
Gisselquist
Technology, LLC

ZIP CPU

SPECIFICATION

Dan Gisselquist, Ph.D.
dgisselq (at) opencores.org

August 19, 2015

Gisselquist Technology, LLC Specification 2015/08/19

Copyright (C) 2015, Gisselquist Technology, LLC
This project is free software (firmware): you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTIBILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see ¡http://www.gnu.org/licenses/¿ for a copy.

www.opencores.com Rev. 0.2 ii

Gisselquist Technology, LLC Specification 2015/08/19

Revision History
Rev. Date Author Description

0.2 8/19/2015 Gisselquist Still Draft, more complete
0.1 8/17/2015 Gisselquist Incomplete First Draft

www.opencores.com Rev. 0.2 iii

Gisselquist Technology, LLC Specification 2015/08/19

Contents

Page

1 Introduction . 1

2 CPU Architecture . 5
2.1 Simplified Bus . 5
2.2 Register Set . 5
2.3 Conditional Instructions . 6
2.4 Operand B . 8
2.5 Address Modes . 8
2.6 Move Operands . 8
2.7 Multiply Operations . 9
2.8 Floating Point . 9
2.9 Native Instructions . 9
2.10 Derived Instructions . 9
2.11 Pipeline Stages . 9
2.12 Pipeline Logic . 14

3 Peripherals . 17
3.1 Interrupt Controller . 17
3.2 Counter . 18
3.3 Timer . 18
3.4 Watchdog Timer . 18
3.5 Jiffies . 19
3.6 Manual Cache . 19

4 Operation . 20

5 Registers . 21

6 Wishbone Datasheet . 22

7 Clocks . 24

8 I/O Ports . 25

www.opencores.com Rev. 0.2 iv

Gisselquist Technology, LLC Specification 2015/08/19

Figures

Figure Page

1.1. Zip CPU internal pipeline architecture . 2

2.1. Zip CPU Register File . 6

3.1. Zip System Peripherals . 18

www.opencores.com Rev. 0.2 v

Gisselquist Technology, LLC Specification 2015/08/19

Tables

Table Page

2.1. Condition Code / Status Register Bits . 7
2.2. Conditions for conditional operand execution . 7
2.3. Bit allocation for Operand B . 8
2.4. Zip CPU Instruction Set . 10
2.5. Derived Instructions . 11
2.6. Derived Instructions, continued . 12
2.7. Derived Instructions, continued . 13

5.1. Zip System Internal/Peripheral Registers . 21
5.2. Zip System Debug Registers . 21

6.1. Wishbone Datasheet for the Debug Interface . 22
6.2. Wishbone Datasheet for the CPU as Master . 23

7.1. List of Clocks . 24

www.opencores.com Rev. 0.2 vi

Gisselquist Technology, LLC Specification 2015/08/19

Preface

Many people have asked me why I am building the Zip CPU. ARM processors are good and effective.
Xilinx makes and markets Microblaze, Altera Nios, and both have better toolsets than the Zip CPU
will ever have. OpenRISC is also available, RISC–V may be replacing it. Why build a new processor?

The easiest, most obvious answer is the simple one: Because I can.
There’s more to it, though. There’s a lot that I would like to do with a processor, and I want

to be able to do it in a vendor independent fashion. I would like to be able to generate Verilog
code that can run equivalently on both Xilinx and Altera chips, and that can be easily ported from
one manufacturer’s chipsets to another. Even more, before purchasing a chip or a board, I would
like to know that my chip works. I would like to build a test bench to test components with, and
Verilator is my chosen test bench. This forces me to use all Verilog, and it prevents me from using
any proprietary cores. For this reason, Microblaze and Nios are out of the question.

Why not OpenRISC? That’s a hard question. The OpenRISC team has done some wonderful
work on an amazing processor, and I’ll have to admit that I am envious of what they’ve accomplished.
I would like to port binutils to the Zip CPU, as I would like to port GCC and GDB. They are way
ahead of me. The OpenRISC processor, however, is complex and hefty at about 4,500 LUTs. It
has a lot of features of modern CPUs within it that ... well, let’s just say it’s not the little guy on
the block. The Zip CPU is lighter weight, costing only about 2,000 LUTs with no peripherals, and
3,000 LUTs with some very basic peripherals.

My final reason is that I’m building the Zip CPU as a learning experience. The Zip CPU has
allowed me to learn a lot about how CPUs work on a very micro level. For the first time, I am
beginning to understand many of the Computer Architecture lessons from years ago.

To summarize: Because I can, because it is open source, because it is light weight, and as an
exercise in learning.

Dan Gisselquist, Ph.D.

www.opencores.com Rev. 0.2 vii

Gisselquist Technology, LLC Specification 2015/08/19

1.

Introduction

The original goal of the ZIP CPU was to be a very simple CPU. You might think of it as a poor man’s
alternative to the OpenRISC architecture. For this reason, all instructions have been designed to be
as simple as possible, and are all designed to be executed in one instruction cycle per instruction,
barring pipeline stalls. Indeed, even the bus has been simplified to a constant 32-bit width, with
no option for more or less. This has resulted in the choice to drop push and pop instructions,
pre-increment and post-decrement addressing modes, and more.

For those who like buzz words, the Zip CPU is:

• A 32-bit CPU: All registers are 32-bits, addresses are 32-bits, instructions are 32-bits wide,
etc.

• A RISC CPU. There is no microcode for executing instructions. All instructions are designed
to be completed in one clock cycle.

• A Load/Store architecture. (Only load and store instructions can access memory.)

• Wishbone compliant. All peripherals are accessed just like memory across this bus.

• A Von-Neumann architecture. (The instructions and data share a common bus.)

• A pipelined architecture, having stages forPrefetch,Decode,Read-Operand, theALU/Memory
unit, and Write-back. See Fig. 1.1 for a diagram of this structure.

• Completely open source, licensed under the GPL.1

Now, however, that I’ve worked on the Zip CPU for a while, it is not nearly as simple as I
originally hoped. Worse, I’ve had to adjust to create capabilities that I was never expecting to need.
These include:

• Extenal Debug: Once placed upon an FPGA, some external means is still necessary to debug
this CPU. That means that there needs to be an external register that can control the CPU:
reset it, halt it, step it, and tell whether it is running or not. My chosen interface includes
a second register similar to this control register. This second register allows the external
controller or debugger to examine registers internal to the CPU.

• Internal Debug: Being able to run a debugger from within a user process requires an ability
to step a user process from within a debugger. It also requires a break instruction that can
be substituted for any other instruction, and substituted back. The break is actually difficult:

1Should you need a copy of the Zip CPU licensed under other terms, please contact me.

www.opencores.com Rev. 0.2 1

Gisselquist Technology, LLC Specification 2015/08/19

Figure 1.1: Zip CPU internal pipeline architecture

the break instruction cannot be allowed to execute. That way, upon a break, the debugger
should be able to jump back into the user process to step the instruction that would’ve been
at the break point initially, and then to replace the break after passing it.

Incidentally, this break messes with the prefetch cache and the pipeline: if you change an
instruction partially through the pipeline, the whole pipeline needs to be cleansed. Likewise
if you change an instruction in memory, you need to make sure the cache is reloaded with the
new instruction.

• Prefetch Cache: My original implementation had a very simple prefetch stage. Any time
the PC changed the prefetch would go and fetch the new instruction. While this was perhaps
this simplest approach, it cost roughly five clocks for every instruction. This was deemed
unacceptable, as I wanted a CPU that could execute instructions in one cycle. I therefore
have a prefetch cache that issues pipelined wishbone accesses to memory and then pushes
instructions at the CPU. Sadly, this accounts for about 20% of the logic in the entire CPU, or
15% of the logic in the entire system.

• Operating System: In order to support an operating system, interrupts and so forth, the
CPU needs to support supervisor and user modes, as well as a means of switching between
them. For example, the user needs a means of executing a system call. This is the purpose of
the ‘trap’ instruction. This instruction needs to place the CPU into supervisor mode (here
equivalent to disabling interrupts), as well as handing it a parameter such as identifying which
O/S function was called.

My initial approach to building a trap instruction was to create an external peripheral which,
when written to, would generate an interrupt and could return the last value written to it. In
practice, this approach didn’t work at all: the CPU executed two instructions while waiting
for the trap interrupt to take place. Since then, I’ve decided to keep the rest of the CC register

www.opencores.com Rev. 0.2 2

Gisselquist Technology, LLC Specification 2015/08/19

for that purpose so that a write to the CC register, with the GIE bit cleared, could be used to
execute a trap. This has other problems, though, primarily in the limitation of the uses of the
CC register. In particular, the CC register is the best place to put CPU state information and
to “announce” special CPU features (floating point, etc). So the trap instruction still switches
to interrupt mode, but the CC register is not nearly as useful for telling the supervisor mode
processor what trap is being executed.

Modern timesharing systems also depend upon a Timer interrupt to handle task swapping.
For the Zip CPU, this interrupt is handled external to the CPU as part of the CPU System,
found in zipsystem.v. The timer module itself is found in ziptimer.v.

• Pipeline Stalls: My original plan was to not support pipeline stalls at all, but rather to require
the compiler to properly schedule all instructions so that stalls would never be necessary. After
trying to build such an architecture, I gave up, having learned some things:

For example, in order to facilitate interrupt handling and debug stepping, the CPU needs
to know what instructions have finished, and which have not. In other words, it needs to
know where it can restart the pipeline from. Once restarted, it must act as though it had
never stopped. This killed my idea of delayed branching, since what would be the appropriate
program counter to restart at? The one the CPU was going to branch to, or the ones in the
delay slots? This also makes the idea of compressed instruction codes difficult, since, again,
where do you restart on interrupt?

So I switched to a model of discrete execution: Once an instruction enters into either the ALU
or memory unit, the instruction is guaranteed to complete. If the logic recognizes a branch or
a condition that would render the instruction entering into this stage possibly inappropriate
(i.e. a conditional branch preceeding a store instruction for example), then the pipeline stalls
for one cycle until the conditional branch completes. Then, if it generates a new PC address,
the stages preceeding are all wiped clean.

The discrete execution model allows such things as sleeping: if the CPU is put to “sleep,”
the ALU and memory stages stall and back up everything before them. Likewise, anything
that has entered the ALU or memory stage when the CPU is placed to sleep continues to
completion. To handle this logic, each pipeline stage has three control signals: a valid signal,
a stall signal, and a clock enable signal. In general, a stage stalls if it’s contents are valid and
the next step is stalled. This allows the pipeline to fill any time a later stage stalls.

This approach is also different from other pipeline approaches. Instead of keeping the entire
pipeline filled, each stage is treated independently. Therefore, individual stages may move
forward as long as the subsequent stage is available, regardless of whether the stage behind it
is filled.

• Verilog Modules: When examining how other processors worked here on open cores, many
of them had one separate module per pipeline stage. While this appeared to me to be a
fascinating and commendable idea, my own implementation didn’t work out quite so nicely.

As an example, the decode module produces a lot of control wires and registers. Creating a
module out of this, with only the simplest of logic within it, seemed to be more a lesson in
passing wires around, rather than encapsulating logic.

Another example was the register writeback section. I would love this section to be a module
in its own right, and many have made them such. However, other modules depend upon

www.opencores.com Rev. 0.2 3

Gisselquist Technology, LLC Specification 2015/08/19

writeback results other than just what’s placed in the register (i.e., the control wires). For
these reasons, I didn’t manage to fit this section into it’s own module.

The result is that the majority of the CPU code can be found in the zipcpu.v file.

With that introduction out of the way, let’s move on to the instruction set.

www.opencores.com Rev. 0.2 4

Gisselquist Technology, LLC Specification 2015/08/19

2.

CPU Architecture

The Zip CPU supports a set of two operand instructions, where the second operand (always a
register) is the result. The only exception is the store instruction, where the first operand (always
a register) is the source of the data to be stored.

2.1 Simplified Bus

The bus architecture of the Zip CPU is that of a simplified WISHBONE bus. It has been simplified
in this fashion: all operations are 32–bit operations. The bus is neither little endian nor bit endian.
For this reason, all words are 32–bits. All instructions are also 32–bits wide. Everything has been
built around the 32–bit word.

2.2 Register Set

The Zip CPU supports two sets of sixteen 32-bit registers, a supervisor and a user set as shown in
Fig. 2.1. The supervisor set is used in interrupt mode when interrupts are disabled, whereas the
user set is used otherwise. Of this register set, the Program Counter (PC) is register 15, whereas the
status register (SR) or condition code register (CC) is register 14. By convention, the stack pointer
will be register 13 and noted as (SP)–although there is nothing special about this register other than
this convention. The CPU can access both register sets via move instructions from the supervisor
state, whereas the user state can only access the user registers.

The status register is special, and bears further mention. The lower 10 bits of the status register
form a set of CPU state and condition codes. Writes to other bits of this register are preserved.

Of the eight condition codes, the bottom four are the current flags: Zero (Z), Carry (C), Negative
(N), and Overflow (V).

The next bit is a clock enable (0 to enable) or sleep bit (1 to put the CPU to sleep). Setting
this bit will cause the CPU to wait for an interrupt (if interrupts are enabled), or to completely halt
(if interrupts are disabled). The sixth bit is a global interrupt enable bit (GIE). When this sixth
bit is a ’1’ interrupts will be enabled, else disabled. When interrupts are disabled, the CPU will be
in supervisor mode, otherwise it is in user mode. Thus, to execute a context switch, one only need
enable or disable interrupts. (When an interrupt line goes high, interrupts will automatically be
disabled, as the CPU goes and deals with its context switch.)

The seventh bit is a step bit. This bit can be set from supervisor mode only. After setting this bit,
should the supervisor mode process switch to user mode, it would then accomplish one instruction

www.opencores.com Rev. 0.2 5

Gisselquist Technology, LLC Specification 2015/08/19

Figure 2.1: Zip CPU Register File

in user mode before returning to supervisor mode. Then, upon return to supervisor mode, this bit
will be automatically cleared. This bit has no effect on the CPU while in supervisor mode.

This functionality was added to enable a userspace debugger functionality on a user process,
working through supervisor mode of course.

The eighth bit is a break enable bit. This controls whether a break instruction in user mode will
halt the processor for an external debugger (break enabled), or whether the break instruction will
simply send send the CPU into interrupt mode. Encountering a break in supervisor mode will halt
the CPU independent of the break enable bit. This bit can only be set within supervisor mode.

This functionality was added to enable an external debugger to set and manage breakpoints.
The ninth bit is reserved for a floating point enable bit. When set, the arithmetic for the next

instruction will be sent to a floating point unit. Such a unit may later be added as an extension
to the Zip CPU. If the CPU does not support floating point instructions, this bit will never be set.
The instruction set could also be simply extended to allow other data types in this fashion, such as
two by 16–bit vector operations or four by 8–bit vector operations.

The tenth bit is a trap bit. It is set whenever the user requests a soft interrupt, and cleared on
any return to userspace command. This allows the supervisor, in supervisor mode, to determine
whether it got to supervisor mode from a trap or from an external interrupt or both.

These status register bits are summarized in Tbl. 2.1.

2.3 Conditional Instructions

Most, although not quite all, instructions are conditionally executed. From the four condition code
flags, eight conditions are defined. These are shown in Tbl. 2.2. There is no condition code for less
than or equal, not C or not V. Sorry, I ran out of space in 3–bits. Using these conditions will take
an extra instruction. (Ex: TST $4,CC; STO.NZ R0,(R1))

www.opencores.com Rev. 0.2 6

Gisselquist Technology, LLC Specification 2015/08/19

Bit Meaning
9 Soft trap, set on a trap from user mode, cleared when returing to user mode
8 (Reserved for) Floating point enable
7 Halt on break, to support an external debugger
6 Step, single step the CPU in user mode
5 GIE, or Global Interrupt Enable
4 Sleep
3 V, or overflow bit.
2 N, or negative bit.
1 C, or carry bit.
0 Z, or zero bit.

Table 2.1: Condition Code / Status Register Bits

Code Mneumonic Condition
3’h0 None Always execute the instruction
3’h1 .Z Only execute when ’Z’ is set
3’h2 .NE Only execute when ’Z’ is not set
3’h3 .GE Greater than or equal (’N’ not set, ’Z’ irrelevant)
3’h4 .GT Greater than (’N’ not set, ’Z’ not set)
3’h5 .LT Less than (’N’ set)
3’h6 .C Carry set
3’h7 .V Overflow set

Table 2.2: Conditions for conditional operand execution

www.opencores.com Rev. 0.2 7

Gisselquist Technology, LLC Specification 2015/08/19

Bit 20 19 . . . 16 15 . . . 0
1’b0 20–bit Signed Immediate value
1’b1 4-bit Register 16–bit Signed immediate offset

Table 2.3: Bit allocation for Operand B

2.4 Operand B

Many instruction forms have a 21-bit source “Operand B” associated with them. This Operand B
is either equal to a register plus a signed immediate offset, or an immediate offset by itself. This
value is encoded as shown in Tbl. 2.3.

Sixteen and twenty bit immediates don’t make sense for all instructions. For example, what is
the point of a 20–bit immediate when executing a 16–bit multiply? Likewise, why have a 16–bit
immediate when adding to a logical or arithmetic shift? In these cases, the extra bits are reserved
for future instruction possibilities.

2.5 Address Modes

The ZIP CPU supports two addressing modes: register plus immediate, and immediate address.
Addresses are therefore encoded in the same fashion as Operand B’s, shown above.

A lot of long hard thought was put into whether to allow pre/post increment and decrement
addressing modes. Finding no way to use these operators without taking two or more clocks per
instruction, these addressing modes have been removed from the realm of possibilities. This means
that the Zip CPU has no native way of executing push, pop, return, or jump to subroutine operations.
Each of these instructions can be emulated with a set of instructions from the existing set.

2.6 Move Operands

The previous set of operands would be perfect and complete, save only that the CPU needs access to
non–supervisory registers while in supervisory mode. Therefore, the MOV instruction is special and
offers access to these registers . . . when in supervisory mode. To keep the compiler simple, the extra
bits are ignored in non-supervisory mode (as though they didn’t exist), rather than being mapped
to new instructions or additional capabilities. The bits indicating which register set each register lies
within are the A-Usr and B-Usr bits. When set to a one, these refer to a user mode register. When
set to a zero, these refer to a register in the current mode, whether user or supervisor. Further,
because a load immediate instruction exists, there is no move capability between an immediate and
a register: all moves come from either a register or a register plus an offset.

This actually leads to a bit of a problem: since the MOV instruction encodes which register set
each register is coming from or moving to, how shall a compiler or assembler know how to compile a
MOV instruction without knowing the mode of the CPU at the time? For this reason, the compiler
will assume all MOV registers are supervisor registers, and display them as normal. Anything with
the user bit set will be treated as a user register. The CPU will quietly ignore the supervisor bits

www.opencores.com Rev. 0.2 8

Gisselquist Technology, LLC Specification 2015/08/19

while in user mode, and anything marked as a user register will always be valid. (Did I just say that
in the last paragraph?)

2.7 Multiply Operations

The Zip CPU supports two Multiply operations, a 16x16 bit signed multiply (MPYS) and the same
but unsigned (MPYU). In both cases, the operand is a register plus a 16-bit immediate, subject to
the rule that the register cannot be the PC or CC registers. The PC register field has been stolen
to create a multiply by immediate instruction. The CC register field is reserved.

2.8 Floating Point

The ZIP CPU does not support floating point operations today. However, the instruction set reserves
a capability for a floating point operation. To execute such an operation, simply set the floating
point bit in the CC register and the following instruction will interpret its registers as a floating point
instruction. Not all instructions, however, have floating point equivalents. Further, the immediate
fields do not apply in floating point mode, and must be set to zero. Not all instructions make sense
as floating point operations. Therefore, only the CMP, SUB, ADD, and MPY instructions may be
issued as floating point instructions. Other instructions allow the examining of the floating point
bit in the CC register. In all cases, the floating point bit is cleared one instruction after it is set.

The architecture does not support a floating point not-implemented interrupt. Any soft floating
point emulation must be done deliberately.

2.9 Native Instructions

The instruction set for the Zip CPU is summarized in Tbl. 2.4.
As you can see, there’s lots of room for instruction set expansion. The NOOP and BREAK

instructions are the only instructions within one particular 24–bit hole. Likewise, the subtract
leaves half of its space open, since a subtract immediate is the same as an add with a negated
immediate. This spaces are reserved for future enhancements.

2.10 Derived Instructions

The ZIP CPU supports many other common instructions, but not all of them are single cycle
instructions. The derived instruction tables, Tbls. 2.5, 2.6, and 2.7, help to capture some of how
these other instructions may be implemented on the ZIP CPU. Many of these instructions will have
assembly equivalents, such as the branch instructions, to facilitate working with the CPU.

2.11 Pipeline Stages

1. Prefetch: Read instruction from memory (cache if possible). This stage is actually pipelined
itself, and so it will stall if the PC ever changes. Stalls are also created here if the instruction
isn’t in the prefetch cache.

www.opencores.com Rev. 0.2 9

Gisselquist Technology, LLC Specification 2015/08/19

Op Code 31. . . 24 23. . . 16 15. . . 8 7. . . 0 Sets CC?
CMP(Sub) 4’h0 D. Reg Cond. Operand B Yes
TST(And) 4’h1 D. Reg Cond. Operand B Yes
MOV 4’h2 D. Reg Cond. A-Usr B-Reg B-Usr 15’bit signed offset
LODI 4’h3 R. Reg 24’bit Signed Immediate
NOOP 4’h4 4’he 24’h00
BREAK 4’h4 4’he 24’h01
Rsrd 4’h4 4’he 24’bits, but not 0 or 1.
LODIHI 4’h4 4’hf Cond. 1’b1 R. Reg 16-bit Immediate
LODILO 4’h4 4’hf Cond. 1’b0 R. Reg 16-bit Immediate
16-b MPYU 4’h4 R. Reg Cond. 1’b0 Reg 16-bit Offset Yes
16-b MPYU(I) 4’h4 R. Reg Cond. 1’b0 4’hf 16-bit Offset Yes
16-b MPYS 4’h4 R. Reg Cond. 1’b1 Reg 16-bit Offset Yes
16-b MPYS(I) 4’h4 R. Reg Cond. 1’b1 4’hf 16-bit Offset Yes
ROL 4’h5 R. Reg Cond. Operand B, truncated to low order 5 bits
LOD 4’h6 R. Reg Cond. Operand B address
STO 4’h7 D. Reg Cond. Operand B address
Rsrd 4’h8 R. Reg Cond. 1’b0 Reserved Yes
SUB 4’h8 R. Reg Cond. 1’b1 Reg 16’bit signed offset Yes
AND 4’h9 R. Reg Cond. Operand B Yes
ADD 4’ha R. Reg Cond. Operand B Yes
OR 4’hb R. Reg Cond. Operand B Yes
XOR 4’hc R. Reg Cond. Operand B Yes
LSL/ASL 4’hd R. Reg Cond. Operand B, imm. trucated to 6 bits Yes
ASR 4’he R. Reg Cond. Operand B, imm. trucated to 6 bits Yes
LSR 4’hf R. Reg Cond. Operand B, imm. trucated to 6 bits Yes

Table 2.4: Zip CPU Instruction Set

www.opencores.com Rev. 0.2 10

Gisselquist Technology, LLC Specification 2015/08/19

Mapped Actual Notes
ADD Ra,Rx
ADDC Rb,Ry

Add Ra,Rx
ADD.C $1,Ry
Add Rb,Ry

Add with carry

BRA.Cond +/-$Addr Mov.cond $Addr+PC,PC Branch or jump on condition. Works for 15–bit
signed address offsets.

BRA.Cond +/-$Addr LDI $Addr,Rx
ADD.cond Rx,PC

Branch/jump on condition. Works for 23 bit ad-
dress offsets, but costs a register, an extra instruc-
tion, and setsthe flags.

BNC PC+$Addr Test $Carry,CC
MOV.Z PC+$Addr,PC

Example of a branch on an unsupported condition,
in this case a branch on not carry

BUSY MOV $-1(PC),PC Execute an infinite loop
CLRF.NZ Rx XOR.NZ Rx,Rx Clear Rx, and flags, if the Z-bit is not set
CLR Rx LDI $0,Rx Clears Rx, leaves flags untouched. This instruc-

tion cannot be conditional.
EXCH.W Rx ROL $16,Rx Exchanges the top and bottom 16’bit words of Rx
HALT Or $SLEEP,CC Executed while in interrupt mode. In user mode

this is simply a wait until interrupt instructioon.
INT LDI $0,CC Since we’re using the CC register as a trap vector

as well, this executes TRAP #0.
IRET OR $GIE,CC Also an RTU instruction (Return to Userspace)
JMP R6+$Addr MOV $Addr(R6),PC
JSR PC+$Addr SUB $1,SP

MOV $3+PC,R0
STO R0,1(SP)
MOV $Addr+PC,PC
ADD $1,SP

Jump to Subroutine. Note the required cleanup
instruction after returning.

JSR PC+$Addr MOV $3+PC,R12
MOV $addr+PC,PC

This is the high speed version of a subroutine call,
necessitating a register to hold the last PC ad-
dress. In its favor, this method doesn’t suffer the
mandatory memory access of the other approach.

LDI.l $val,Rx LDIHI
($val>>16)&0x0ffff,
Rx
LDILO ($val & 0x0ffff)

Sadly, there’s not enough instruction space to
load a complete immediate value into any regis-
ter. Therefore, fully loading any register takes
two cycles. The LDIHI (load immediate high) and
LDILO (load immediate low) instructions have
been created to facilitate this.

Table 2.5: Derived Instructions

www.opencores.com Rev. 0.2 11

Gisselquist Technology, LLC Specification 2015/08/19

Mapped Actual Notes
LOD.b $addr,Rx LDI $addr,Ra

LDI $addr,Rb
LSR $2,Ra
AND $3,Rb
LOD (Ra),Rx
LSL $3,Rb
SUB $32,Rb
ROL Rb,Rx
AND $0ffh,Rx

This CPU is designed for 32’bit word length in-
structions. Byte addressing is not supported by
the CPU or the bus, so it therefore takes more
work to do.
Note also that in this example, $Addr is a byte-
wise address, where all other addresses in this doc-
ument are 32-bit wordlength addresses. For this
reason, we needed to drop the bottom two bits.
This also limits the address space of character ac-
cesses using this method from 16 MB down to
4MB.

LSL $1,Rx
LSLC $1,Ry

LSL $1,Ry
LSL $1,Rx
OR.C $1,Ry

Logical shift left with carry. Note that the instruc-
tion order is now backwards, to keep the condi-
tions valid. That is, LSL sets the carry flag, so if
we did this the othe way with Rx before Ry, then
the condition flag wouldn’t have been right for an
OR correction at the end.

LSR $1,Rx
LSRC $1,Ry

CLR Rz
LSR $1,Ry
LDIHI.C $8000h,Rz
LSR $1,Rx
OR Rz,Rx

Logical shift right with carry

NEG Rx XOR $-1,Rx
ADD $1,Rx

NOOP NOOP While there are many operations that do nothing,
such as MOV Rx,Rx, or OR $0,Rx, these opera-
tions have consequences in that they might stall
the bus if Rx isn’t ready yet. For this reason, we
have a dedicated NOOP instruction.

NOT Rx XOR $-1,Rx
POP Rx LOD $-1(SP),Rx

ADD $1,SP
Note that for interrupt purposes, one can never
depend upon the value at (SP). Hence you read
from it, then increment it, lest having incremented
it firost something then comes along and writes to
that value before you can read the result.

PUSH Rx SUB $1,SPa
STO Rx,$1(SP)

RESET STO $1,$watch-
dog(R12)
NOOP
NOOP

This depends upon the peripheral base address be-
ing in R12.
Another opportunity might be to jump to the reset
address from within supervisor mode.

RET LOD $-1(SP),PC Note that this depends upon the calling context
to clean up the stack, as outlined for the JSR in-
struction.

Table 2.6: Derived Instructions, continued

www.opencores.com Rev. 0.2 12

Gisselquist Technology, LLC Specification 2015/08/19

RET MOV R12,PC This is the high(er) speed version, that doesn’t
touch the stack. As such, it doesn’t suffer a stall
on memory read/write to the stack.

STEP Rr,Rt LSR $1,Rr
XOR.C Rt,Rr

Step a Galois implementation of a Linear Feedback
Shift Register, Rr, using taps Rt

STO.b Rx,$addr LDI $addr,Ra
LDI $addr,Rb
LSR $2,Ra
AND $3,Rb
SUB $32,Rb
LOD (Ra),Ry
AND $0ffh,Rx
AND $-0ffh,Ry
ROL Rb,Rx
OR Rx,Ry
STO Ry,(Ra)

This CPU and it’s bus are not optimized for byte-
wise operations.
Note that in this example, $addr is a byte-wise
address, whereas in all of our other examples it is
a 32-bit word address. This also limits the address
space of character accesses from 16 MB down to
4MB.F Further, this instruction implies a byte or-
dering, such as big or little endian.

SWAP Rx,Ry XOR Ry,Rx
XOR Rx,Ry
XOR Ry,Rx

While no extra registers are needed, this example
does take 3-clocks.

TRAP #X LDILO $x,CC This approach uses the unused bits of the CC reg-
ister as a TRAP address. The user will need to
make certain that the SLEEP and GIE bits are
not set in $x. LDI would also work, however using
LDILO permits the use of conditional traps. (i.e.,
trap if the zero flag is set.) Should you wish to
trap off of a register value, you could equivalently
load $x into the register and then MOV it into the
CC register.

TST Rx TST $-1,Rx Set the condition codes based upon Rx. Could also
do a CMP $0,Rx, ADD $0,Rx, SUB $0,Rx, etc,
AND $-1,Rx, etc. The TST and CMP approaches
won’t stall future pipeline stages looking for the
value of Rx.

WAIT Or $SLEEP,CC Wait ’til interrupt. In an interrupts disabled con-
text, this becomes a HALT instruction.

Table 2.7: Derived Instructions, continued

www.opencores.com Rev. 0.2 13

Gisselquist Technology, LLC Specification 2015/08/19

2. Decode: Decode instruction into op code, register(s) to read, and immediate offset.

3. Read Operands: Read registers and apply any immediate values to them. There is no
means of detecting or flagging arithmetic overflow or carry when adding the immediate to the
operand. This stage will stall if any source operand is pending. A proper optimizing compiler,
therefore, will schedule an instruction between the instruction that produces the result and
the instruction that uses it.

4. Split into two tracks: An ALU which will accomplish a simple instruction, and the MemOps
stage which accomplishes memory read/write.

• Loads stall instructions that access the register until it is written to the register set.

• Condition codes are available upon completion

• Issuing an instruction to the memory while the memory is busy will stall the bus. If the
bus deadlocks, only a reset will release the CPU. (Watchdog timer, anyone?)

• The Zip CPU currently has no means of reading and acting on any error conditions on
the bus.

5. Write-Back: Conditionally write back the result to register set, applying the condition. This
routine is bi-re-entrant: either the memory or the simple instruction may request a register
write.

The Zip CPU does not support out of order execution. Therefore, if the memory unit stalls, every
other instruction stalls. Memory stores, however, can take place concurrently with ALU operations,
although memory writes cannot.

2.12 Pipeline Logic

How the CPU handles some instruction combinations can be telling when determining what happens
in the pipeline. The following lists some examples:

• Delayed Branching

I had originally hoped to implement delayed branching. However, what happens in debug
mode? That is, what happens when a debugger tries to single step an instruction? While
I can easily single step the computer in either user or supervisor mode from externally, this
processor does not appear able to step the CPU in user mode from within user mode–gosh,
not even from within supervisor mode–such as if a process had a debugger attached. As the
processor exists, I would have one result stepping the CPU from a debugger, and another
stepping it externally.

This is unacceptable, and so this CPU does not support delayed branching.

• Register Result: MOV R0,R1; MOV R1,R2

What value does R2 get, the value of R1 before the first move or the value of R0? Placing the
value of R0 into R1 requires a pipeline stall, and possibly two, as I have the pipeline designed.

The ZIP CPU architecture requires that R2 must equal R0 at the end of this operation. This
may stall the pipeline 1-2 cycles.

www.opencores.com Rev. 0.2 14

Gisselquist Technology, LLC Specification 2015/08/19

• Condition Codes Result: CMP R0,R1;Mov.EQ $x,PC

At issue is the same item as above, save that the CMP instruction updates the flags that the
MOV instruction depends upon.

The Zip CPU architecture requires that condition codes must be updated and available im-
mediately for the next instruction without stalling the pipeline.

• Condition Codes Register Result: CMP R0,R1; MOV CC,R2

At issue is the fact that the logic supporting the CC register is more complicated than the
logic supporting any other register.

The ZIP CPU will stall 1–2 cycles on this instruction, until the CC register is valid.

• Delayed Branching: ADD $x,PC; MOV R0,R1

At issues is whether or not the instruction following the jump will take place before the jump.
In other words, is the MOV to the PC register handled differently from an ADD to the PC
register?

In the Zip architecture, MOV’es and ADD’s use the same logic (simplifies the logic).

As I’ve studied this, I find several approaches to handling pipeline issues. These approaches (and
their consequences) are listed below.

• All All issued instructions complete, Stages stall individually

What about a slow pre-fetch?

Nominally, this works well: any issued instruction just runs to completion. If there are four
issued instructions in the pipeline, with the writeback instruction being a write-to-PC instruc-
tion, the other three instructions naturally finish.

This approach fails when reading instructions from the flash, since such reads require N clocks
to clocks to complete. Thus there may be only one instruction in the pipeline if reading from
flash, or a full pipeline if reading from cache. Each of these approaches would produce a
different response.

• Issued instructions may be canceled

Stages stall individually

First problem: Memory operations cannot be canceled, even reads may have side effects on
peripherals that cannot be canceled later. Further, in the case of an interrupt, it’s difficult to
know what to cancel. What happens in a MOV.C $x,PC followed by a MOV $y,PC instruction?
Which get canceled?

Because it isn’t clear what would need to be canceled, this instruction combination is not
recommended.

• All issued instructions complete.

All stages are filled, or the entire pipeline stalls.

What about debug control? What about register writes taking an extra clock stage? MOV
R0,R1; MOV R1,R2 should place the value of R0 into R2. How do you restart the pipeline

www.opencores.com Rev. 0.2 15

Gisselquist Technology, LLC Specification 2015/08/19

after an interrupt? What address do you use? The last issued instruction? But the branch
delay slots may make that invalid!

Reading from the CPU debug port in this case yields inconsistent results: the CPU will halt
or step with instructions stuck in the pipeline. Reading registers will give no indication of
what is going on in the pipeline, just the results of completed operations, not of operations
that have been started and not yet completed. Perhaps we should just report the state of the
CPU based upon what instructions (PC values) have successfully completed? Thus the debug
instruction is the one that will write registers on the next clock.

Suggestion: Suppose we load extra information in the two CC register(s) for debugging inter-
mediate pipeline stages?

The next problem, though, is how to deal with the read operand pipeline stage needing the
result from the register pipeline.a

• Memory instructions must complete

All instructions that enter into the memory module *must* complete. Issued instructions from
the prefetch, decode, or operand read stages may or may not complete. Jumps into code must
be valid, so that interrupt returns may be valid. All instructions entering the ALU complete.

This looks to be the simplest approach. While the logic may be difficult, this appears to be
the only re-entrant approach.

A new pc flag will be high anytime the PC changes in an unpredictable way (i.e., it doesn’t
increment). This includes jumps as well as interrupts and interrupt returns. Whenever this flag
may go high, memory operations and ALU operations will stall until the result is known. When
the flag does go high, anything in the prefetch, decode, and read-op stage will be invalidated.

www.opencores.com Rev. 0.2 16

Gisselquist Technology, LLC Specification 2015/08/19

3.

Peripherals

While the previous chapter describes a CPU in isolation, the Zip System includes a minimum set of
peripherals as well. These peripherals are shown in Fig. 3.1 and described here. They are designed
to make the Zip CPU more useful in an Embedded Operating System environment.

3.1 Interrupt Controller

Perhaps the most important peripheral within the Zip System is the interrupt controller. While
the Zip CPU itself can only handle one interrupt, and has only the one interrupt state: disabled or
enabled, the interrupt controller can make things more interesting.

The Zip System interrupt controller module supports up to 15 interrupts, all controlled from
one register. Bit 31 of the interrupt controller controls overall whether interrupts are enabled (1’b1)
or disabled (1’b0). Bits 16–30 control whether individual interrupts are enabled (1’b0) or disabled
(1’b0). Bit 15 is an indicator showing whether or not any interrupt is active, and bits 0–15 indicate
whether or not an individual interrupt is active.

The interrupt controller has been designed so that bits can be controlled individually without
having any knowledge of the rest of the controller setting. To enable an interrupt, write to the
register with the high order global enable bit set and the respective interrupt enable bit set. No
other bits will be affected. To disable an interrupt, write to the register with the high order global
enable bit cleared and the respective interrupt enable bit set. To clear an interrupt, write a ‘1’ to
that interrupts status pin. Zero’s written to the register have no affect, save that a zero written to
the master enable will disable all interrupts.

As an example, suppose you wished to enable interrupt #4. You would then write to the register
a 0x80100010 to enable interrupt #4 and to clear any past active state. When you later wish to
disable this interrupt, you would write a 0x00100010 to the register. As before, this both disables
the interrupt and clears the active indicator. This also has the side effect of disabling all interrupts,
so a second write of 0x80000000 may be necessary to re-enable any other interrupts.

The Zip System currently hosts two interrupt controllers, a primary and a secondary. The
primary interrupt controller has one interrupt line which may come from an external interrupt
controller, and one interrupt line from the secondary controller. Other primary interrupts include
the system timers, the jiffies interrupt, and the manual cache interrupt. The secondary interrupt
controller maintains an interrupt state for all of the processor accounting counters.

www.opencores.com Rev. 0.2 17

Gisselquist Technology, LLC Specification 2015/08/19

Figure 3.1: Zip System Peripherals

3.2 Counter

The Zip Counter is a very simple counter: it just counts. It cannot be halted. When it rolls over, it
issues an interrupt. Writing a value to the counter just sets the current value, and it starts counting
again from that value.

Eight counters are implemented in the Zip System for process accounting. This may change in
the future, as nothing as yet uses these counters.

3.3 Timer

The Zip Timer is also very simple: it simply counts down to zero. When it transitions from a one
to a zero it creates an interrupt.

Writing any non-zero value to the timer starts the timer. If the high order bit is set when writing
to the timer, the timer becomes an interval timer and reloads its last start time on any interrupt.
Hence, to mark seconds, one might set the timer to 100 million (the number of clocks per second),
and set the high bit. Ever after, the timer will interrupt the CPU once per second (assuming a
100 MHz clock). This reload capability also limits the maximum timer value to 231 − 1, rather than
232 − 1.

3.4 Watchdog Timer

The watchdog timer is no different from any of the other timers, save for one critical difference: the
interrupt line from the watchdog timer is tied to the reset line of the CPU. Hence writing a ‘1’ to

www.opencores.com Rev. 0.2 18

Gisselquist Technology, LLC Specification 2015/08/19

the watchdog timer will always reset the CPU. To stop the Watchdog timer, write a ’0’ to it. To
start it, write any other number to it—as with the other timers.

While the watchdog timer supports interval mode, it doesn’t make as much sense as it did with
the other timers.

3.5 Jiffies

This peripheral is motivated by the Linux use of ‘jiffies’ whereby a process can request to be put
to sleep until a certain number of ‘jiffies’ have elapsed. Using this interface, the CPU can read
the number of ‘jiffies’ from the peripheral (it only has the one location in address space), add the
sleep length to it, and write the result back to the peripheral. The zipjiffies peripheral will record
the value written to it only if it is nearer the current counter value than the last current waiting
interrupt time. If no other interrupts are waiting, and this time is in the future, it will be enabled.
(There is currently no way to disable a jiffie interrupt once set, other than to disable the interrupt
line in the interrupt controller.) The processor may then place this sleep request into a list among
other sleep requests. Once the timer expires, it would write the next Jiffy request to the peripheral
and wake up the process whose timer had expired.

Indeed, the Jiffies register is nothing more than a glorified counter with an interrupt. Unlike the
other counters, the Jiffies register cannot be set. Writes to the jiffies register create an interrupt
time. When the Jiffies register later equals the value written to it, an interrupt will be asserted and
the register then continues counting as though no interrupt had taken place.

The purpose of this register is to support alarm times within a CPU. To set an alarm for a
particular process N clocks in advance, read the current Jiffies value, and N , and write it back to
the Jiffies register. The O/S must also keep track of values written to the Jiffies register. Thus,
when an ‘alarm’ trips, it should be remoed from the list of alarms, the list should be sorted, and the
next alarm in terms of Jiffies should be written to the register.

3.6 Manual Cache

The manual cache is an experimental setting that may not remain with the Zip CPU for very long.
It is designed to facilitate running from FLASH or ROM memory, although the pipe cache really
makes this need obsolete. The manual cache works by copying data from a wishbone address (range)
into the cache register, and then by making that memory available as memory to the Zip System.
It is a manual cache because the processor must first specify what memory to copy, and then once
copied the processor can only access the cache memory by the cache memory location. There is no
transparency. It is perhaps best described as a combination DMA controller and local memory.

Worse, this cache is likely going to be removed from the ZipSystem. Having used the ZipSystem
now for some time, I have yet to find a need or use for the manual cache. I will likely replace this
peripheral with a proper DMA controller.

www.opencores.com Rev. 0.2 19

Gisselquist Technology, LLC Specification 2015/08/19

4.

Operation

www.opencores.com Rev. 0.2 20

Gisselquist Technology, LLC Specification 2015/08/19

5.

Registers

The ZipSystem registers fall into two categories, ZipSystem internal registers accessed via the
ZipCPU shown in Tbl. 5.1, and the two debug registers showin in Tbl. 5.2.

Name Address Width Access Description

PIC 0xc000000032 R/W Primary Interrupt Controller
WDT 0xc000000132 R/W Watchdog Timer
CCHE 0xc000000232 R/W Manual Cache Controller
CTRIC 0xc000000332 R/W Secondary Interrupt Controller
TMRA 0xc000000432 R/W Timer A
TMRB 0xc000000532 R/W Timer B
TMRC 0xc000000632 R/W Timer C
JIFF 0xc000000732 R/W Jiffies
MTASK 0xc000000832 R/W Master Task Clock Counter
MMSTL 0xc000000832 R/W Master Stall Counter
MPSTL 0xc000000832 R/W Master Pre–Fetch Stall Counter
MICNT 0xc000000832 R/W Master Instruction Counter
UTASK 0xc000000832 R/W User Task Clock Counter
UMSTL 0xc000000832 R/W User Stall Counter
UPSTL 0xc000000832 R/W User Pre–Fetch Stall Counter
UICNT 0xc000000832 R/W User Instruction Counter
Cache 0xc0100000 Base address of the Cache memory

Table 5.1: Zip System Internal/Peripheral Registers

Name Address Width Access Description

ZIPCTRL 0 32 R/W Debug Control Register
ZIPDATA 1 32 R/W Debug Data Register

Table 5.2: Zip System Debug Registers

www.opencores.com Rev. 0.2 21

Gisselquist Technology, LLC Specification 2015/08/19

6.

Wishbone Datasheet

The Zip System supports two wishbone accesses, a slave debug port and a master port for the system
itself. These are shown in Tbl. 6.1 and Tbl. 6.2 respectively. I do not recommend that you connect

Description Specification

Revision level of wishbone WB B4 spec
Type of interface Slave, Read/Write, single words only
Address Width 1–bit
Port size 32–bit
Port granularity 32–bit
Maximum Operand Size 32–bit
Data transfer ordering (Irrelevant)
Clock constraints Works at 100 MHz on a Basys–3 board

Signal Names

Signal Name Wishbone Equivalent
i clk CLK I

i dbg cyc CYC I

i dbg stb STB I

i dbg we WE I

i dbg addr ADR I

i dbg data DAT I

o dbg ack ACK O

o dbg stall STALL O

o dbg data DAT O

Table 6.1: Wishbone Datasheet for the Debug Interface

these together through the interconnect. Rather, the debug port of the CPU should be accessible
regardless of the state of the master bus.

You may wish to notice that neither the ERR nor the RETRY wires have been implemented. What
this means is that the CPU is currently unable to detect a bus error condition, and so may stall
indefinitely (hang) should it choose to access a value not on the bus, or a peripheral that is not yet
properly configured.

www.opencores.com Rev. 0.2 22

Gisselquist Technology, LLC Specification 2015/08/19

Description Specification

Revision level of wishbone WB B4 spec
Type of interface Master, Read/Write, single cycle or

pipelined
Address Width 32–bit bits
Port size 32–bit
Port granularity 32–bit
Maximum Operand Size 32–bit
Data transfer ordering (Irrelevant)
Clock constraints Works at 100 MHz on a Basys–3 board

Signal Names

Signal Name Wishbone Equivalent
i clk CLK O

o wb cyc CYC O

o wb stb STB O

o wb we WE O

o wb addr ADR O

o wb data DAT O

i wb ack ACK I

i wb stall STALL I

i wb data DAT I

Table 6.2: Wishbone Datasheet for the CPU as Master

www.opencores.com Rev. 0.2 23

Gisselquist Technology, LLC Specification 2015/08/19

7.

Clocks

This core is based upon the Basys–3 design. The Basys–3 development board contains one external
100 MHz clock, which is sufficient to run the ZIP CPU core. I hesitate to suggest that the core can

Name Source Rates (MHz) Description
Max Min

i clk External 100 MHz 100 MHz System clock.

Table 7.1: List of Clocks

run faster than 100 MHz, since I have had struggled with various timing violations to keep it at
100 MHz. So, for now, I will only state that it can run at 100 MHz.

www.opencores.com Rev. 0.2 24

Gisselquist Technology, LLC Specification 2015/08/19

8.

I/O Ports

www.opencores.com Rev. 0.2 25

