Gl Gisselquist Technology, LLC Specification 2016/11/04

4 N
Io SH57EN

Interrupt Controller (x2)

Watchdog Timer

Generic Timers (x3)

[)
|)
|)
o~]
|)
) | |

Direct Memory Access
Controller

Performance and

Master W|shbone Accounting Timers (x8)

Slave/Debug
Wishbone

T

Figure 2.9: ZipSystem Peripherals

J

Interrupt Controller

Perhaps the most important peripheral within the ZipSystem is the interrupt controller. While
the ZipCPU itself can only handle one interrupt, and has only the one interrupt state: disabled or
enabled, the interrupt controller can make things more interesting.

The ZipSystem interrupt controller module supports up to 15 interrupts, all controlled from one
register. Further, it has been designed so that individual interrupts can be enabled or disabled indi-
vidually without having any knowledge of the rest of the controller setting. To enable an interrupt,
write to the register with the high order global enable bit set and the respective interrupt enable bit
set. No other bits will be affected. To disable an interrupt, write to the register with the high order
global enable bit cleared and the respective interrupt enable bit set. To clear an interrupt, write a
‘1’ to that interrupt’s status pin. A zero written to the register has the sole effect of disabling the
master interrupt enable bit.

As an example, suppose you wished to enable interrupt #4. You would then write to the register
a 0x80100010 to enable interrupt #4 and to clear any past active state. When you later wish to
disable this interrupt, you would write a 0x00100010 to the register. This both disables the interrupt
and clears the active indicator. This also has the side effect of disabling all interrupts, so a second
write of 0x80000000 may be necessary to re-enable any other interrupts.

The ZipSystem hosts two interrupt controllers: a primary and a secondary. The primary interrupt
controller is the one that interrupts the CPU. It has six local interrupt lines, the rest coming
from external interrupt sources. One of those interrupt lines to the primary controller comes from
the secondary interrupt controller. This controller maintains an interrupt state for the process
accounting counters, and any other external interrupts that didn’t fit into the primary interrupt
controller.

WWW.Opencores.com Rev. 1.0 30

Gl Gisselquist Technology, LLC Specification 2016/11/04

As a word of caution, because the interrupt controller is an external peripheral, and because
memory writes take place concurrently with any following instructions, any attempt to clear inter-
rupts on one instruction followed by an immediate Return to Userspace (RTU) instruction, may not
have the effect of having interrupts cleared before the RTU instruction executes.

Counter

The Zip Counter is a very simple counter: it just counts. It cannot be halted. When it rolls over, it
issues an interrupt. Writing a value to the counter just sets the current value, and it starts counting
again from that value.
Eight counters are implemented in the ZipSystem for process accounting if the INCLUDE_ACCOUNTING_COUNTERS
define is set within cpudefs.v. Four of those measure the performance of the system as a whole,
four are used for measuring user CPU usage. This may change in the future, as nothing as yet uses
these counters.

Timer

The Zip Timer is also very simple: it is a 31-bit counter that simply counts down to zero. When it
transitions from a one to a zero it creates an interrupt.

Writing any non-zero value to the timer starts the timer. If the high order bit is set when writing
to the timer, the timer becomes an interval timer and reloads its last start time on any interrupt.
Hence, to mark seconds, one might set the 31-bits of the timer to the number of clocks per second
and the top bit to one. Ever after, the timer will interrupt the CPU once per second—until a non—
interrupt interval is set in the timer. This reload capability also limits the maximum timer value to
231 — 1, rather than 232 — 1.

Watchdog Timer

The watchdog timer has only two differences from the of the other timers. The first difference is
that it is a one-shot timer. The second difference, though, is critical: the interrupt line from the
watchdog timer is tied to the reset line of the CPU. Hence writing a ‘1’ to the watchdog timer will
always reset the CPU. To stop the Watchdog timer, write a ‘0’ to it. To start it, write any other
number to it—as with the other timers.

Bus Watchdog

There is an additional watchdog timer on the Wishbone bus of the ZipSystem. This timer, however,
is hardware configured and not software configured. The timer is reset at the beginning of any bus
transaction, and only counts clocks during such bus transactions. If the bus transaction takes longer
than the number of counts the timer allots, it will raise a bus error flag to terminate the transaction.
This is useful in the case of any peripherals that are misbehaving. If the bus watchdog terminates
a bus transaction, the CPU may then read from its port to find out which memory location created
the problem.

Aside from its unusual configuration, the bus watchdog is just another implementation of the
fundamental timer described above—stripped down for simplicity.

WWW.OpPencores.com Rev. 1.0 31

Gl Gisselquist Technology, LLC Specification 2016/11/04

Jiffies

This peripheral is motivated by the Linux use of ‘jiffies’ whereby a process can request to be put
to sleep until a certain number of ‘jiffies’ have elapsed. Using this interface, the CPU can read the
number of ‘jiffies’ from the peripheral (it only has the one location in address space), add the sleep
length to it, and write the result back to the peripheral. The zipjiffies peripheral will record
the value written to it only if it is nearer the current counter value than the last current waiting
interrupt time. If no other interrupts are waiting, and this time is in the future, it will be enabled.
(There is currently no way to disable a jiffie interrupt once set, other than to disable the interrupt
line in the interrupt controller.) The processor may then place this sleep request into a list among
other sleep requests. Once the timer expires, it would write the next Jiffy request to the peripheral
and wake up the process whose timer had expired.

Indeed, the Jiffies register is nothing more than a glorified counter with an interrupt. Unlike the
other counters, the internal Jiffies counter can only be read, never set. Writes to the jiffies register
create an interrupt time. When the Jiffies register later equals the value written to it, an interrupt
will be asserted and the register then continues counting as though no interrupt had taken place.

Finally, if the new value written to the Jiffies register is within the past 23!~ clock ticks, the
Jiffies register will immediately cause an interrupt and otherwise ignore the new request.

The purpose of this register is to support alarm times within a CPU. To set an alarm for a
particular process N clocks in advance, read the current Jiffies value, add N, and write it back to
the Jiffies register. The O/S must also keep track of values written to the Jiffies register. Thus,
when an ‘alarm’ trips, it should be removed from the list of alarms, the list should be resorted, and
the next alarm in terms of Jiffies should be written to the register—possibly for a second time.

Direct Memory Access Controller

The Direct Memory Access (DMA) controller can be used to either move memory from one location
to another, to read from a peripheral into memory, or to write from a peripheral into memory all
without CPU intervention. Further, since the DMA controller can issue (and does issue) pipeline
wishbone accesses, any DMA memory move will by nature be faster than a corresponding program
accomplishing the same move. To put this to numbers, it may take a program running on the CPU
18 clocks per word transferred, whereas this DMA controller can move one word in eight clocks—
provided it has bus access® (The CPU gets priority over the bus, but once bus access is granted to
the DMA peripheral, it will not be revoked mid-read or mid—write.)

When copying memory from one location to another, the DMA controller will copy in units of a
given transfer length—up to 1024 words at a time. It will read that transfer length into its internal
buffer, and then write to the destination address from that buffer.

When coupled with a peripheral, the DMA controller can be configured to start a memory copy
when any interrupt line goes high. Further, the controller can be configured to issue reads from (or
to) the same address instead of incrementing the address at each clock. The DMA completes once
the total number of items specified (not the transfer length) have been transferred.

In each case, once the transfer is complete and the DMA unit returns to idle, the DMA will issue
an interrupt.

6The pipeline cost of the DMA controller, including setup cost, is a minimum of 14 + 2N clocks.

WWW.OpPencores.com Rev. 1.0 32

Gl Gisselquist Technology, LLC Specification 2016/11/04

2.4 Debug Interface

The ZipCPU supports an external debug port. Access to the port is the same as accessing a two
register peripheral on a wishbone bus, so the basic interface is fairly simple. Using this interface,
it is possible to both control the CPU, as well as read register values and current status from the
CPU.

While a more detailed discussion will be reserved for Sec. 5.2, here we’ll just discuss how it is
put together. The debug interface allows a controller access to the CPU reset line, and a halt line.
By raising the reset line, the CPU will be caused to clear it’s cache, to clear any internal exception
or error conditions, and then to start execution at the RESET_ADDRESS—just like a normal reboot. In
a similar fashion, the debug interface allows you to control the cpu_halt line into the CPU. Holding
this line high will hold the CPU in an externally halted state. Toggling the line low for one clock
allows one to step the CPU by one instruction. Lowering the line causes the CPU to go. A final
control wire, controlled by the debug interface, will force the CPU to clear its cache. All of these
control wires are set or cleared from the debug control register.

The two debug command registers also make it possible to read and write all 32 registers within
the CPU. In this fashion, a debugger can halt the CPU, investigate its state, and even modify
registers so as to have the CPU restart from a different state.

Finally, without halting the CPU, the debug controller can read from any single register, and it
can see if the CPU is still actively running, whether it is in user or supervisor modes, and whether
or not it is sleeping. This alone is useful for detecting deadlocks or other difficult problems.

WWW.Opencores.com Rev. 1.0 33

Gl Gisselquist Technology, LLC Specification 2016/11/04

3.

Application Binary Interface

This chapter discusses not the CPU itself, but rather how the GCC and binutils toolchains have
been configured to support the ZipCPU.

3.1 Executable File Format

ZipCPU executable files are stored in the Executable and Linkable Format (ELF), prior to being
placed in flash, or whatever memory they will be executed from. All addresses within this format
are ZipCPU addresses, referencing 32-bit quantities, whereas all offsets internal to the ELF file
represent 8-bit quantities. Thus, when running the zip-objdump utility on a ZipCPU ELF file, the
addresses are properly set.

The ZipCPU does not (yet) have a dynamic linker/loader. All linking is currently static, and
done prior to run time.

3.2 Stack

Although nothing in the hardware requires this, the compiler back end implementation uses R13
(also known as the SP register) as a stack register, and grows the stack from high addresses to lower
addresses. That means that the stack will usually start out set to a very large value, such as one
past the last RAM address, and it will grow to lower and lower values—hopefully never mixing with
the heap. Memory at the current stack position is assumed to be allocated.

When creating a stack frame for a function, the compiler will subtract the size of the stack
frame from the stack register. It will then store any registers used by the function, from R5 to
R12 (including the link register RO) onto offsets given by the stack pointer plus a constant. If a
frame pointer is used, the compiler uses R12 (or FP) for this purpose. The frame pointer is set by
moving the stack pointer plus an offset into FP. This MOV instruction effectively limits the size of any
individual stack frame to 2'? — 1 words.

Once a subroutine is complete, the frame is unwound. If the frame pointer, FP was used, then FP
is copied directly to the stack pointer, SP. Registers are restored, starting with RO all the way to R12
(FP). This also restores, and obliterates, the subroutine frame pointer. Once complete, a value is
added to the stack pointer to return it to its original value, and a jump is made to the value located
within RO.

WWW.OpPencores.com Rev. 1.0 34

Gl Gisselquist Technology, LLC Specification 2016/11/04

3.3 Relocations

The ZipCPU binutils back end supports two several relocations, although the two most common are
the 32-bit relocations for register load and long jump.

The first of these is for loading an arbitrary 32-bit value into a register. Such instructions are
broken into a pair of BREV and LDILO instructions, and once the value of the parameter is known
their immediates are filled in.

The second type of 32-bit relocation is for jumps to arbitrary addresses. These jumps are
supported by the LOD (PC),PC instruction, followed by the 32—bit address to be filled in later by the
linker. If the jump is conditional, then a conditional LOD.z 1(PC),PC instruction is used, followed
by a BRA 1(PC),PC and then the 32-bit relocation value.

If the branch distance is known and within reach, branches will be implemented with ADD #,PC
instructions, possibly conditional, as necessary.

While other relocations are supported, they tend not to be used nearly as much as these two.

3.4 Call format

One feature of the ZipCPU is that it has no JSR instruction. Jumps to subroutine’s therefore take
three assembly instructions: The first is a MOV .Lcall##(PC),R0, which places the return address
into RO. .Lcall## in this case is a label, where ## is a unique number filled in by the compiler. This
instruction is followed by a BRA subroutine instruction. Finally, the third assembly “instruction”
of any call sequence is the label .Lcall##.

While this works well in practice, GCC’s implementation prevents such things as JSR’s followed
by BRA’s from being combined together.

Finally, the first five operands passed to the subroutine will be placed into registers R1-R5. Any
additional operands are placed upon the stack.

3.5 Built-ins

The ZipCPU ABI supports the a number of built in functions. The compiler maps these functions
directly to assembly language equivalents, essentially providing the C programmer with access to
several assembly language instructions. These are:

1. zip_bitrev(int) reverses the bits in the given integer, returning the result. This utilizes the
internal BREV instruction, and is designed to be used with FFT’s as necessary.

2. zip-busy() executes an ADD -1,PC function, essentially forcing the CPU into a very tight
infinite loop.

3. zip_cc() returns the value of the current CC register. This may be used within both user and
supervisor code to determine in which mode the CPU is within.

4. zip_halt() executes an OR $SLEEP,CC instruction to place the processor to sleep. If the
processor is in supervisor mode, this halt’s the processor.

5. zip_rtu() executes an OR $GIE,CC instruction. This will place the CPU into user mode, and
has no effect if the CPU is already in user mode.

WWW.Opencores.com Rev. 1.0 35

Gl Gisselquist Technology, LLC Specification 2016/11/04

6. zip_step() executes an OR $STEP|$GIE,CC instruction. This will place the CPU into user
mode in order to step one instruction, and then return to supervisor mode. It has no effect if
the CPU is already in user mode.

7. zip_system() executes an AND ~$GIE,CC instruction to return the CPU to supervisor mode.
This essentially executes a trap, setting the trap bit for the supervisor to examine. What this
instruction does not do is arrange for the trap arguments to be placed into the registers R1
through R5. Since this is a wholly inadequate solution, a function call may be made to an
assembly routine that executes a trap if necessary.

8. zip_wait() executes a $SLEEP|$GIE,CC instruction. Unlike zip_halt(), this zip_wait()
instruction places the CPU into a wait state regardless of whether or not the CPU is in
supervisor mode or not. When this function, i.e. instruction, completes, it will leave the CPU
in supervisor mode upon an interrupt having taken place.

You may wish to set the user program counter prior to this instruction, as the prefetch unit will
try to load instructions from the address contained within the user program counter. Attempts
to read from addresses with sideeffects may not produce the desired outcome. However, once
that cache fails (or succeeds), the CPU will have been put to sleep and will do no more.

9. zip_restore_context (context *) inserts the 32 assembly instructions necessary to copy all
sixteen user registers to a memory region pointed to by the given context pointer, starting
with uRO on up to uPC.

10. zip_save_context(context *) inserts the 32 assembly instructions necessary to copy all six-
teen user registers to a memory region pointed to by the given context pointer argument,
starting with uRO on up to uPC.

11. zip_ucc(), returns the value of the user CC register.

3.6 Linker Scripts

The ZipCPU makes no assumptions about its memory layout. The result, though, is that the
memory layout of a given project is board specific. This is accomplished via a board specific linker
script. This section will discuss some of the specifics of a ZipCPU linker script.

Because the ZipCPU uses a modified binutils package as part of its tool chain, the format for
this linker script is defined by the GNU LD project within binutils. Further details on that format
may be found within the GNU LD documentation within the binutils package.

This discussion will focus on those parts of the script specific to the ZipCPU.

3.6.1 Memory Types

Of the FPGA boards that the ZipCPU has been applied to, most of them have some combination
of three types of memory: flash, block RAM, and Synchronous Dynamic RAM (SDRAM). Of these
three, only the flash is non—volatile. The block RAM is the fastest, and the SDRAM the largest.
While other memory types are available, such as files on an external media such as an SD card or a
network drive, these three types have so far been sufficient for our purposes.

WWW.Opencores.com Rev. 1.0 36

Gl Gisselquist Technology, LLC Specification 2016/11/04

To support these memories, the linker script has three memory lines identifying where each
memory exists on the bus, the size of the memory, and any protections associated with it. For
example,

blkram (wx) : ORIGIN = 0x0008000, LENGTH = 0x0008000

specifies that there is a region of memory, called blkram, that can be read and written, and that
programs can execute from. This section starts at address 0x8000 and extends for another 0x8000
words. The other memories are defined in a similar manner, with names flash and sdram.

Following the memory section, three specific symbols are defined: _flash, defining the beginning
of flash memory, _blkram, defining the beginning of on—chip block RAM, and _sdram, defining the
beginning of SDRAM. These symbols are used to make the bootloader’s task easier.

3.6.2 The Entry Function

The ZipCPU has, as a parameter, a RESET_ADDRESS. It is important that this address contain a valid
instruction (or more), since this is the first instruction the ZipCPU will execute. Traditionally, this
address is also the first address in instruction memory as well.

To make this happen, the ZipCPU defines two additional segments: the .start and the .boot
segments. The .start segment is to have nothing in it but the very initial startup code. This
code needs to run from flash (or other ROM). By placing this segment at the very beginning of the
ZipCPU’s flash address space, and in particular at the first valid flash address, the ZipCPU will
boot from this address. This is the purpose of the .start section.

The .boot section has a similar purpose. This section includes anything associated with the
bootloader. It is a special section because, when loading from flash, the bootloader cannot be placed
in RAM, but must be placed in flash—since it is the code that loads things from flash into RAM.

It may also make sense to place any code executed once only within flash as well. Such code may
run slower than the main system code, but by leaving it in flash it can be kept from consuming any
higher speed RAM. To do this, place this other code into the .boot section.

You may also find that large data structures that are best left in flash can also be placed into
this .boot section as well for that purpose.

3.6.3 Bootloader Tags

The bootloader needs to know a couple things from the linker script. It needs to know what
code/data to copy to block RAM from the flash, what code/data to copy to SDRAM, and finally
what initial data area needs to be zeroed. Four additional pointers, set within a linker script, can
define these regions.

1. kernel_image_start

This is the first location in flash containing data that the bootloader needs to move.

2. _kernel_image end

This is a pointer to one past the last location in block RAM to place things into. If this pointer
is equal to _kernel _image start, then no information is placed into block RAM.

WWW.Opencores.com Rev. 1.0 37

Gl Gisselquist Technology, LLC Specification 2016/11/04

3. _sdram_image_start

This should be equal to kernel image end. It is a pointer, within block RAM address
space, of the first location to be moved into SDRAM. By adding the difference between
_sdram_image_start and _blkram to the flash address in kernel_image_start, the actual
source address within the flash of the code/data that needs to be copied into SDRAM can be
determined.

4. _sdram_image_end

This is the ending address of any code/data to be copied into SDRAM. The distance between
this pointer and _sdram should be the amount of data to be placed into SDRAM.

5. _bss_image_end

The BSS segment contains data the starts with an initial value of zero. Such data are usually
not placed in the executable file, nor are they placed into any flash image. This address points
to the last location in SDRAM used by the BSS segment. The bootloader is responsible then
for clearing the SDRAM between _sdram_image_end and _bss_image_end.

The bootloader must also be robust enough to handle the cases where 1) there is no SDRAM,

2) there is no block RAM, and 3) where there is non requirement to move memory at all—such
as when the program is placed into memory and started from there.

3.6.4 Other required linker symbols

Two other symbols need to be defined in the linker script, which are used by the startup code. These
are:

1. _top_of_stack

This is the address that the startup code will set the stack pointer to point to. It may be one
past the last location of a RAM memory, whether block RAM or SDRAM.

2. _top-of_heap

This is the first location past the end of the .bss segment. Equivalently, this is the address of
the first unused piece of memory, or the location from whence to start any dynamic memory
subsystem.

3.7 Loading ZipCPU Programs

There are two basic ways to load a ZipCPU program, depending upon whether or not the ZipCPU is
active within the current configuration. If the ZipCPU is not a part of the current FPGA configura-
tion, one need only write the flash and then switch configurations. It will be the CPU’s responsibility
to place itself in RAM then.

The more practical alternative is a little more involved, and there are several steps to it.

1. Halt the CPU by writing 0x0440 to the CPU control register. This both halts and resets the
CPU. It then prevents both bus contention, while writing the new instructions to memory,
as well as preventing the CPU from running some instructions from one program and other
instructions from another.

WWW.Opencores.com Rev. 1.0 38

Gl Gisselquist Technology, LLC Specification 2016/11/04

2. Load the program into memory. For many programs this will involve loading the program into
flash, and necessitate having and using a flash controller. The ZipCPU also supports being
loaded straight into RAM address as well, as though the bootloader had completed it’s task.

3. You may optionally, at this point, clear all of the CPUs registers, to make certain the reboot
is clean.

4. Set the sPC register to the starting address.
5. Clear the instruction cache in order to force the CPU to reload its cache upon start.

6. Release the CPU by writing to the CPU debug control register a number between 0 and 31.
This number will correspond to the register number of the register that can be “peeked” at
while the CPU is running.

3.8 Starting a ZipCPU program
3.8.1 CRTO

Most computers have a section of code, conventionally called crtO, which loads a program into
memory. On the ZipCPU, this code starts at _start. It is responsible for setting the stack pointer,
calling the boot loader, and then calling the main entry function, entry().

Because _start must be the first symbol in a program, and because that first symbol is located
at the boot address for the CPU, the _start is placed into the .start segment. It is the only routine
placed there.

On those CPU’s that don’t have enough logic space for a debugger, it may be useful to place a
routine to dump any registers, stack values and/or kernel traces to an output routine at this time.
That way, on any kernel fault, the kernel can be brought back up with a debug trace. This works
because rebooting the CPU doesn’t reset any register values save the sCC and sPC.

3.8.2 The Bootloader

As discussed in Sec. 3.6.3, the bootloader must be placed into flash if it is used. It can be a small
C program (it need not be assembly, like _start), and it only needs to copy memory. First, it
copies any memory from flash to block RAM. Second, it copies any necessary memory from flash to
SDRAM. Then, it zeros any memory necessary in SDRAM (or block RAM, if there is no SDRAM).

These memory copies may be done with the DMA, or they may be done one-at—a time for a
performance penalty.

3.8.3 Kernel Entry

After calling the boot loader, execution returns to the _start routine which then calls the main
program entry function, entry(). No requirements are laid upon this entry function regarding
where it must reside. The simplest place to put it is in Block RAM—-and just to put all code and
variables there. In reality, this entry function may easily be left in flash. It often doesn’t need to
run particularly fast, since there may easily be one-time setup functions that are independent of the
programs main loop.

WWW.Opencores.com Rev. 1.0 39

Gl Gisselquist Technology, LLC Specification 2016/11/04

3.8.4 Kernel Main

If the kernel entry function, entry(), is placed in flash, it should call a separate function to run the
main while loop once it has been set up. In this fashion, the main while loop may be kept in the
fastest memory necessary (that it will fit within), to ensure good performance.

WWW.OpPencores.com Rev. 1.0 40

Gl Gisselquist Technology, LLC Specification 2016/11/04

4.

Operation

This chapter will explore how to perform common tasks with the ZipCPU, offering examples in both
C and assembly for those tasks.

4.1 CRTO

Of course, the one task that every CPU must do is start the CPU for other tasks. The ZipCPU is
no different. This is the one ZipCPU task that must take place in assembly, since no assumptions
can be made about the state of the ZipCPU upon entry. In particular, the stack pointer, SP, needs
to be loaded with a valid memory location before any higher level language can work. Once that
has taken place, it is then possible to call other higher level routines.

Table. 4.1 presents an example of one such initialization routine that first sets up the stack, then
calls a bootloader routine. Upon completion, the initialization routine then calls the main entry
point for the CPU. Should that main entry point ever return, a short routine following halts the
CPU.

The example also highlights one optimization that didn’t take place. Instead of placing the
_after_bootloader address into RO, this script could have placed the entry () address into RO. Had
it done so, the CPU would not have suffered the pipeline stalls associated with two long jumps: the
first to RO, and the second to entry. Instead, it would have suffered such stalls only once: when
jumping to entry Q).

4.2 System High

The easiest and simplest way to run the ZipCPU is in the system high mode. In this mode, the
CPU runs your program in supervisor mode from reboot to power down, and is never interrupted.
You will need to poll the interrupt controller to determine when any external condition has become
active. This mode is incredibly useful, and can handle many microcontroller—type tasks.

Even better, in system high mode, all of the user registers are available to the system high
program as variables. Accessing these registers can be done in a single clock cycle, which would
move them to the active register set or move them back. While this may seem like a load or store
instruction, none of these register accesses will suffer from memory delays.

The one thing that cannot be done in supervisor mode is a wait for interrupt instruction. This,
however, is easily rectified by jumping to a user task within the supervisors memory space, such as
Thl. 4.2.

WWW.opencores.com Rev. 1.0 41

Gl Gisselquist Technology, LLC Specification 2016/11/04

; By starting our loader in the .start section, we guarantee through our
; linker script that these are the very first instructions the CPU sees.

.section .start

.global _start
; _start is to be placed at our reboot/reset address, so it will be
; called upon any reboot.
_start:

; The most important step: creating a stack pointer. The value

; _top-of_stack is created by the linker based upon the linker script.

LDI _top-of_stack,SP

; We then call the bootloader to load our code into memory.

MOV _after_bootloader (PC),R0O

BRA bootloader
_after_bootloader:

; Just in case the bootloader messed up the stack, we’ll reset it here.

LDI _top-of_stack,SP

; Finally, we call the entry function for the entire design.

MOV _kernel_exit(PC),RO

BRA entry
: The kernel_exit routine that follows isn’t strictly necessary,

)

: since the CPU should never return from the entry() function. However,

)

; since returning from such a function is valid C code, and just in case

; it does return, we provide this function as a fail safe to make sure
; the kernel halts upon completion.
_kernel_exit:

HALT

BRA _kernel_exit

Table 4.1: Setting up a stack frame and starting the CPU

WWW.opencores.com Rev. 1.0 42

Gl Gisselquist Technology, LLC Specification 2016/11/04

supervisor_idle:
; While not strictly required, the following move helps to
; ensure that the prefetch doesn’t try to fetch an instruction
; outside of the CPU’s address space when it switches to user
; mode.
MOV supervisor_idle_continue,uPC
; Put the processor into user mode and to sleep in the same
; instruction.
OR $SLEEP|$GIE,CC
supervisor_idle_continue:
; Now, if we haven’t done this inline, we need to return
; to whatever function called us.
RETN

Table 4.2: Executing an idle from supervisor mode

There are some problems with this model, however. For example, even though the user registers
can be accessed in a single cycle, there is currently no way to do so other than with assembly
instructions.

An alternative to this approach is to use the zip_wait() built—in function. This places the
ZipCPU into an idle/sleep mode to wait for interrupts. Because the supervisor puts the CPU to
sleep, rather than the user, no user context needs to be set up.

4.3 A Programmable Delay

One common task in microcontrollers, whether in a user task or supervisor task, is to wait for a
programmable amount of time. Using the ZipSystem, there are several peripherals that can be used
to create such a delay. It can be done with one of the three timers, the jiffies, or even an off-chip
ZipCounter.

Here, in Thl. 4.3, we present one means of waiting for a programmable amount of time using a
timer. If exact timing is important, you may wish to calibrate the method by subtracting from the
counts number the counts it takes to actually do the routine. Otherwise, the timer is guaranteed to
at least counts ticks.

Notice that the routine clears the PIC early on. While one might expect that this could be done
in the instruction immediately before zip_rtu(), this isn’t the case. The reason is a race condition
created by the fact that the write to the PIC completes after the zip_rtu() instruction. As a result,
you might find yourself with a zero delay simply because the timer had tripped some time earlier.

The routine is also careful not to clear any other interrupts beyond the timer interrupt, lest some
other condition trip that the user was also waiting on.

WWW.OpPencores.com Rev. 1.0 43

Gl Gisselquist Technology, LLC Specification 2016/11/04

#define EINT(A) (0x80000000| (A<<16)) // Enable interrupt A

#define DINT(A) (A<<16) // Just disable the interrupts in A
#define DISABLEALL 0x7£ff££0000 // Disable all interrupts

#define CLEARPIC Ox7fff7fff // Clears and disables all interrupts
#define SYSINT_TMA 0x10 // The Timer-A interrupt mask

void timer_delay(int nclocks) {
// Clear the PIC. We want to exit from here on timer counts alone
zip->pic = DISABLEALL|SYSINT_TMA;
if (nclocks > 10) {
// Set our timer to count down the given number of counts
zip->tma = counts
zip->pic = EINT(SYSINT_TMA);
zip_wait();
zip—->pic = CLEARPIC;
Y // else anything less has likely already passed }

Table 4.3: Waiting on a timer

4.4 'Traditional Interrupt Handling

Although the ZipCPU does not have a traditional interrupt architecture, it is possible to create
the more traditional interrupt approach via software. In this mode, the programmable interrupt
controller is used together with the supervisor state to create the illusion of more traditional interrupt
handling.

To set this up, upon reboot the supervisor task:

1. Creates a (single) user context, a user stack, and sets the user program counter to the entry
of the user task

2. Creates a task table of ISR entries

3. Enables the master interrupt enable via the interrupt controller, albeit without enabling any
of the fifteen potential underlying interrupts.

4. Switches to user mode, as the first part of the while loop in Thl. 4.4.

We can work through the interrupt handling process by examining Tbl. 4.4. First, remember,
the CPU is always running either the user or the supervisor context. Once the supervisor switches
to user mode, control does not return until either an interrupt, a trap, or an exception has taken
place. Therefore, if neither the trap bit nor any of the exception bits have been set, then we know
an interrupt has taken place.

It is also possible that an interrupt will occur coincident with a trap or exception. If this is the
case, the subsequent zip_rtu() instruction will return immediately, since the interrupt has yet to
be cleared.

WWW.opencores.com Rev. 1.0 44

Gl Gisselquist Technology, LLC Specification 2016/11/04

while(true) {
zip_rtuQ);
if (zip_ucc() & CC_TRAPBIT) { // Here, we allow users to install ISRs, or
// whatever else they may wish to do in supervisor mode.

} else (zipucc() & (CC_BUSERR|CC_FPUERR|CCDIVERR)) {
// Here we handle any faults that the CPU may have encountered
// The easiest solution is often to print a trace and reboot
// the CPU.
_start();
} else {
// At this point, we know an interrupt has taken place: Ask the programmable
// interrupt controller (PIC) which interrupts are enabled and which are active.
int picv = zip->pic;
// Turn off all active interrupts
// Globally disable interrupt generation in the process
int active = (picv >> 16) & picv & OxO7fff;
zip->pic = (active<<16);
// We build a mask of interrupts to re-enable in picv.
picv = 0;
for(int i=0,msk=1; i<15; i++, msk<<=1) {
if ((active & msk)&&(isr_table[i])) {
// Here we call our interrupt service routine.
tmp = (isr_table[i]) O);
// The tricky part is that, because of how the PIC is built, the ISR cannot
// re-enable its own interrupts without re-enabling all interrupts. Hence, we
// look at the return value from the ISR to know if an interrupt needs to be
// re-enabled.
if (tmp)
picv |= msk;
}
}
// Re-activate, but do not clear, all (requested) interrupts
zip->pic = picv | 0x80000000;

Table 4.4: Traditional Interrupt handling

WWW.OpPencores.com Rev. 1.0 45

Gl Gisselquist Technology, LLC Specification 2016/11/04

idle_task:
; Wait for the next interrupt, then switch to supervisor task
WAIT
; When we come back, it’s because the supervisor wishes to
; wait for an interrupt again, so go back to the top.
BRA idle_task

Table 4.5: Example Idle Task in Assembly

As Sec. 2.3.3 discusses, the top of the PIC register stores which interrupts are enabled, and the
bottom stores which have tripped. (Interrupts may trip without being enabled, they just will not
generate an interrupt to the CPU.) Our first step is to query the register to find out our interrupt
state, and then to disable any interrupts that have tripped. To do that, we write a one to the
enable half of the register while also clearing the top bit (master interrupt enable). This has the
consequence of disabling any and all further interrupts, not just the ones that have tripped. Hence,
upon completion, we re—enable the master interrupt bit again. Finally, we keep track of which
interrupts have tripped.

Using the bit mask of interrupts that have tripped, we walk through all fifteen possible interrupts.
If there is an ISR installed, we simply call it here. The ISR, however, cannot re—enable its interrupt
without re-enabling the master interrupt bit. Thus, to keep things simple, when the ISR is finished
it returns a boolean into RO to indicate whether or not the interrupt needs to be re-enabled. Put
together, this tells the kernel which interrupts to re-enable. As a final instruction, interrupts are
re—enabled before returning continuing the while loop.

There you have it: the ZipCPU, with its non-traditional interrupt architecture, can still process
interrupts in a very traditional fashion.

4.5 Idle Task

One task every operating system needs is the idle task, the task that takes place when nothing else
can run. On the ZipCPU, this task is quite simple, and it is shown in assembly in Tbl. 4.5, or
equivalently in C in Thl. 4.6.

When this task runs, the CPU will fill up all of the pipeline stages up the ALU. The WAIT
instruction, upon leaving the ALU, places the CPU into a sleep state where nothing more moves.
Then, once an interrupt takes place, control passes to the supervisor task to handle the interrupt.
When control passes back to this task, it will be on the next instruction. Since that next instruction
sends us back to the top of the task, the idle task thus does nothing but wait for an interrupt.

This should be the lowest priority task, the task that runs when nothing else can. It will help
lower the FPGA power usage overall—at least its dynamic power usage.

For those highly interested in reducing power consumption, the clock could even be disabled at
this time-requiring only some small modifications to the core.

WWW.OpPencores.com Rev. 1.0 46

Gl Gisselquist Technology, LLC Specification 2016/11/04

void idle_task(void) {
while(true) { // Never exit
// Wait for the next interrupt, then switch to supervisor task
zip_wait();
//
// When we come back, it’s because the supervisor wishes to
// wait for an interrupt again, so go back to the top.

}

Table 4.6: Example Idle Task in C

void memcpy(void *dest, void *src, int len) {
for(int i=0; i<len; i++)
*dest++ = *src++;

Table 4.7: Example Memory Copy code in C

4.6 Memory Copy

One common operation is that of a memory move or copy. This section will present several methods
available to the ZipCPU for performing a memory copy, starting with the C code shown in Tbl. 4.7.
Each successive example will further speed up the memory copying process.

This memory copy code can be translated in Zip Assembly as shown in Tbl. 4.8. This example
points out several things associated with the ZipCPU. First, a straightforward implementation of a
for loop is not the fastest loop structure. For this reason, we have placed the test to continue at the
end. Second, all pointers are void pointers to arbitrary 32-bit data types. The ZipCPU does not
have explicit support for smaller or larger data types, and so this memory copy cannot be applied
at an 8-bit level. Third, notice that we can use R4 without storing it, since the C ABI allows for
subroutines to use R1-R4 without saving them. This means that we can return from this subroutine
using conditional jumps to RO.

Still, there’s more that could be done. Suppose we wished to use the pipeline bus capability?
We might then write something closer to Thl. 4.9. This pipeline memory example, though, provides
some neat things to discuss about optimizing code using the ZipCPU.

First, note that all of the loads and stores, except the three following memcpy_finish, are
pipelined. To do this, we needed to unroll the copy loop by a factor of four. This means that
each time through the loop, we can read and store four values. At 17 clocks to copy four values,
that’s roughly three times faster than our previous example. The down side, though, is that the
loop now needs a final cleanup section where the last 0—3 values will be copied.

Second, note that we used our remaining length minus one as our loop variable. This was
done so that the conditions set by subtracting four from our loop variable could be used without a

WWW.OpPencores.com Rev. 1.0 47

Gl Gisselquist Technology, LLC Specification 2016/11/04

memcpy:
; RO = return address, R1 = *dest, R2 = *src, R = LEN
; The following will operate in 6 (N =0), or 24 12N clocks (N #0).
CMP O,R3
JMP.Z RO ; A conditional return
; No stack frame needs to be set up to use R4, since the compiler
; assumes R1-R4 may be used and changed by any subroutine
memcpy_loop:
LOD (R2),R4
; (4 stalls, cannot be scheduled away)
STO R4, (R1) ; (4 schedulable stalls, has no impact now)
; Update our count of the number of remaining values to copy

SUB 1,R3 ; This will be zero when we have copied our last
JMP.Z RO ; + 4 stalls, if taken

ADD 1,R1 ; Implement the destination pointer

ADD 1,R2 ; Implement the source pointer

BRA memcpy_loop
; (1 stall on a BRA instruction)

Table 4.8: Example Memory Copy code in Zip Assembly, Unoptimized

separate compare. Speaking of the compare, note that we have chosen to use a branch if carry (BC)
comparison, which is equivalent to a less—than unsigned comparison.

Third, notice how we packed four ALU instructions, two adds, a subtract, and a conditional
branch, after the four store instructions. These instructions can complete while the memory unit
is busy, preparing us to start the subsequent load without any further stalls (unless the memory is
particularly slow.)

Next, you may wish to notice that the four memory loads within the loop are followed by the
early branching instruction. As a result, the branch costs no extra clocks, and the time between the
loads at the bottom of the loop is dominated by the load to store time frame.

Finally, notice how the comparison at the end has been stacked. By comparing against one,
we can return when there are zero items left, or one item left, without needing a new comparison.
Hence, zero to three separate values can be copied using only two compares.

However, this discussion wouldn’t be complete without an example of how this memory operation
would be made even simpler using the direct memory access controller. In that case, we can return
to C with the code in Tbl. 4.10. For large memory amounts, the cost of this approach will scale at
roughly 2 clocks per word transferred.

Notice how much simpler this memory copy has become to write by using the DMA. But also
consider, the system has only one direct memory access controller. What happens if one task tries
to use the controller when it is already in use by another task? The result is that the direct memory
access controller may need some special protections to make certain that only one task uses it at a
time—much like any other hardware peripheral.

WWW.OpPencores.com Rev. 1.0 48

Gl Gisselquist Technology, LLC

Specification 2016/11/04

; Upon entry, RO = return address, R1 = *dest, R2 = *src, R8 = LEN
; Achieves roughly 32 + 17 L%J clocks, after the initial pipeline delay
memcpy-opt:

CMP

BC memcpy_finish

SUB
STO
STO
STO
ADD
ADD
SUB
LOD
LOD
LOD
LOD

mcopy-next_four_chars:

STO
STO
STO
STO

BC preend_memcpy

ADD
ADD
SUB
LOD
LOD
LOD
LOD
BRA

4,R3 :
; Jump to the end if so

; Otherwise, create a stack frame, storing the registers
R5, (SP) ;
; subsequent stores only cost 1 clock.

3,8P

R6,1(SP)
R7,2(SP)
4,R2

4,R1

5,R3
-4(R2) ,R4
-3(R2),R5
-2(R2) ,R6
-1(R2) ,R7

R5,-3(R1)
R6,-2(R1)
R7,-1(R1)

4,R1
4,R2
4,R3

-3(R2) ,R5
-2(R2) ,R6

preend_memcpy :

ADD
LOD
LOD
LOD
ADD

memcpy finish:

CMP

JMP.

LOD
STO

JMP.

LOD
STO
CMP

JMP.

LOD
STO
JMP

1,R3

3,SP

1,R3
LT RO

Z RO

R4,1(R1)
2, R3
LT RO

2(R1) ,R4 :
; LOD, STO, JMP RO will cost 10 cycles
RO ;

R4,2(R1)

Check for small short lengths, len < 4

we will be using. Note that this is a pipelined store, so

; Pre-Increment our pointers, for a 4-stage pipeline. This
; also fills up the 3 of the 4 stall states following the

; stores. Also, leave R3 as the number left minus one.

; Load the first four values into

; registers, using a pipelined load.

; Here’s the top of our copy loop
R4,-4(R1) ;
; One clock for subsequent stores.

; None of these effect the flags, that were set when
; we last adjusted R3

; +4 stall cycles, but only when taken

; ALU ops don’t stall during stores, so

; increment our pointers here.

; Calculate whether or not we have a next round
-4(R2) ,R4 ;

Store four values, using a burst memory operation.

Preload the values for the next round
Notice that these are also pipelined

; loads, as before.
-1(R2) ,R7 5
mcopy-next_char ;

The four stall cycles, though, are concurrent w/ the branch.
Early branching avoids the full memory pipeline stall

; R3 is now the remaining length, rather than one less than it
(SP) ,R5 ;
1(SP) ,R6 ;
2(SP) ,R7 ;
; Adjust the stack pointer back to what it was
; At this point, there are 0 < R3< 4 words left
; Check if any ops are remaining

; Return now if nothing is left

(R1) ,R4 ;
R4, (R1) ;
; Return if that was our only value
1(R1) ,R4 :

Restore our saved registers, since the remainder of the routine
doesn’t use these registers

Load and store the first item

Load and store the second item (if necessary)

Load and store the second item (if necessary)

Finally, we return

Table 4.9: Example Memory Copy code in Zip Assembly, Hand Optimized

WWW.Oopencores.com

Rev. 1.0 49

Gl Gisselquist Technology, LLC Specification 2016/11/04

#define DMACOPY 0x0fed0000 // Copy memory, largest chunk at a time possible

void memcpy_dma(void *dest, void *src, int len) {
// This assumes we have access to the DMA, that the DMA is not
// busy, and that we are running in system high mode ...
zip->dma.len = len; // Set up the DMA
zip->dma.rd = src;
zip->dma.wr = dst;
// Command the DMA to start copying
zip->dma.ctrl= DMACOPY;
// Note that we take two clocks to set up our PIC. This is
// required because the PIC takes at least a clock cycle to clear.
zip->pic = DISABLEALL|SYSINT_DMA;
// Now that our PIC is actually clear, with no more DMA
// interrupt within it, now we enable the DMA interrupt, and
// only the DMA interrupt.
zip->pic = EINT(SYSINT_DMA);
// And wait for the DMA to complete.
zip_wait();

Table 4.10: Example Memory Copy code using the DMA

void *memset(void *s, int ¢, size t n) {
for(size_t i1=0; i<n; i++)

*s++ = C;
return s;
}
Table 4.11: Example Memset code
4.7 Memset

Another example worth discussing is the memset () library function. A straightforward implemen-
tation of this function in C might look like Thl. 4.11. The function is simple enough to handle
compile into the assembling listing in Tbl. 4.12. Note that we grab R4 as a local variable, so that
we can maintain the source pointer in R1 as our result upon return. This is valid, since the compiler
assumes that R1-R4 will be clobbered upon any function call and so they are not saved.

You can also see that this straight forward implementation costs about six clocks per value to
be set.

Were we to pipeline the memory accesses, we might choose to unroll the loop and do something
more like Thl. 4.13. Note that, in this example as with the memcpy example, our loop variable is one
less than the number of operations remaining. This is because the ZipCPU has no less than or equal
comparison, but only a less than comparison. Further, because the length is given as an unsigned

WWW.Opencores.com Rev. 1.0 50

Gl Gisselquist Technology, LLC Specification

2016/11/04

; Upon entry, RO = return address, R1 = s, R2 = ¢, R3 = len
; Cost: Roughly 4+ 6N clocks

memset:

TST R3 ; Return immediately if len (R3) is zero

JMP.Z RO

MOV R1,R4 ; Keep our return value in R1, use R4 as a local
memset_loop: ; Here, we know we have at least one more to go

STO R2,(R4) ; Store one value (no pipelining)

SUB 1,R3 ; Subtract during the store

JMP.Z RO ; Return (during store) if all done

ADD 1,R4 ; Otherwise increment our pointer

BRA memset_loop ; and repeat
Table 4.12: Example Memset code, minimally optimized

; Upon entry, RO = return address, R1 = s, R2 = ¢, R3 = len
; Cost: roughly 20 + 9 L%J
memset_pipe:

MoV R1,R4 ; Make a local copy of *s, so we can return R1

CMP 4,R3 ; Jump to non-unrolled section

JMP.C memset_pipe_tail

SUB 1,R3 ; R3 is now one less than the number to finish
memset_pipe_unrolled: ; Here, we know we have at least four more to go

STO R2, (R4) ; Store our four values, pipelining our

STO R2,1(R4) ; access across the bus

STO R2,2(R4)

STO R2,3(R4)

SUB 4,R3 ; If there are zero left, this will be a -1 result

JMP.C prememset_pipe_tail ; So we can use our LT condition

ADD 4,R4 ; Otherwise increment our pointer

BRA memset_pipe_loop ; and repeat using an early branchable instruction
prememset_pipe_tail:

ADD 1,R3 ; Return our counts left to the run number
memset_pipe_tail: ; At this point, we have R3=0-3 remaining

CMP 1,R3 ; If there’s less than one left

JMP.C RO ; then return early.

STO R2, (R4) ; If we’ve got one left, store it

STO.GT R2,1(R4) s if two, do a burst store

CMP 3,R3 ; Check if we have another left

ST0.Z R2,2(R4) ; and store it if so.

JMP RO ; Return now that we are complete.

Table 4.13: Example Memset after loop unrolling, using pipelined memory ops

WWW.opencores.com Rev. 1.0

o1

Gl Gisselquist Technology, LLC Specification 2016/11/04

#define DMA_CONSTSRC 0x20000000 // Don’t increment the source address
void * memset_dma(void *s, int c, size_t len) {
// As before, this assumes we have access to the DMA, and that
// we are running in system high mode ...
zip->dma.len = len; // Set up the DMA
zip—>dma.rd = &c;
zip—>dma.wr = s;
// Command the DMA to start copying, but not to increment the
// source address during the copy.
zip->dma.ctrl= DMACOPY|DMA_CONSTSRC;
// Note that we take two clocks to set up our PIC. This is
// required because the PIC takes at least a clock cycle to clear.
zip->pic = DISABLEALL|SYSINT_DMA;
// Now that our PIC is actually clear, with no more DMA
// interrupt within it, now we enable the DMA interrupt, and
// only the DMA interrupt.
zip->pic = EINT(SYSINT_DMA);
// And wait for the DMA to complete.
zip-wait();

Table 4.14: Example Memset code, only this time with the DMA

quantity, we only have a less than comparison. By subtracting one from the loop variable, that’s all
our comparison needs to be—at least, until the end of the loop. For that, we jump to a section one
instruction earlier and return our counts value to the true remaining length.

You may also notice that, despite the four possibilities in the end game, we can carefully rearrange
the logic to only use two compares. The first compare tests against less than one and returns if
there are no more sets left. Using the same compare, though, we can also know if we have one or
more stores left. Hence, we can create a burst memory operation with one or two stores.

As one final example, we might also use the DMA for this operation, as with Tbl. 4.14. This
is almost identical to the memcpy function above that used the DMA, save that the pointer for the
value read is given to be the address of ¢, and that the DMA is instructed not to increment its
source pointer. The DMA will still do len reads, so the asymptotic performance will never be less
than 2N clocks per transfer.

4.8 String Operations

Perhaps one of the immediate questions most folks will have is, how does one handle string operations
on a CPU that only handles 32-bit numbers? Here we offer a couple of possibilities.

The first possibility is the easy and natural choice: just define characters to be 32-bit numbers
and ignore the upper 24 bits. This is the choice made by the compiler. Hence, if you compile a
simple string compare function, such as Tbl. 4.15, string length function, such as Tbl. 4.16, or string
copy function, such as Tbl. 4.17, this is what you will get.

WWW.OpPencores.com Rev. 1.0 52

Gl Gisselquist Technology, LLC Specification 2016/11/04

int strcmp(const char *sl, const char *s2) {
while(*sl == *s2)
sl++, s2++;
return *s2 - *si;

Table 4.15: Example string compare function

unsigned strlen(const char *s) {
int 1n = 0;
while(*s++ != 0)
In++;
return 1n;

Table 4.16: Example string compare function

char * strcpy(char *dest, const char #*src) {
char *d = dest; // Make a working copy of the dest ptr
do {
*d++ = *src;
} while(*src++);
return dest;

Table 4.17: Example string copy function

WWW.Opencores.com Rev. 1.0 53

Gl Gisselquist Technology, LLC Specification 2016/11/04

void packstr(char *s) {
char *d = s; // Pack our string in place
int w; // A holding word to pack things into
int k=0; // A count to know when to move to the next word
while(*s) {
w = (w<<8) | (xs & 0x0ff);
// After four of these octets, write the result out
if (((++k)&3)==0) *d++ = w;
}
// But what happens if we never got to the fourth octet
// in our last word? We need to clean that up here.

// First, shift the partial value all the way up

w = (w<<(32-((k&3)<<3)); // Shift up the last word

*d++ = w; // Store any remaining partial value

// If we want to make sure our strings end in zero, we need
// one more step:

*d = 0; // Make sure string ends in a zero.

Table 4.18: String packing function

int pstrcmp(const char *sl, const char *s2) {
while(*sl == *s2)
sl++, s2++;
return *s2 - *sl;

Table 4.19: Packed string compare function

A little work with these functions, and you should be able to optimize them in a fashion similar
to that with memcpy. This doesn’t solve the fundamental problem, though, of why am I wasting
32-bits for 8-bit quantities?

An alternative would be to use a packed string structure. To pack a string, one might do
something like Thl. 4.18. Notice that our packed string places its first byte in the high order octet
of our first word, that any excess octets in the last word are zeros, and that there remains a zero
word following our string. With this packed string approach, compares and copies can proceed four
times faster. As an example, Tbl. 4.19 presents a string compare function for a packed string. You’ll
notice that it doesn’t look all that different from a string compare for a non-packed string. This is
on purpose. Another example might be a string copy, which again, wouldn’t look all that different.
Getting the number of used 8-bit octets within a string is a touch more difficult. In that case, one
might try something like Thl. 4.20.

WWW.OpPencores.com Rev. 1.0 54

Gl Gisselquist Technology, LLC Specification 2016/11/04

unsigned pstrlen(const char *s) {

int 1In = 0;

while(*s++ != 0)
1n+=4;

if (1n) {
// Touch up the length in case of an incomplete last word
int lastval = s[-1];

if ((lastval & 0x0ff)==0) 1ln--;
if ((lastval & OxOffff)==0) 1n--;
if ((lastval & OxOffffff)==0) 1ln—-;

}

return 1ln;

Table 4.20: Packed string subcharacter length function

4.9 Context Switch

Fundamental to any multiprocessing system is the ability to switch from one task to the next. In
the ZipSystem, this is accomplished in one of a couple of ways. The first step is that an interrupt,
trap, or exception takes place. This will pull the CPU out of user mode and into supervisor mode.
At this point, the CPU needs to execute the following tasks:

1.

Check for the reason, why did we return from user mode? Did the user execute a trap in-
struction, or did some other user exception such as a break, bus error, division by zero error,
or floating point exception occur. That is, if the user process needs attending then we may
not wish to adjust the context, check interrupts, or call the scheduler. Tbhl. 4.21 shows the
rudiments of this code, while showing nothing of how the actual trap would be implemented.

You may also wish to note that the instruction before the first instruction in our context swap
must be a return to userspace instruction. Remember, the supervisor process is re-entered
where it left off. This is different from many other processors that enter interrupt mode at
some vector or other. In this case, we always enter supervisor mode right where we last left.

. Capture user accounting counters. If the operating system is keeping track of system usage via

the accounting counters, those counters need to be copied and accumulated into some master
counter at this point.

Preserve the old context. This involves recording all of the user registers to some supervisor
memory structure, such as is shown in Tbl. 4.22. Since this task is so fundamental, the ZipCPU
compiler back end provides the zip_save_context (int *) function.

Reset the watchdog timer. If you are using the watchdog timer, it should be reset on a context
swap, to know that things are still working.

Interrupt handling. How you handle interrupts on the ZipCPU are up to you. You can activate
a sleeping task if you like, or for smaller faster interrupt routines, such as copying a character

WWW.Opencores.com Rev. 1.0 95

Gl Gisselquist Technology, LLC Specification 2016/11/04

while(true) {
// The instruction before the context switch processing must
// be the RTU instruction that enacted user mode in the first
// place. We show it here just for reference.
zip_rtuQ);

if (zipucc() & (CC_FAULT)) {
// The user program has experienced an unrecoverable fault and must die.
// Do something here to kill the task, recover any resources
// it was using, and report/record the problem.

} else if (zipucc() & (CC_TRAPBIT)) {
// Handle any user request
zip_restore_context (userregs) ;
// If the request ID is in uR1, that is now userregs[1]
switch(userregs[1]) {
case z: // Perform some user requested function
break;
}

Table 4.21: Checking for whether the user task needs our attention

WWW.Opencores.com Rev. 1.0 56

Gl Gisselquist Technology, LLC Specification 2016/11/04

save_context:
SUB 1,SP
STO R5, (SP)
MOV uRO,R2
MOV uR1,R3
MOV uR2,R4
MOV uR3,R5
STO R2, (R1)
STO R3,1(R1)
STO R4,2(R1)
STO R5,3(R1)

)

J

J

J

)

)

)

’

’

: Function prologue: create a stack

: frame and save R5. (R1-R are assumed

; to be used and in need of saving. Then

; copy the user registers, four at a time to

; supervisor registers, where they can be

: stored, while exploiting memory pipelining

: Exploit memory pipelining:

. All instructions write to same base memory

All offsets increment by one

: Need to repeat for all user registers

MOV uR12,R2
MOV uSP,R3
MOV uCC,R4
MOV uPC,R5
STO R2,12(R1)
STO R3,13(R1)
STO R4,14(R1)
STO R5,15(R1)
LOD (SP),R5
ADD 1,SP

JMP RO

)

J

Finish copying ...

 and saving the last registers.
: Note that even the special user registers
: are saved just like any others.

; Restore our one saved register
: our stack frame,
: and return

Table 4.22: Example Storing User Task Context

WWW.Oopencores.com

Rev. 1.0 o7

Gl Gisselquist Technology, LLC Specification 2016/11/04

to or from a serial port or providing a sample to an audio port, you might choose to do the task
within the kernel main loop. The difference may depend upon how you have your hardware
set up, and how fast the kernel main loop is.

6. Calling the scheduler. This needs to be done to pick the next task to switch to. It may be an
interrupt handler, or it may be a normal user task. From a priority standpoint, it would make
sense that the interrupt handlers all have a higher priority than the user tasks, and that once
they have been called the user tasks may then be called again. If no task is ready to run, run
the idle task to wait for an interrupt.

This suggests a minimum of four task priorities:
(a)
(b)
(c)

)

(d) The idle task, executed when nothing else is able to execute

Interrupt handlers, executed with their interrupts disabled
Device drivers, executed with interrupts re-enabled
User tasks

7. Restore the new tasks context. Given that the scheduler has returned a task that can be run at
this time, the user registers need to be read from the memory at the user context pointer and
then placed into the user registers. An example of this is shown in Tbl. 4.23, Because this is such
an important task, the ZipCPU GCC provides a built—in function, zip_restore_context (int
*), which can be used for this task.

8. Clear the userspace accounting registers. In order to keep track of per process system usage,
these registers need to be cleared before reactivating the userspace process. That way, upon
the next interrupt, we’ll know how many clocks the userspace program has encountered, and
how many instructions it was able to issue in those many clocks.

9. Return back to the top of our loop in order to execute zip_rtu() again.

WWW.Opencores.com Rev. 1.0 58

Gl Gisselquist Technology, LLC Specification 2016/11/04

restore_context:

SUB
STO

LOD
LOD
LOD
LOD
MOV
MOV
MOV
MOV
LOD
LOD
LOD
LOD
MOV
MOV
MOV
MOV
LOD
ADD
JMP

1,SP ; Set up a stack frame
R5,(SP) ; and store a local register onto it.

(R1),R2 ; By doing four loads at a time, we are
1(R1),R3 ; making sure we are using our pipelined
2(R1) ,R4 ; memory capability.

3(R1),R5

R2,uR1 : Once the registers are loaded, copy them
R3,uR2 ; into the user registers that they need to
R4,uR3 : be placed within.

R5,uR4

: Need to repeat for all user registers

12(R1) ,R2 ; Now for our last four registers ...

13(R5) ,R3

14(R5) ,R4

15(R5) ,R5

R2,uR12 ; These are the special purpose ones, restored
R3,usSP ; just like any others.

R4 ,uCC

R5,uPC

(SP),R5 ; Restore our saved register,

1,SP ; and the stack frame,

RO ; and return to where we were called from.

Table 4.23: Example Restoring User Task Context

WWW.Opencores.com Rev. 1.0 59

Gl Gisselquist Technology, LLC Specification 2016/11/04

5.

Registers

This chapter covers the definitions and locations of the various registers associated with both the
ZipSystem, and the ZipCPU contained within it. These registers fall into two separate categories:
the registers belonging to the ZipSystem, and then the two debug port registers belonging to the
CPU itself. In this chapter, we’ll discuss the ZipSystem peripheral registers first, followed by the
two ZipCPU registers.

5.1 ZipSystem Peripheral Registers

The ZipSystem maintains currently maintains 20 register locations, as shown in Tbl. 5.1. These

| Name | Address | Width | Access | Description \
PIC 0xc0000000 32 R/W Primary Interrupt Controller
WDT 0xc0000001 32 R/W Watchdog Timer
WBU 0xc0000002| 32 R Address of last bus timeout error
CTRIC 0xc0000003| 32 R/W Secondary Interrupt Controller
TMRA 0xc0000004 32 R/W Timer A
TMRB 0xc0000005 32 R/W Timer B
TMRC 0xc0000006| 32 R/W Timer C
JIFF 0xc0000007| 32 R/W Jiffies
MTASK 0xc0000008| 32 R/W Master Task Clock Counter
MMSTL 0xc0000009| 32 R/W Master Stall Counter
MPSTL 0xc000000a 32 R/W Master Pre-Fetch Stall Counter
MICNT 0xc000000b| 32 R/W Master Instruction Counter
UTASK 0xc000000¢| 32 R/W User Task Clock Counter
UMSTL 0xc000000d 32 R/W User Stall Counter
UPSTL 0xc000000¢| 32 R/W User Pre-Fetch Stall Counter
UICNT 0xc000000f 32 R/W User Instruction Counter
DMACTRL | oxcooooo10| 32 R/W DMA Control Register
DMALEN 0xc0000011| 32 R/W DMA total transfer length
DMASRC 0xc0000012 32 R/W DMA source address
DMADST 0xc0000013| 32 R/W DMA destination address

Table 5.1: ZipSystem Internal/Peripheral Registers

WWW.Opencores.com Rev. 1.0 60

Gl Gisselquist Technology, LLC Specification 2016/11/04

] Bit # ‘ Access ‘ Description ‘

31 R/W Master Interrupt Enable

30...16 | R/W Interrupt Enable lines

15 R Current Master Interrupt State

15...0 R/W Input Interrupt states, write ‘1’ to clear

Table 5.2: Interrupt Controller Register Bits

registers are located in the CPU’s address space, although in a special area of that space. Indeed,
the area is so special, that the CPU decodes the address space location before placing the request
onto the bus. For this reason, other containers for the CPU, such as the ZipBones which doesn’t
have these registers, will still create errors when they are referenced.

Here in this section, we’ll walk through the definition of each of these registers in turn, together
with any bit fields that may be associated with them, and how to set those fields.

5.1.1 Interrupt Controller(s)

Any CPU with only a single interrupt line, such as the ZipCPU, really needs an interrupt controller
to give it access to more than the single interrupt. The ZipCPU is no different. When the ZipCPU
is built as part of the ZipSystem, this interrupt controller comes integrated into the system.

Looking into the bits that define this controller, you can see from Tbl. 5.2, that the ZipCPU
Interrupt controller has four different types of bits. The high order bit, or bit—31, is the master
interrupt enable bit. When this bit is set, then any time an interrupt occurs the CPU will be
interrupted and will switch to supervisor mode, etc.

Bits 30 ... 16 are interrupt enable bits. Should the interrupt line ever be high while enabled, an
interrupt will be generated. Further, interrupts are level triggered. Hence, if the interrupt is cleared
while the line feeding the controller remains high, then the interrupt will re-trip. To set one of these
interrupt enable bits, one needs to write the master interrupt enable while writing a ‘1’ to this the
bit. To clear, one need only write a ‘0’ to the master interrupt enable, while leaving this line high.

Bits 15...0 are the current state of the interrupt vector. Interrupt lines trip whenever they are
high, and remain tripped until the input is lowered and the interrupt is acknowledged. Thus, if the
interrupt line is high when the controller receives a clear request, then the interrupt will not clear.
The incoming line must go low again before the status bit can be cleared.

As an example, consider the following scenario where the ZipCPU supports four interrupts, 3...0.

1. The Supervisor will first, while in the interrupts disabled mode, write a 32°h800£000f to the
controller. The supervisor may then switch to the user state with interrupts enabled.

2. When an interrupt occurs, the supervisor will switch to the interrupt state. It will then cycle
through the interrupt bits to learn which interrupt handler to call.

3. If the interrupt handler expects more interrupts, it will clear its current interrupt when it is
done handling the interrupt in question. To do this, it will write a ‘1’ to the low order interrupt
mask, such as writing a 32°h0000_0001.

WWW.OpPencores.com Rev. 1.0 61

Gl Gisselquist Technology, LLC Specification 2016/11/04

] Bit # ‘ Access ‘ Description ‘
31 R/W Auto-Reload
30...0 R/W Current timer value

Table 5.3: Timer Register Bits

] Bit # ‘ Access ‘ Description

31...0 R Current jiffy value
31...0 W Value/time of next interrupt

Table 5.4: Jiffies Register Bits

4. If the interrupt handler does not expect any more interrupts, it will instead clear the interrupt
from the controller by writing a 32°h0001_0001 to the controller.

5. Once all interrupts have been handled, the supervisor will write a 32?h8000_-0000 to the
interrupt register to re-enable interrupt generation.

6. The supervisor should also check the user trap bit, and possible soft interrupt bits here, but
this action has nothing to do with the interrupt control register.

7. The supervisor will then leave interrupt mode, possibly adjusting whichever task is running,
by executing a return from interrupt command.

5.1.2 Timer Register

Leaving the interrupt controller, we show the timer registers bit definitions in Tbl. 5.3. As you may
recall, the timer just counts down to zero and then trips an interrupt. Writing to the current timer
value sets that value, and reading from it returns that value. Writing to the current timer value
while also setting the auto-reload bit will send the timer into an auto-reload mode. In this mode,
upon setting its interrupt bit for one cycle, the timer will also reset itself back to the value of the
timer that was written to it when the auto-reload option was written to it. To clear and stop the
timer, just simply write a ‘32’h00’ to this register.

5.1.3 Jiffies

The Jiffies register is first and foremost a counter. It counts up one on every clock. Reads from this
register, as shown in Tbhl. 5.4, always return the time value contained in the register.

The register accepts writes as well. Writes to the register set the time of the next Jiffy interrupt.
If the next interrupt is between 0 and 23! clocks in the past, the peripheral will immediately create an
interrupt. Otherwise, the register will compare the new value against the currently stored interrupt
value. The value nearest in time to the current jiffies value will be kept, and so the jiffies register
will trip at that value. Prior values are forgotten.

WWW.OpPencores.com Rev. 1.0 62

Gl Gisselquist Technology, LLC Specification 2016/11/04

] Bit # ‘ Access ‘ Description ‘
[31...0 [R/W | Current counter value ‘

Table 5.5: Counter Register Bits

When the Jiffy counter value equals the value in its trigger register, then the jiffies peripheral will
trigger an interrupt. At this point, the internal register is cleared. It will create no more interrupts
unless a new value is written to it.

5.1.4 Performance Counters

The ZipCPU also supports several counter peripherals, mostly for the purpose of process accounting.
These counters each contain a single register, as shown in Tbl. 5.5. Writes to this register set the
new counter value. Reads read the current counter value.

These counters can be configured to count upwards upon any event. Using this capability, eight
counters have been assigned the task of performance counting. Two sets of four registers are available
for keeping track of performance. The first set tracks master performance, including both supervisor
as well as user CPU statistics. The second set tracks user statistics only, and will not count in
supervisor mode.

Of the four registers in each set, the first is a task counter that just counts clock ticks. The
second counter is a prefetch stall counter, then an master stall counter. These allow the CPU to be
evaluated as to how efficient it is. The fourth and final counter in each set is an instruction counter,
which counts how many instructions the CPU has issued.

It is envisioned that these counters will be used as follows: First, every time a master counter
rolls over, the supervisor (Operating System) will record the fact. Second, whenever activating a
user task, the Operating System will set the four user counters to zero. When the user task has
completed, the Operating System will read the timers back off, to determine how much of the CPU
the process had consumed. To keep this accurate, the user counters will only increment when the
GIE bit is set to indicate that the processor is in user mode.

5.1.5 DMA Controller

The final peripheral to discuss is the DMA controller. This controller has four registers. Of these
four, the length, source and destination address registers should need no further explanation. They
are full 32-bit registers specifying the entire transfer length, the starting address to read from, and
the starting address to write to. The registers can be written to when the DMA is idle, and read at
any time. The control register, however, will need some more explanation.

The bit allocation of the control register is shown in Tbl. 5.6. This control register has been
designed so that the common case of memory access need only set the key and the transfer length.
Hence, writing a 32’h0fed0000 to the control register will start any memory transfer. On the other
hand, if you wished to read from a serial port (constant address) and put the result into a buffer
every time a word was available, you might wish to write 32’h2fed8001—this assumes, of course, that
you have a serial port wired to the zero bit of this interrupt control. (The DMA controller does not
use the interrupt controller, and cannot clear interrupts.) As a third example, if you wished to write

WWW.Opencores.com Rev. 1.0 63

Gl Gisselquist Technology, LLC Specification 2016/11/04

] Bit # ‘ Access ‘ Description ‘

31 R DMA Active

30 R Wishbone error, transaction aborted. This bit is cleared the next
time this register is written to.

29 R/W Set to ‘1’ to prevent the controller from incrementing the source
address, ‘0’ for normal memory copy.

28 R/W Set to ‘1’ to prevent the controller from incrementing the desti-
nation address, ‘0’ for normal memory copy.

27...16 | W The DMA Key. Write a 12’hfed to these bits to start the activate

any DMA transfer.

27 R Always reads ‘0’, to force the deliberate writing of the key.

26...16 | R Indicates the number of items in the transfer buffer that have yet
to be written.

15 R/W Set to ‘1’ to trigger on an interrupt, or ‘0’ to start immediately
upon receiving a valid key.

14...10 | R/W Select among one of 32 possible interrupt lines.

9...0 R/W Intermediate transfer length. Thus, to transfer one item at a time

set this value to 1. To transfer the maximum number, 1024, at
a time set it to 0.

Table 5.6: DMA Control Register Bits

to an external FIFO anytime it was less than half full (had fewer than 512 items), and interrupt line
3 indicated this condition, you might wish to issue a 32’h1fed8dff to this port.

5.2 Debug Port Registers

Accessing the ZipSystem via the debug port isn’t as straight forward as accessing the system via
the wishbone bus. The debug port itself has been reduced to two addresses, as outlined earlier in
Thl. 5.7.

| Name | Address | Width | Access | Description \
ZIPCTRL 0 32 R/W Debug Control Register
ZIPDATA 1 32 R/W Debug Data Register

Table 5.7: ZipSystem Debug Registers

Access to the ZipSystem begins with the Debug Control register, shown in Thl. 5.8.

The first step in debugging access is to determine whether or not the CPU is halted, and to halt
it if not. To do this, first write a ‘1’ to the Command HALT bit. This will halt the CPU and place
it into debug mode. Once the CPU is halted, the stall status bit will drop to zero. Thus, if bit 10
is high and bit 9 low, the debug port is open to examine the internal state of the CPU.

WWW.OpPencores.com Rev. 1.0 64

Gl Gisselquist Technology, LLC Specification 2016/11/04

] Bit # ‘ Access ‘ Description ‘

31...14 | R External interrupt state. Bit 14 is valid for one interrupt only,
bit 15 for two, etc.

13 R CPU GIE setting

12 R CPU is sleeping

11 ALY Command clear PF cache

10 R/W Command HALT, Set to ‘1’ to halt the CPU

9 R Stall Status, ‘17 if CPU is busy (i.e., not halted yet)

8 R/W Step Command, set to ‘1’ to step the CPU, also sets the halt bit

7 R Interrupt Request Pending

6 R/W Command RESET

5..0 R/W Debug Register Address

Table 5.8: Debug Control Register Bits

At this point, the external debugger may examine internal state information from within the
CPU. To do this, first write again to the command register a value (with command halt still high)
containing the address of an internal register of interest in the bottom 6 bits. Internal registers that
may be accessed this way are listed in Thl. 5.9. Primarily, these “registers” include access to the
entire CPU register set, as well as the internal peripherals. To read one of these registers once the
address is set, simply issue a read from the data port. To write one of these registers or peripheral
ports, simply write to the data port after setting the proper address.

In this manner, all of the CPU’s internal state may be read and adjusted.

As an example of how to use this, consider what would happen in the case of an external break
point. If and when the CPU hits a break point that causes it to halt, the Command HALT bit will
activate on its own, the CPU will then raise an external interrupt line and wait for a debugger to
examine its state. After examining the state, the debugger will need to remove the breakpoint by
writing a different instruction into memory and by writing to the command register while holding
the clear cache, command halt, and step CPU bits high, (32’hd00). The debugger may then replace
the breakpoint now that the CPU has gone beyond it, and clear the cache again (32’h500).

To leave this debug mode, simply write a ‘32’h0’ value to the command register.

WWW.Opencores.com Rev. 1.0 65

Gl Gisselquist Technology, LLC Specification 2016/11/04
] Name Address ‘ Width ‘ Access ‘ Description

sRO 0 32 R/W Supervisor Register RO

sR1 0 32 R/W Supervisor Register R1

sSP 13 32 R/W Supervisor Stack Pointer

sCC 14 32 R/W Supervisor Condition Code Register

sPC 15 32 R/W Supervisor Program Counter

uR0 16 32 R/W User Register RO

uR1 17 32 R/W User Register R1

uSP 29 32 R/W User Stack Pointer

uCC 30 32 R/W User Condition Code Register

uPC 31 32 R/W User Program Counter

PIC 32 32 R/W Primary Interrupt Controller

WDT 33 32 R/W Watchdog Timer

WBUS 34 32 R Last Bus Error

CTRIC 35 32 R/W Secondary Interrupt Controller

TMRA 36 32 R/W Timer A

TMRB 37 32 R/W Timer B

TMRC 38 32 R/W Timer C

JIFF 39 32 R/W Jiffies peripheral

MTASK 40 32 R/W Master task clock counter

MMSTL 41 32 R/W Master memory stall counter

MPSTL 42 32 R/W Master Pre-Fetch Stall counter

MICNT 43 32 R/W Master instruction counter

UTASK 44 32 R/W User task clock counter

UMSTL 45 32 R/W User memory stall counter

UPSTL 46 32 R/W User Pre-Fetch Stall counter

UICNT 47 32 R/W User instruction counter

DMACMD | 48 32 R/W DMA command and status register

DMALEN 49 32 R/W DMA transfer length

DMARD 50 32 R/W DMA read address

DMAWR 51 32 R/W DMA write address

Table 5.9: Debug Register Addresses

WWW.Opencores.com Rev. 1.0 66

Gl Gisselquist Technology, LLC Specification 2016/11/04

6.

Wishbone Datasheets

The ZipSystem supports two wishbone ports, a slave debug port and a master port for the system
itself. These are shown in Tbl. 6.1 and Tbl. 6.2 respectively. I do not recommend that you connect

] Description ‘ Specification
Revision level of wishbone WB B4 spec
Type of interface Slave, Read/Write, single words only
Address Width 1-bit
Port size 32-bit
Port granularity 32-bit
Maximum Operand Size 32-bit
Data transfer ordering (Irrelevant)
Clock constraints Works at 100 MHz on a Basys—3 board,

and 80 MHz on a XuLLA2-1.X25
Signal Name Wishbone Equivalent
i_clk CLK_I
i_dbg_cyc CYC_I
i_dbg_stb (CYC_I)&(STB_I)
i_dbg_we WE_I
i_dbg_addr ADR_I
i_dbg_data DAT_I
o_dbg_ack ACK_0
o_dbg_stall STALLDO
o_dbg_data DAT.O

Signal Names

Table 6.1: Wishbone Datasheet for the Debug Interface

these together through the interconnect, since 1) it doesn’t make sense that the CPU should be
able to halt itself, and 2) it helps to be able to reboot the CPU in case something has gone terribly
wrong and the CPU is stalling the entire interconnect. Rather, the debug port of the CPU should
be accessible regardless of the state of the master bus.

You may wish to notice that neither the LOCK nor the RTY (retry) wires have been connected to
the CPU’s master interface. If necessary, a rudimentary LOCK may be created by tying this wire to
the wb_cyc line. As for the RTY, all the CPU recognizes at this point are bus errors—it cannot tell
the difference between a temporary and a permanent bus error. Therefore, one might logically OR
the bus error and bus retry flags on input to the CPU if necessary.

WWW.Opencores.com Rev. 1.0 67

Gl Gisselquist Technology, LLC Specification 2016/11/04
] Description ‘ Specification

Revision level of wishbone WB B4 spec

Type of interface Master, Read/Write, single cycle or
pipelined

Address Width (ZipSystem parameter, can be up to 32—
bit bits)

Port size 32-bit

Port granularity 32-bit

Maximum Operand Size 32-bit

Data transfer ordering (Trrelevant)

Clock constraints

Works at 100 MHz on a Basys-3 board,
and 80 MHz on a XuLA2-LX25

Signal Names

Signal Name Wishbone Equivalent

i_clk CLK.0

o_wb_cyc CYC.0

o_wb_stb (CYC_0)&(STB.0)
o_wb_we WE_O

o_wb_addr ADR_O

o_wb_data DAT_O

i_wb_ack ACK_I
i_wb_stall STALL_I
i_wb_data DAT_I

i_wb_err ERR_I

Table 6.2: Wishbone Datasheet for the CPU as Master

WWW.Oopencores.com

Rev. 1.0

68

Gl Gisselquist Technology, LLC Specification 2016/11/04

The final simplification made of the standard wishbone bus B4 specification, is that the strobe
lines are assumed to be zero in any slave if CYC_I is zero, and the master is responsible for ensuring
that STB_0 is never true when CYC_0 is true in order to make this work. All of the ZipCPU and
ZipSystem masters and peripherals have been created with this assumption. Converting peripherals
that have made this assumption to work with masters that don’t guarantee this property is as simple
as anding the slave’s CYC_I and STB_I lines together. No change needs to be made to any ZipCPU
master, however, in order to access any peripheral that hasn’t been so simplified.

WWW.Opencores.com Rev. 1.0 69

Gl Gisselquist Technology, LLC Specification 2016/11/04

7.

Clocks

This core has now been tested and proven on the Xilinx Spartan 6 FPGA as well as the Artix—7
FPGA. I hesitate to suggest that the core can run faster than 100 MHz, since I have had struggled

Name Source | Rates (MHz) Description
Max \ Min

iclk External | 100 MHz System clock, Artix—7/35T
80 MHz System clock, Spartan 6

Table 7.1: List of Clocks

with various timing violations to keep it at 100 MHz. So, for now, I will only state that it can run
at 100 MHz.

On a SPARTAN 6, the clock can run successfully at 80 MHz.

A second Artix—7 design on the Digilent’s Arty board is limited to 81.25 MHz by the memory
interface generated core used to access SDRAM.

WWW.Opencores.com Rev. 1.0 70

Gl Gisselquist Technology, LLC Specification 2016/11/04

8.

I/0 Ports

This chapter presents and outlines the various I/O lines in and out of the ZipSystem. Since the
ZipCPU needs to be a component of such a larger part, this makes sense.

The I/O ports to the ZipSystem may be grouped into three categories. The first is that of
the master wishbone used by the CPU, then the slave wishbone used to command the CPU via a
debugger, and then the rest. The first two of these were already discussed in the wishbone chapter.
They are listed here for completeness in Thl. 8.1 and 8.2 respectively.

There are only four other lines to the CPU: the external clock, external reset, incoming external
interrupt line(s), and the outgoing debug interrupt line. These are shown in Tbl. 8.3. The clock line
was discussed briefly in Chapt. 7. The reset line is an active high reset. When asserted, the CPU will
start running again from its RESET_ADDRESS in memory. Further, depending upon how the CPU is
configured and specifically based upon how the START _HALTED parameter is set, the CPU may or may
not start running automatically following a reset. The i_ext_int bus is for set of external interrupt
lines to the ZipSystem. This line may actually be as wide as 16 external interrupts, depending upon
the setting of the EXTERNAL_INTERRUPTS parameter. Finally, the ZipSystem produces one external
interrupt whenever the entire CPU halts to wait for the debugger.

The I/0O lines to the ZipBones package are identical to those of the ZipSystem, with the only
exception that the ZipBones package has only a single interrupt line input. This means that the
ZipBones implementation practically depends upon an external interrupt controller.

Port ‘ Width ‘ Direction ‘ Description

o_wb_cyc 1 Output Indicates an active Wishbone cycle
o_wb_stb 1 Output WB Strobe signal

o_wb_we 1 Output Write enable

o_wb_addr 32 Output Bus address

o_wb_data 32 Output Data on WB write

i_wb_ack 1 Input Slave has completed a R/W cycle
i_wb_stall 1 Input WB bus slave not ready

i_wb_data 32 Input Incoming bus data

i_wb_err 1 Input Bus Error indication

Table 8.1: CPU Master Wishbone I/O Ports

WWW.OpPencores.com Rev. 1.0 71

Gl Gisselquist Technology, LLC Specification 2016/11/04
\ Port \ Width \ Direction \ Description

i_dbg_cyc 1 Input Indicates an active Wishbone cycle

i_dbg_stb 1 Input WRB Strobe signal

i_dbg_we 1 Input Write enable

i_dbg_addr 1 Input Bus address, command or data port

i_dbg_data | 32 Input Data on WB write

o_dbg_ack 1 Output Slave has completed a R/W cycle

o_dbg_stall | 1 Output WB bus slave not ready

o_dbg_data | 32 Output Incoming bus data

Table 8.2: CPU Debug Wishbone I/O Ports

‘ Port ‘ Width ‘ Direction ‘ Description
iclk 1 Input The master CPU clock
irst 1 Input Active high reset line
i_ext_int 1...16 Input Incoming external interrupts, actual value set by imple-
mentation parameter. This is only ever one for the Zip-
Bones implementation.
o_ext_int 1 Output CPU Halted interrupt

Table 8.3: 1/O Ports

WWW.Oopencores.com

Rev. 1.0

72

Gl Gisselquist Technology, LLC Specification 2016/11/04

9.

Initial Assessment

Having now worked with the ZipCPU for a while, it is worth offering an honest assessment of how
well it works and how well it was designed. At the end of this assessment, I will propose some
changes that may take place in a later version of this ZipCPU to make it better.

9.1 The Good

e The ZipCPU was designed to be a simple and light weight CPU. It has achieved this end
nicely. The proof of this is the full multitasking operating system built for Digilent’s CMod
S6 board, based around a very small Spartan 6/LX4 FPGA.

As a result, the ZipCPU also makes a good starting point for anyone who wishes to build a
general purpose CPU and then to experiment with building and adding particular features.
Modifications should be simple enough.

Indeed, a non—pipelined version of the bare ZipBones (with no peripherals) has been built that
only uses 1.3k 6-LUTs. When using pipelining, the full cache, and all of the peripherals, the
ZipSystem can take up to 4.5 k LUTs. Where it fits in between is a function of your needs.

A new implementation using an iCE40 FPGA suggests that the ZipCPU will fit within the
4k 4—way LUTSs of the iCE40 HK4X FPGA, but only just barely.

o The ZipCPU was designed to be an implementable soft core that could be placed within an
FPGA, controlling actions internal to the FPGA. It fits this role rather nicely. It does not
fit the role of a general purpose CPU replacement very well: it has no octet level access, no
double—precision floating point capability, neither does it have vector registers and operations.
However, it was never designed to be such a general purpose CPU but rather a system within
a chip.

e The extremely simplified instruction set of the ZipCPU was a good choice. Although it does
not have many of the commonly used instructions, PUSH, POP, JSR, and RET among them,
the simplified instruction set has demonstrated an amazing versatility. I will contend therefore
and for anyone who will listen, that this instruction set offers a full and complete capability
for whatever a user might wish to do with two exceptions: bytewise character access and
accelerated floating-point support.

e This simplified instruction set is easy to decode.

e The simplified bus transactions (32-bit words only) were also very easy to implement.

WWW.Opencores.com Rev. 1.0 73

Gl Gisselquist Technology, LLC Specification 2016/11/04

e The burst load/store approach using the wishbone pipelining mode is novel, and can be used
to greatly increase the speed of the processor.

e The novel approach to interrupts greatly facilitates the development of interrupt handlers from
within high level languages.

The approach involves a single interrupt “vector” only, and simply switches the CPU back to
the instruction it left off at. By using this approach, interrupt handlers no longer need careful
assembly language scripting in order to save their context upon any interrupt.

At the same time, if most modern systems handle interrupt vectoring in software anyway, why
maintain complicated hardware support for it?

e My goal of a high rate of instructions per clock may not be the proper measure of this CPU.
For example, if instructions are being read from a SPI flash device, such as is common among
FPGA implementations, these same instructions may suffer stalls of between 64 and 128 cycles
per instruction just to read the instruction from the flash. Executing the instruction in a single
clock cycle is no longer the appropriate measure. At the same time, it should be possible to use
the DMA peripheral to copy instructions from the FLASH to a temporary memory location,
after which they may be executed at a single instruction cycle per access again.

e Both GCC and binutils back ends exist for the ZipCPU.

9.2 The Not so Good

e The CPU has no octet (character) support. This is both good and bad. Realistically, the CPU
works just fine without it. Characters can be supported as subsets of 32-bit words without any
problem. Practically, though, this creates two problems. The first is that it makes porting code
from non-ZipCPU platforms to the ZipCPU is difficult—especially anything that depends upon
the existence of *int8_t, *int16_t, the size difference between sizeof (int)=4*sizeof (char),
or that tries to create unions with characters and integers and then attempts to reference the
address of the characters within that union.

The second problem is that peripherals that depend upon character support on the bus may
need to be rewritten to work on a 32-bit bus.

e The ZipCPU does not (yet) support a data cache. One is currently under development.

The ZipCPU compensates for this lack via its burst memory capability. Further, performance
tests using Dhrystone suggest that the ZipCPU is no slower than other processors containing
a data cache.

e Many other instruction sets offer three operand instructions, whereas the ZipCPU only offers
two operand instructions. This means that it may take the ZipCPU more instructions to do
many of the same operations. The good part of this is that it gives the ZipCPU a greater
amount of flexibility in its immediate operand mode, although that increased flexibility isn’t
necessarily as valuable as one might like.

The impact of this lack of three operand instructions is application dependent, but does not
appear to be too severe.

WWW.OpPencores.com Rev. 1.0 74

Gl Gisselquist Technology, LLC Specification 2016/11/04

e The ZipCPU doesn’t support out of order execution.

I suppose it could be modified to do so, but then it would no longer be the “simple” and low
LUT count CPU it was designed to be.

e Although switching to an interrupt context in the ZipCPU design doesn’t require a tremendous
swapping of registers, in reality it still does—since any task swap (such as swapping to a task
waiting on an interrupt) still requires saving and restoring all 16 user registers. That’s a lot
of memory movement just to service an interrupt.

This isn’t nearly as bad as it sounds, however, since most RISC architectures have 32 registers
that will need to be swapped upon any context swap.

e The ZipCPU is by no means generic: it will never handle addresses larger than 32-bits (4GW
or 16GB) without a complete and total redesign. This may limit its utility as a generic CPU
in the future, although as an embedded CPU within an FPGA this isn’t really much of a
restriction.

e While a toolchain does exist for the ZipCPU, it isn’t yet fully featured. The ZipCPU has no
support for soft floating point arithmetic, nor does it have support for several standard library
functions. Indeed, full C library support and gdb support are still lacking.

9.3 The Next Generation

This section could also be labeled as my “To do” list. It outlines where you may expect features in
the future. Currently, there are five primary items on my to do list:

1. Soft Floating Point capability

The lack of any floating point capability, either hard or soft, makes porting math software to
the ZipCPU difficult. Simply building a soft floating point library will solve this problem.

2. A C library.

The lack of octet support has so far prevented the porting of newlib to the ZipCPU platform.
In the end, it may mean that any C library implementation for the ZipCPU may be subtly
different from any you are familiar with.

3. A data cache

A preliminary data cache implemented as a write through cache has been developed. Adding
this into the CPU should require few changes internal to the CPU. I expect future versions of
the CPU will permit this as an option.

4. A Memory Management Unit

The first version of such an MMU has already been written. It is available for examination
in the ZipCPU repository. This MMU exists as a peripheral of the ZipCPU. Integrating
this MMU into the ZipCPU will involve slowing down memory stores so that they can be
accomplished synchronously, as well as determining how and when particular cache lines need
to be invalidated.

WWW.Opencores.com Rev. 1.0 75

Gl Gisselquist Technology, LLC Specification 2016/11/04

5. An integrated floating point unit (FPU)

Why a small scale CPU needs a hefty floating point unit, I’'m not certain, but many application
contexts require the ability to do floating point math.

WWW.Opencores.com Rev. 1.0 76

	Introduction
	Characteristics of a SwiC
	Scope

	CPU Architecture
	Build Options/defines
	Internal Architecture
	Register Set
	The Status Register, CC
	Instruction Format
	Instruction OpCodes
	Conditional Instructions
	Modifying Conditions
	Operand B
	Address Modes
	Move Operands
	Multiply Operations
	Divide Unit
	NOOP, BREAK, and Bus LOCK Instruction
	Floating Point
	Load/Store byte
	Derived Instructions
	Interrupt Handling
	Pipeline Stages
	Pipeline Stalls

	External Architecture
	Simplified Wishbone Bus
	Memory Model
	ZipSystem

	Debug Interface

	Application Binary Interface
	Executable File Format
	Stack
	Relocations
	Call format
	Built-ins
	Linker Scripts
	Memory Types
	The Entry Function
	Bootloader Tags
	Other required linker symbols

	Loading ZipCPU Programs
	Starting a ZipCPU program
	CRT0
	The Bootloader
	Kernel Entry
	Kernel Main

	Operation
	CRT0
	System High
	A Programmable Delay
	Traditional Interrupt Handling
	Idle Task
	Memory Copy
	Memset
	String Operations
	Context Switch

	Registers
	ZipSystem Peripheral Registers
	Interrupt Controller(s)
	Timer Register
	Jiffies
	Performance Counters
	DMA Controller

	Debug Port Registers

	Wishbone Datasheets
	Clocks
	I/O Ports
	Initial Assessment
	The Good
	The Not so Good
	The Next Generation

