
Gisselquist
Technology, LLC

ZIP CPU

SPECIFICATION

Dan Gisselquist, Ph.D.
dgisselq (at) opencores.org

August 22, 2015

Gisselquist Technology, LLC Specification 2015/08/22

Copyright (C) 2015, Gisselquist Technology, LLC
This project is free software (firmware): you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTIBILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see ¡http://www.gnu.org/licenses/¿ for a copy.

www.opencores.com Rev. 0.3 ii

Gisselquist Technology, LLC Specification 2015/08/22

Revision History
Rev. Date Author Description

0.3 8/22/2015 Gisselquist First completed draft
0.2 8/19/2015 Gisselquist Still Draft, more complete
0.1 8/17/2015 Gisselquist Incomplete First Draft

www.opencores.com Rev. 0.3 iii

Gisselquist Technology, LLC Specification 2015/08/22

Contents

Page

1 Introduction . 1

2 CPU Architecture . 5
2.1 Simplified Bus . 5
2.2 Register Set . 5
2.3 Conditional Instructions . 6
2.4 Operand B . 8
2.5 Address Modes . 8
2.6 Move Operands . 8
2.7 Multiply Operations . 9
2.8 Floating Point . 9
2.9 Native Instructions . 9
2.10 Derived Instructions . 11
2.11 Pipeline Stages . 11
2.12 Pipeline Stalls . 11

3 Peripherals . 17
3.1 Interrupt Controller . 17
3.2 Counter . 18
3.3 Timer . 18
3.4 Watchdog Timer . 18
3.5 Jiffies . 19
3.6 Manual Cache . 19

4 Operation . 20

5 Registers . 21
5.1 Peripheral Registers . 22
5.2 Debug Port Registers . 24

6 Wishbone Datasheets . 27

7 Clocks . 29

8 I/O Ports . 30

www.opencores.com Rev. 0.3 iv

Gisselquist Technology, LLC Specification 2015/08/22

Figures

Figure Page

1.1. Zip CPU internal pipeline architecture . 2

2.1. Zip CPU Register File . 6

3.1. Zip System Peripherals . 18

www.opencores.com Rev. 0.3 v

Gisselquist Technology, LLC Specification 2015/08/22

Tables

Table Page

2.1. Condition Code / Status Register Bits . 7
2.2. Conditions for conditional operand execution . 7
2.3. Bit allocation for Operand B . 8
2.4. Zip CPU Instruction Set . 10
2.5. Derived Instructions . 12
2.6. Derived Instructions, continued . 13
2.7. Derived Instructions, continued . 14

5.1. Zip System Internal/Peripheral Registers . 21
5.2. Zip System Debug Registers . 21
5.3. Interrupt Controller Register Bits . 22
5.4. Timer Register Bits . 23
5.5. Jiffies Register Bits . 23
5.6. Counter Register Bits . 23
5.7. Debug Control Register Bits . 24
5.8. Debug Register Addresses . 25

6.1. Wishbone Datasheet for the Debug Interface . 27
6.2. Wishbone Datasheet for the CPU as Master . 28

7.1. List of Clocks . 29

8.1. CPU Master Wishbone I/O Ports . 30
8.2. CPU Debug Wishbone I/O Ports . 31
8.3. I/O Ports . 31

www.opencores.com Rev. 0.3 vi

Gisselquist Technology, LLC Specification 2015/08/22

Preface

Many people have asked me why I am building the Zip CPU. ARM processors are good and effective.
Xilinx makes and markets Microblaze, Altera Nios, and both have better toolsets than the Zip CPU
will ever have. OpenRISC is also available, RISC–V may be replacing it. Why build a new processor?

The easiest, most obvious answer is the simple one: Because I can.
There’s more to it, though. There’s a lot that I would like to do with a processor, and I want to

be able to do it in a vendor independent fashion. I would like to be able to generate Verilog code
that can run equivalently on both Xilinx and Altera chips, and that can be easily ported from one
manufacturer’s chipsets to another. Even more, before purchasing a chip or a board, I would like
to know that my soft core works. I would like to build a test bench to test components with, and
Verilator is my chosen test bench. This forces me to use all Verilog, and it prevents me from using
any proprietary cores. For this reason, Microblaze and Nios are out of the question.

Why not OpenRISC? That’s a hard question. The OpenRISC team has done some wonderful
work on an amazing processor, and I’ll have to admit that I am envious of what they’ve accomplished.
I would like to port binutils to the Zip CPU, as I would like to port GCC and GDB. They are way
ahead of me. The OpenRISC processor, however, is complex and hefty at about 4,500 LUTs. It
has a lot of features of modern CPUs within it that ... well, let’s just say it’s not the little guy on
the block. The Zip CPU is lighter weight, costing only about 2,300 LUTs with no peripherals, and
3,200 LUTs with some very basic peripherals.

My final reason is that I’m building the Zip CPU as a learning experience. The Zip CPU has
allowed me to learn a lot about how CPUs work on a very micro level. For the first time, I am
beginning to understand many of the Computer Architecture lessons from years ago.

To summarize: Because I can, because it is open source, because it is light weight, and as an
exercise in learning.

Dan Gisselquist, Ph.D.

www.opencores.com Rev. 0.3 vii

Gisselquist Technology, LLC Specification 2015/08/22

1.

Introduction

The original goal of the ZIP CPU was to be a very simple CPU. You might think of it as a poor man’s
alternative to the OpenRISC architecture. For this reason, all instructions have been designed to be
as simple as possible, and are all designed to be executed in one instruction cycle per instruction,
barring pipeline stalls. Indeed, even the bus has been simplified to a constant 32-bit width, with
no option for more or less. This has resulted in the choice to drop push and pop instructions,
pre-increment and post-decrement addressing modes, and more.

For those who like buzz words, the Zip CPU is:

• A 32-bit CPU: All registers are 32-bits, addresses are 32-bits, instructions are 32-bits wide,
etc.

• A RISC CPU. There is no microcode for executing instructions. All instructions are designed
to be completed in one clock cycle.

• A Load/Store architecture. (Only load and store instructions can access memory.)

• Wishbone compliant. All peripherals are accessed just like memory across this bus.

• A Von-Neumann architecture. (The instructions and data share a common bus.)

• A pipelined architecture, having stages forPrefetch,Decode,Read-Operand, theALU/Memory
unit, and Write-back. See Fig. 1.1 for a diagram of this structure.

• Completely open source, licensed under the GPL.1

Now, however, that I’ve worked on the Zip CPU for a while, it is not nearly as simple as I
originally hoped. Worse, I’ve had to adjust to create capabilities that I was never expecting to need.
These include:

• External Debug: Once placed upon an FPGA, some external means is still necessary to
debug this CPU. That means that there needs to be an external register that can control
the CPU: reset it, halt it, step it, and tell whether it is running or not. My chosen interface
includes a second register similar to this control register. This second register allows the
external controller or debugger to examine registers internal to the CPU.

• Internal Debug: Being able to run a debugger from within a user process requires an ability
to step a user process from within a debugger. It also requires a break instruction that can
be substituted for any other instruction, and substituted back. The break is actually difficult:

1Should you need a copy of the Zip CPU licensed under other terms, please contact me.

www.opencores.com Rev. 0.3 1

Gisselquist Technology, LLC Specification 2015/08/22

Figure 1.1: Zip CPU internal pipeline architecture

the break instruction cannot be allowed to execute. That way, upon a break, the debugger
should be able to jump back into the user process to step the instruction that would’ve been
at the break point initially, and then to replace the break after passing it.

Incidentally, this break messes with the prefetch cache and the pipeline: if you change an
instruction partially through the pipeline, the whole pipeline needs to be cleansed. Likewise
if you change an instruction in memory, you need to make sure the cache is reloaded with the
new instruction.

• Prefetch Cache: My original implementation had a very simple prefetch stage. Any time
the PC changed the prefetch would go and fetch the new instruction. While this was perhaps
this simplest approach, it cost roughly five clocks for every instruction. This was deemed
unacceptable, as I wanted a CPU that could execute instructions in one cycle. I therefore
have a prefetch cache that issues pipelined wishbone accesses to memory and then pushes
instructions at the CPU. Sadly, this accounts for about 20% of the logic in the entire CPU, or
15% of the logic in the entire system.

• Operating System: In order to support an operating system, interrupts and so forth, the
CPU needs to support supervisor and user modes, as well as a means of switching between
them. For example, the user needs a means of executing a system call. This is the purpose of
the ‘trap’ instruction. This instruction needs to place the CPU into supervisor mode (here
equivalent to disabling interrupts), as well as handing it a parameter such as identifying which
O/S function was called.

My initial approach to building a trap instruction was to create an external peripheral which,
when written to, would generate an interrupt and could return the last value written to it. In
practice, this approach didn’t work at all: the CPU executed two instructions while waiting
for the trap interrupt to take place. Since then, I’ve decided to keep the rest of the CC register

www.opencores.com Rev. 0.3 2

Gisselquist Technology, LLC Specification 2015/08/22

for that purpose so that a write to the CC register, with the GIE bit cleared, could be used to
execute a trap. This has other problems, though, primarily in the limitation of the uses of the
CC register. In particular, the CC register is the best place to put CPU state information and
to “announce” special CPU features (floating point, etc). So the trap instruction still switches
to interrupt mode, but the CC register is not nearly as useful for telling the supervisor mode
processor what trap is being executed.

Modern timesharing systems also depend upon a Timer interrupt to handle task swapping.
For the Zip CPU, this interrupt is handled external to the CPU as part of the CPU System,
found in zipsystem.v. The timer module itself is found in ziptimer.v.

• Pipeline Stalls: My original plan was to not support pipeline stalls at all, but rather to require
the compiler to properly schedule all instructions so that stalls would never be necessary. After
trying to build such an architecture, I gave up, having learned some things:

For example, in order to facilitate interrupt handling and debug stepping, the CPU needs
to know what instructions have finished, and which have not. In other words, it needs to
know where it can restart the pipeline from. Once restarted, it must act as though it had
never stopped. This killed my idea of delayed branching, since what would be the appropriate
program counter to restart at? The one the CPU was going to branch to, or the ones in the
delay slots? This also makes the idea of compressed instruction codes difficult, since, again,
where do you restart on interrupt?

So I switched to a model of discrete execution: Once an instruction enters into either the ALU
or memory unit, the instruction is guaranteed to complete. If the logic recognizes a branch or
a condition that would render the instruction entering into this stage possibly inappropriate
(i.e. a conditional branch preceding a store instruction for example), then the pipeline stalls
for one cycle until the conditional branch completes. Then, if it generates a new PC address,
the stages preceding are all wiped clean.

The discrete execution model allows such things as sleeping: if the CPU is put to “sleep,”
the ALU and memory stages stall and back up everything before them. Likewise, anything
that has entered the ALU or memory stage when the CPU is placed to sleep continues to
completion. To handle this logic, each pipeline stage has three control signals: a valid signal,
a stall signal, and a clock enable signal. In general, a stage stalls if it’s contents are valid and
the next step is stalled. This allows the pipeline to fill any time a later stage stalls.

This approach is also different from other pipeline approaches. Instead of keeping the entire
pipeline filled, each stage is treated independently. Therefore, individual stages may move
forward as long as the subsequent stage is available, regardless of whether the stage behind it
is filled.

• Verilog Modules: When examining how other processors worked here on open cores, many
of them had one separate module per pipeline stage. While this appeared to me to be a
fascinating and commendable idea, my own implementation didn’t work out quite so nicely.

As an example, the decode module produces a lot of control wires and registers. Creating a
module out of this, with only the simplest of logic within it, seemed to be more a lesson in
passing wires around, rather than encapsulating logic.

Another example was the register writeback section. I would love this section to be a module
in its own right, and many have made them such. However, other modules depend upon

www.opencores.com Rev. 0.3 3

Gisselquist Technology, LLC Specification 2015/08/22

writeback results other than just what’s placed in the register (i.e., the control wires). For
these reasons, I didn’t manage to fit this section into it’s own module.

The result is that the majority of the CPU code can be found in the zipcpu.v file.

With that introduction out of the way, let’s move on to the instruction set.

www.opencores.com Rev. 0.3 4

Gisselquist Technology, LLC Specification 2015/08/22

2.

CPU Architecture

The Zip CPU supports a set of two operand instructions, where the second operand (always a
register) is the result. The only exception is the store instruction, where the first operand (always
a register) is the source of the data to be stored.

2.1 Simplified Bus

The bus architecture of the Zip CPU is that of a simplified WISHBONE bus. It has been simplified
in this fashion: all operations are 32–bit operations. The bus is neither little endian nor bit endian.
For this reason, all words are 32–bits. All instructions are also 32–bits wide. Everything has been
built around the 32–bit word.

2.2 Register Set

The Zip CPU supports two sets of sixteen 32-bit registers, a supervisor and a user set as shown in
Fig. 2.1. The supervisor set is used in interrupt mode when interrupts are disabled, whereas the
user set is used otherwise. Of this register set, the Program Counter (PC) is register 15, whereas the
status register (SR) or condition code register (CC) is register 14. By convention, the stack pointer
will be register 13 and noted as (SP)–although there is nothing special about this register other than
this convention. The CPU can access both register sets via move instructions from the supervisor
state, whereas the user state can only access the user registers.

The status register is special, and bears further mention. The lower 10 bits of the status register
form a set of CPU state and condition codes. Writes to other bits of this register are preserved.

Of the condition codes, the bottom four bits are the current flags: Zero (Z), Carry (C), Negative
(N), and Overflow (V).

The next bit is a clock enable (0 to enable) or sleep bit (1 to put the CPU to sleep). Setting this
bit will cause the CPU to wait for an interrupt (if interrupts are enabled), or to completely halt (if
interrupts are disabled).

The sixth bit is a global interrupt enable bit (GIE). When this sixth bit is a ‘1’ interrupts will be
enabled, else disabled. When interrupts are disabled, the CPU will be in supervisor mode, otherwise
it is in user mode. Thus, to execute a context switch, one only need enable or disable interrupts.
(When an interrupt line goes high, interrupts will automatically be disabled, as the CPU goes and
deals with its context switch.) Special logic has been added to keep the user mode from setting the
sleep register and clearing the GIE register at the same time, with clearing the GIE register taking
precedence.

www.opencores.com Rev. 0.3 5

Gisselquist Technology, LLC Specification 2015/08/22

Figure 2.1: Zip CPU Register File

The seventh bit is a step bit. This bit can be set from supervisor mode only. After setting this bit,
should the supervisor mode process switch to user mode, it would then accomplish one instruction
in user mode before returning to supervisor mode. Then, upon return to supervisor mode, this bit
will be automatically cleared. This bit has no effect on the CPU while in supervisor mode.

This functionality was added to enable a userspace debugger functionality on a user process,
working through supervisor mode of course.

The eighth bit is a break enable bit. This controls whether a break instruction in user mode will
halt the processor for an external debugger (break enabled), or whether the break instruction will
simply send send the CPU into interrupt mode. Encountering a break in supervisor mode will halt
the CPU independent of the break enable bit. This bit can only be set within supervisor mode.

This functionality was added to enable an external debugger to set and manage breakpoints.
The ninth bit is reserved for a floating point enable bit. When set, the arithmetic for the next

instruction will be sent to a floating point unit. Such a unit may later be added as an extension
to the Zip CPU. If the CPU does not support floating point instructions, this bit will never be set.
The instruction set could also be simply extended to allow other data types in this fashion, such as
two by 16–bit vector operations or four by 8–bit vector operations.

The tenth bit is a trap bit. It is set whenever the user requests a soft interrupt, and cleared on
any return to userspace command. This allows the supervisor, in supervisor mode, to determine
whether it got to supervisor mode from a trap or from an external interrupt or both.

These status register bits are summarized in Tbl. 2.1.

2.3 Conditional Instructions

Most, although not quite all, instructions are conditionally executed. From the four condition code
flags, eight conditions are defined. These are shown in Tbl. 2.2. There is no condition code for less
than or equal, not C or not V. Sorry, I ran out of space in 3–bits. Using these conditions will take
an extra instruction and a pipeline stall. (Ex: (Stall); TST $4,CC; STO.NZ R0,(R1))

www.opencores.com Rev. 0.3 6

Gisselquist Technology, LLC Specification 2015/08/22

Bit Meaning
9 Soft trap, set on a trap from user mode, cleared when returning to user mode
8 (Reserved for) Floating point enable
7 Halt on break, to support an external debugger
6 Step, single step the CPU in user mode
5 GIE, or Global Interrupt Enable
4 Sleep
3 V, or overflow bit.
2 N, or negative bit.
1 C, or carry bit.
0 Z, or zero bit.

Table 2.1: Condition Code / Status Register Bits

Code Mneumonic Condition
3’h0 None Always execute the instruction
3’h1 .Z Only execute when ’Z’ is set
3’h2 .NE Only execute when ’Z’ is not set
3’h3 .GE Greater than or equal (’N’ not set, ’Z’ irrelevant)
3’h4 .GT Greater than (’N’ not set, ’Z’ not set)
3’h5 .LT Less than (’N’ set)
3’h6 .C Carry set
3’h7 .V Overflow set

Table 2.2: Conditions for conditional operand execution

www.opencores.com Rev. 0.3 7

Gisselquist Technology, LLC Specification 2015/08/22

Bit 20 19 . . . 16 15 . . . 0
1’b0 20–bit Signed Immediate value
1’b1 4-bit Register 16–bit Signed immediate offset

Table 2.3: Bit allocation for Operand B

2.4 Operand B

Many instruction forms have a 21-bit source “Operand B” associated with them. This Operand B
is either equal to a register plus a signed immediate offset, or an immediate offset by itself. This
value is encoded as shown in Tbl. 2.3.

Sixteen and twenty bit immediate values don’t make sense for all instructions. For example,
what is the point of a 20–bit immediate when executing a 16–bit multiply? Likewise, why have a
16–bit immediate when adding to a logical or arithmetic shift? In these cases, the extra bits are
reserved for future instruction possibilities.

2.5 Address Modes

The ZIP CPU supports two addressing modes: register plus immediate, and immediate address.
Addresses are therefore encoded in the same fashion as Operand B’s, shown above.

A lot of long hard thought was put into whether to allow pre/post increment and decrement
addressing modes. Finding no way to use these operators without taking two or more clocks per
instruction,1 these addressing modes have been removed from the realm of possibilities. This means
that the Zip CPU has no native way of executing push, pop, return, or jump to subroutine operations.
Each of these instructions can be emulated with a set of instructions from the existing set.

2.6 Move Operands

The previous set of operands would be perfect and complete, save only that the CPU needs access to
non–supervisory registers while in supervisory mode. Therefore, the MOV instruction is special and
offers access to these registers . . . when in supervisory mode. To keep the compiler simple, the extra
bits are ignored in non-supervisory mode (as though they didn’t exist), rather than being mapped
to new instructions or additional capabilities. The bits indicating which register set each register lies
within are the A-Usr and B-Usr bits. When set to a one, these refer to a user mode register. When
set to a zero, these refer to a register in the current mode, whether user or supervisor. Further,
because a load immediate instruction exists, there is no move capability between an immediate and
a register: all moves come from either a register or a register plus an offset.

This actually leads to a bit of a problem: since the MOV instruction encodes which register set
each register is coming from or moving to, how shall a compiler or assembler know how to compile a
MOV instruction without knowing the mode of the CPU at the time? For this reason, the compiler
will assume all MOV registers are supervisor registers, and display them as normal. Anything with

1The two clocks figure comes from the design of the register set, allowing only one write per clock. That write is

either from the memory unit or the ALU, but never both.

www.opencores.com Rev. 0.3 8

Gisselquist Technology, LLC Specification 2015/08/22

the user bit set will be treated as a user register. The CPU will quietly ignore the supervisor bits
while in user mode, and anything marked as a user register will always be valid. (Did I just say that
in the last paragraph?)

2.7 Multiply Operations

The Zip CPU supports two Multiply operations, a 16x16 bit signed multiply (MPYS) and the same
but unsigned (MPYU). In both cases, the operand is a register plus a 16-bit immediate, subject to
the rule that the register cannot be the PC or CC registers. The PC register field has been stolen
to create a multiply by immediate instruction. The CC register field is reserved.

2.8 Floating Point

The ZIP CPU does not support floating point operations. However, the instruction set reserves two
possibilities for future floating point operations.

The first floating point operation hole in the instruction set involves setting the floating point
bit in the CC register. The next instruction will simply interpret its operands as floating point
instructions. Not all instructions, however, have floating point equivalents. Further, the immediate
fields do not apply in floating point mode, and must be set to zero. Not all instructions make sense
as floating point operations. Therefore, only the CMP, SUB, ADD, and MPY instructions may be
issued as floating point instructions. Other instructions allow the examining of the floating point
bit in the CC register. In all cases, the floating point bit is cleared one instruction after it is set.

The other possibility for floating point operations involves exploiting the hole in the instruction
set that the NOOP and BREAK instructions reside within. These two instructions use 24–bits of
address space. A simple adjustment to this space could create instructions with 4–bit register ad-
dresses for each register, a 3–bit field for conditional execution, and a 2–bit field for which operation.
In this fashion, such a floating point capability would only fill 13–bits of the 24–bit field, still leaving
lots of room for expansion.

In both cases, the Zip CPU would support 32–bit single precision floats only.
The current architecture does not support a floating point not-implemented interrupt. Any soft

floating point emulation must be done deliberately.

2.9 Native Instructions

The instruction set for the Zip CPU is summarized in Tbl. 2.4.
As you can see, there’s lots of room for instruction set expansion. The NOOP and BREAK

instructions are the only instructions within one particular 24–bit hole. This spaces are reserved
for future enhancements. For example, floating point operations, consisting of a 3-bit floating point
operation, two 4-bit registers, no immediate offset, and a 3-bit condition would fit nicely into 14–bits
of this address space–making it so that the floating point bit in the CC register need not be used.

www.opencores.com Rev. 0.3 9

Gisselquist Technology, LLC Specification 2015/08/22

Op Code 31. . . 24 23. . . 16 15. . . 8 7. . . 0 Sets CC?
CMP(Sub) 4’h0 D. Reg Cond. Operand B Yes
TST(And) 4’h1 D. Reg Cond. Operand B Yes
MOV 4’h2 D. Reg Cond. A-Usr B-Reg B-Usr 15’bit signed offset
LODI 4’h3 R. Reg 24’bit Signed Immediate
NOOP 4’h4 4’he 24’h00
BREAK 4’h4 4’he 24’h01
Rsrd 4’h4 4’he 24’bits, but not 0 or 1.
LODIHI 4’h4 4’hf Cond. 1’b1 R. Reg 16-bit Immediate
LODILO 4’h4 4’hf Cond. 1’b0 R. Reg 16-bit Immediate
16-b MPYU 4’h4 R. Reg Cond. 1’b0 Reg 16-bit Offset Yes
16-b MPYU(I) 4’h4 R. Reg Cond. 1’b0 4’hf 16-bit Offset Yes
16-b MPYS 4’h4 R. Reg Cond. 1’b1 Reg 16-bit Offset Yes
16-b MPYS(I) 4’h4 R. Reg Cond. 1’b1 4’hf 16-bit Offset Yes
ROL 4’h5 R. Reg Cond. Operand B, truncated to low order 5 bits
LOD 4’h6 R. Reg Cond. Operand B address
STO 4’h7 D. Reg Cond. Operand B address
SUB 4’h8 R. Reg Cond. Operand B Yes
AND 4’h9 R. Reg Cond. Operand B Yes
ADD 4’ha R. Reg Cond. Operand B Yes
OR 4’hb R. Reg Cond. Operand B Yes
XOR 4’hc R. Reg Cond. Operand B Yes
LSL/ASL 4’hd R. Reg Cond. Operand B, imm. truncated to 6 bits Yes
ASR 4’he R. Reg Cond. Operand B, imm. truncated to 6 bits Yes
LSR 4’hf R. Reg Cond. Operand B, imm. truncated to 6 bits Yes

Table 2.4: Zip CPU Instruction Set

www.opencores.com Rev. 0.3 10

Gisselquist Technology, LLC Specification 2015/08/22

2.10 Derived Instructions

The ZIP CPU supports many other common instructions, but not all of them are single cycle
instructions. The derived instruction tables, Tbls. 2.5, 2.6, and 2.7, help to capture some of how
these other instructions may be implemented on the ZIP CPU. Many of these instructions will have
assembly equivalents, such as the branch instructions, to facilitate working with the CPU.

2.11 Pipeline Stages

As mentioned in the introduction, and highlighted in Fig. 1.1, the Zip CPU supports a five stage
pipeline.

1. Prefetch: Read instruction from memory (cache if possible). This stage is actually pipelined
itself, and so it will stall if the PC ever changes. Stalls are also created here if the instruction
isn’t in the prefetch cache.

2. Decode: Decode instruction into op code, register(s) to read, and immediate offset. This
stage also determines whether the flags will be set or whether the result will be written back.

3. Read Operands: Read registers and apply any immediate values to them. There is no
means of detecting or flagging arithmetic overflow or carry when adding the immediate to the
operand. This stage will stall if any source operand is pending.

4. Split into two tracks: An ALU which will accomplish a simple instruction, and the MemOps
stage which accomplishes memory read/write.

• Loads stall instructions that access the register until it is written to the register set.

• Condition codes are available upon completion

• Issuing an instruction to the memory while the memory is busy will stall the entire
pipeline. If the bus deadlocks, only a reset will release the CPU. (Watchdog timer,
anyone?)

• The Zip CPU currently has no means of reading and acting on any error conditions on
the bus.

5. Write-Back: Conditionally write back the result to the register set, applying the condition.
This routine is bi-re-entrant: either the memory or the simple instruction may request a register
write.

The Zip CPU does not support out of order execution. Therefore, if the memory unit stalls, every
other instruction stalls. Memory stores, however, can take place concurrently with ALU operations,
although memory reads cannot.

2.12 Pipeline Stalls

The processing pipeline can and will stall for a variety of reasons. Some of these are obvious, some
less so. These reasons are listed below:

www.opencores.com Rev. 0.3 11

Gisselquist Technology, LLC Specification 2015/08/22

Mapped Actual Notes
ADD Ra,Rx
ADDC Rb,Ry

Add Ra,Rx
ADD.C $1,Ry
Add Rb,Ry

Add with carry

BRA.Cond +/-$Addr MOV.cond $Addr+PC,PC Branch or jump on condition. Works for 15–bit
signed address offsets.

BRA.Cond +/-$Addr LDI $Addr,Rx
ADD.cond Rx,PC

Branch/jump on condition. Works for 23 bit ad-
dress offsets, but costs a register, an extra instruc-
tion, and sets the flags.

BNC PC+$Addr Test $Carry,CC
MOV.Z PC+$Addr,PC

Example of a branch on an unsupported condition,
in this case a branch on not carry

BUSY MOV $-1(PC),PC Execute an infinite loop
CLRF.NZ Rx XOR.NZ Rx,Rx Clear Rx, and flags, if the Z-bit is not set
CLR Rx LDI $0,Rx Clears Rx, leaves flags untouched. This instruc-

tion cannot be conditional.
EXCH.W Rx ROL $16,Rx Exchanges the top and bottom 16’bit words of Rx
HALT Or $SLEEP,CC Executed while in interrupt mode. In user mode

this is simply a wait until interrupt instruction.
INT LDI $0,CC Since we’re using the CC register as a trap vector

as well, this executes TRAP #0.
IRET OR $GIE,CC Also an RTU instruction (Return to Userspace)
JMP R6+$Addr MOV $Addr(R6),PC
JSR PC+$Addr SUB $1,SP

MOV $3+PC,R0
STO R0,1(SP)
MOV $Addr+PC,PC
ADD $1,SP

Jump to Subroutine. Note the required cleanup
instruction after returning.

JSR PC+$Addr MOV $3+PC,R12
MOV $addr+PC,PC

This is the high speed version of a subroutine call,
necessitating a register to hold the last PC ad-
dress. In its favor, this method doesn’t suffer the
mandatory memory access of the other approach.

LDI.l $val,Rx LDIHI
($val>>16)&0x0ffff,
Rx
LDILO ($val & 0x0ffff)

Sadly, there’s not enough instruction space to
load a complete immediate value into any regis-
ter. Therefore, fully loading any register takes
two cycles. The LDIHI (load immediate high) and
LDILO (load immediate low) instructions have
been created to facilitate this.

Table 2.5: Derived Instructions

www.opencores.com Rev. 0.3 12

Gisselquist Technology, LLC Specification 2015/08/22

Mapped Actual Notes
LOD.b $addr,Rx LDI $addr,Ra

LDI $addr,Rb
LSR $2,Ra
AND $3,Rb
LOD (Ra),Rx
LSL $3,Rb
SUB $32,Rb
ROL Rb,Rx
AND $0ffh,Rx

This CPU is designed for 32’bit word length in-
structions. Byte addressing is not supported by
the CPU or the bus, so it therefore takes more
work to do.
Note also that in this example, $Addr is a byte-
wise address, where all other addresses in this doc-
ument are 32-bit wordlength addresses. For this
reason, we needed to drop the bottom two bits.
This also limits the address space of character ac-
cesses using this method from 16 MB down to
4MB.

LSL $1,Rx
LSLC $1,Ry

LSL $1,Ry
LSL $1,Rx
OR.C $1,Ry

Logical shift left with carry. Note that the instruc-
tion order is now backwards, to keep the condi-
tions valid. That is, LSL sets the carry flag, so if
we did this the other way with Rx before Ry, then
the condition flag wouldn’t have been right for an
OR correction at the end.

LSR $1,Rx
LSRC $1,Ry

CLR Rz
LSR $1,Ry
LDIHI.C $8000h,Rz
LSR $1,Rx
OR Rz,Rx

Logical shift right with carry

NEG Rx XOR $-1,Rx
ADD $1,Rx

NOOP NOOP While there are many operations that do nothing,
such as MOV Rx,Rx, or OR $0,Rx, these opera-
tions have consequences in that they might stall
the bus if Rx isn’t ready yet. For this reason, we
have a dedicated NOOP instruction.

NOT Rx XOR $-1,Rx
POP Rx LOD $-1(SP),Rx

ADD $1,SP
Note that for interrupt purposes, one can never
depend upon the value at (SP). Hence you read
from it, then increment it, lest having incremented
it first something then comes along and writes to
that value before you can read the result.

PUSH Rx SUB $1,SP
STO Rx,$1(SP)

RESET STO $1,$watch-
dog(R12)
NOOP
NOOP

This depends upon the peripheral base address be-
ing in R12.
Another opportunity might be to jump to the reset
address from within supervisor mode.

RET LOD $-1(SP),PC Note that this depends upon the calling context
to clean up the stack, as outlined for the JSR in-
struction.

Table 2.6: Derived Instructions, continued

www.opencores.com Rev. 0.3 13

Gisselquist Technology, LLC Specification 2015/08/22

RET MOV R12,PC This is the high(er) speed version, that doesn’t
touch the stack. As such, it doesn’t suffer a stall
on memory read/write to the stack.

STEP Rr,Rt LSR $1,Rr
XOR.C Rt,Rr

Step a Galois implementation of a Linear Feedback
Shift Register, Rr, using taps Rt

STO.b Rx,$addr LDI $addr,Ra
LDI $addr,Rb
LSR $2,Ra
AND $3,Rb
SUB $32,Rb
LOD (Ra),Ry
AND $0ffh,Rx
AND $-0ffh,Ry
ROL Rb,Rx
OR Rx,Ry
STO Ry,(Ra)

This CPU and it’s bus are not optimized for byte-
wise operations.
Note that in this example, $addr is a byte-wise
address, whereas in all of our other examples it is
a 32-bit word address. This also limits the address
space of character accesses from 16 MB down to
4MB.F Further, this instruction implies a byte or-
dering, such as big or little endian.

SWAP Rx,Ry XOR Ry,Rx
XOR Rx,Ry
XOR Ry,Rx

While no extra registers are needed, this example
does take 3-clocks.

TRAP #X LDILO $x,CC This approach uses the unused bits of the CC reg-
ister as a TRAP address. The user will need to
make certain that the SLEEP and GIE bits are
not set in $x. LDI would also work, however using
LDILO permits the use of conditional traps. (i.e.,
trap if the zero flag is set.) Should you wish to
trap off of a register value, you could equivalently
load $x into the register and then MOV it into the
CC register.

TST Rx TST $-1,Rx Set the condition codes based upon Rx. Could also
do a CMP $0,Rx, ADD $0,Rx, SUB $0,Rx, etc,
AND $-1,Rx, etc. The TST and CMP approaches
won’t stall future pipeline stages looking for the
value of Rx.

WAIT Or $SLEEP,CC Wait ’til interrupt. In an interrupts disabled con-
text, this becomes a HALT instruction.

Table 2.7: Derived Instructions, continued

www.opencores.com Rev. 0.3 14

Gisselquist Technology, LLC Specification 2015/08/22

• When the prefetch cache is exhausted

This should be obvious. If the prefetch cache doesn’t have the instruction in memory, the
entire pipeline must stall until enough of the prefetch cache is loaded to support the next
instruction.

• While waiting for the pipeline to load following any taken branch, jump, return from interrupt
or switch to interrupt context (6 clocks)

If the PC suddenly changes, the pipeline is subsequently cleared and needs to be reloaded.
Given that there are five stages to the pipeline, that accounts for five of the six delay clocks.
The last clock is lost in the prefetch stage which needs at least one clock with a valid PC before
it can produce a new output. Hence, six clocks will always be lost anytime the pipeline needs
to be cleared.

• When reading from a prior register while also adding an immediate offset

1. OPCODE ?,RA

2. (stall)

3. OPCODE I+RA,RB

Since the addition of the immediate register within OpB decoding gets applied during the read
operand stage so that it can be nicely settled before the ALU, any instruction that will write
back an operand must be separated from the opcode that will read and apply an immediate
offset by one instruction. The good news is that this stall can easily be mitigated by proper
scheduling.

• When writing to the CC or PC Register

1. OPCODE RA,PC Ex: a branch opcode

2. (stall, even if jump not taken)

3. OPCODE RA,RB

Since branches take place in the writeback stage, the Zip CPU will stall the pipeline for one
clock anytime there may be a possible jump. This prevents an instruction from executing a
memory access after the jump but before the jump is recognized.

This stall cannot be mitigated through scheduling.

• When reading from the CC register after setting the flags

1. ALUOP RA,RB

2. (stall

3. TST sys.ccv,CC

4. BZ somewhere

www.opencores.com Rev. 0.3 15

Gisselquist Technology, LLC Specification 2015/08/22

The reason for this stall is simply performance. Many of the flags are determined via combi-
natorial logic after the writeback instruction is determined. Trying to then place these into
the input for one of the operands created a time delay loop that would no longer execute in a
single 100 MHz clock cycle. (The time delay of the multiply within the ALU wasn’t helping
either . . .).

This stall may be eliminated via proper scheduling, by placing an instruction that does not
set flags in between the ALU operation and the instruction that references the CC register.
For example, MOV $addr+PC,uPC followed by an RTU (OR $GIE,CC) instruction will not incur
this stall, whereas an OR $BREAKEN,CC followed by an OR $STEP,CC will incur the stall.

• When waiting for a memory read operation to complete

1. LOD address,RA

2. (multiple stalls, bus dependent, 7 clocks best)

3. OPCODE I+RA,RB

Remember, the ZIP CPU does not support out of order execution. Therefore, anytime the
memory unit becomes busy both the memory unit and the ALU must stall until the memory
unit is cleared. This is especially true of a load instruction, which must still write its operand
back to the register file. Store instructions are different, since they can be busy with no impact
on later ALU write back operations. Hence, only loads stall the pipeline.

This also assumes that the memory being accessed is a single cycle memory. Slower memories,
such as the Quad SPI flash, will take longer–perhaps even as long as forty clocks. During this
time the CPU and the external bus will be busy, and unable to do anything else.

• Memory operation followed by a memory operation

1. STO address,RA

2. (multiple stalls, bus dependent, 7 clocks best)

3. LOD address,RB

4. (multiple stalls, bus dependent, 7 clocks best)

In this case, the LOD instruction cannot start until the STALL is finished. With proper
scheduling, it is possible to do something in the ALU while the STO is busy, but otherwise
this pipeline will stall waiting for it to complete.

Note that even though the Wishbone bus can support pipelined accesses at one access per
clock, only the prefetch stage can take advantage of this. Load and Store instructions are
stuck at one wishbone cycle per instruction.

www.opencores.com Rev. 0.3 16

Gisselquist Technology, LLC Specification 2015/08/22

3.

Peripherals

While the previous chapter describes a CPU in isolation, the Zip System includes a minimum set of
peripherals as well. These peripherals are shown in Fig. 3.1 and described here. They are designed
to make the Zip CPU more useful in an Embedded Operating System environment.

3.1 Interrupt Controller

Perhaps the most important peripheral within the Zip System is the interrupt controller. While
the Zip CPU itself can only handle one interrupt, and has only the one interrupt state: disabled or
enabled, the interrupt controller can make things more interesting.

The Zip System interrupt controller module supports up to 15 interrupts, all controlled from
one register. Bit 31 of the interrupt controller controls overall whether interrupts are enabled (1’b1)
or disabled (1’b0). Bits 16–30 control whether individual interrupts are enabled (1’b0) or disabled
(1’b0). Bit 15 is an indicator showing whether or not any interrupt is active, and bits 0–15 indicate
whether or not an individual interrupt is active.

The interrupt controller has been designed so that bits can be controlled individually without
having any knowledge of the rest of the controller setting. To enable an interrupt, write to the
register with the high order global enable bit set and the respective interrupt enable bit set. No
other bits will be affected. To disable an interrupt, write to the register with the high order global
enable bit cleared and the respective interrupt enable bit set. To clear an interrupt, write a ‘1’ to
that interrupts status pin. Zero’s written to the register have no affect, save that a zero written to
the master enable will disable all interrupts.

As an example, suppose you wished to enable interrupt #4. You would then write to the register
a 0x80100010 to enable interrupt #4 and to clear any past active state. When you later wish to
disable this interrupt, you would write a 0x00100010 to the register. As before, this both disables
the interrupt and clears the active indicator. This also has the side effect of disabling all interrupts,
so a second write of 0x80000000 may be necessary to re-enable any other interrupts.

The Zip System currently hosts two interrupt controllers, a primary and a secondary. The
primary interrupt controller has one interrupt line which may come from an external interrupt
controller, and one interrupt line from the secondary controller. Other primary interrupts include
the system timers, the jiffies interrupt, and the manual cache interrupt. The secondary interrupt
controller maintains an interrupt state for all of the processor accounting counters.

www.opencores.com Rev. 0.3 17

Gisselquist Technology, LLC Specification 2015/08/22

Figure 3.1: Zip System Peripherals

3.2 Counter

The Zip Counter is a very simple counter: it just counts. It cannot be halted. When it rolls over, it
issues an interrupt. Writing a value to the counter just sets the current value, and it starts counting
again from that value.

Eight counters are implemented in the Zip System for process accounting. This may change in
the future, as nothing as yet uses these counters.

3.3 Timer

The Zip Timer is also very simple: it simply counts down to zero. When it transitions from a one
to a zero it creates an interrupt.

Writing any non-zero value to the timer starts the timer. If the high order bit is set when writing
to the timer, the timer becomes an interval timer and reloads its last start time on any interrupt.
Hence, to mark seconds, one might set the timer to 100 million (the number of clocks per second),
and set the high bit. Ever after, the timer will interrupt the CPU once per second (assuming a
100 MHz clock). This reload capability also limits the maximum timer value to 231 − 1, rather than
232 − 1.

3.4 Watchdog Timer

The watchdog timer is no different from any of the other timers, save for one critical difference: the
interrupt line from the watchdog timer is tied to the reset line of the CPU. Hence writing a ‘1’ to

www.opencores.com Rev. 0.3 18

Gisselquist Technology, LLC Specification 2015/08/22

the watchdog timer will always reset the CPU. To stop the Watchdog timer, write a ‘0’ to it. To
start it, write any other number to it—as with the other timers.

While the watchdog timer supports interval mode, it doesn’t make as much sense as it did with
the other timers.

3.5 Jiffies

This peripheral is motivated by the Linux use of ‘jiffies’ whereby a process can request to be put
to sleep until a certain number of ‘jiffies’ have elapsed. Using this interface, the CPU can read
the number of ‘jiffies’ from the peripheral (it only has the one location in address space), add the
sleep length to it, and write the result back to the peripheral. The zipjiffies peripheral will record
the value written to it only if it is nearer the current counter value than the last current waiting
interrupt time. If no other interrupts are waiting, and this time is in the future, it will be enabled.
(There is currently no way to disable a jiffie interrupt once set, other than to disable the interrupt
line in the interrupt controller.) The processor may then place this sleep request into a list among
other sleep requests. Once the timer expires, it would write the next Jiffy request to the peripheral
and wake up the process whose timer had expired.

Indeed, the Jiffies register is nothing more than a glorified counter with an interrupt. Unlike the
other counters, the Jiffies register cannot be set. Writes to the jiffies register create an interrupt
time. When the Jiffies register later equals the value written to it, an interrupt will be asserted and
the register then continues counting as though no interrupt had taken place.

The purpose of this register is to support alarm times within a CPU. To set an alarm for a
particular process N clocks in advance, read the current Jiffies value, and N , and write it back to
the Jiffies register. The O/S must also keep track of values written to the Jiffies register. Thus,
when an ‘alarm’ trips, it should be removed from the list of alarms, the list should be sorted, and
the next alarm in terms of Jiffies should be written to the register.

3.6 Manual Cache

The manual cache is an experimental setting that may not remain with the Zip CPU for very long.
It is designed to facilitate running from FLASH or ROM memory, although the pipeline prefetch
cache really makes this need obsolete. The manual cache works by copying data from a wishbone
address (range) into the cache register, and then by making that memory available as memory to
the Zip System. It is a manual cache because the processor must first specify what memory to copy,
and then once copied the processor can only access the cache memory by the cache memory location.
There is no transparency. It is perhaps best described as a combination DMA controller and local
memory.

Worse, this cache is likely going to be removed from the ZipSystem. Having used the ZipSystem
now for some time, I have yet to find a need or use for the manual cache. I will likely replace this
peripheral with a proper DMA controller.

www.opencores.com Rev. 0.3 19

Gisselquist Technology, LLC Specification 2015/08/22

4.

Operation

The Zip CPU, and even the Zip System, is not a System on a Chip (SoC). It needs to be connected
to its operational environment in order to be used. Specifically, some per system adjustments need
to be made:

1. The Zip System depends upon an external 32-bit Wishbone bus. This must exist, and must
be connected to the Zip CPU for it to work.

2. The Zip System needs to be told of its RESET ADDRESS. This is the program counter of the first
instruction following a reset.

3. If you want the Zip System to start up on its own, you will need to set the START HALTED

parameter to zero. Otherwise, if you wish to manually start the CPU, that is if upon reset
you want the CPU start start in its halted, reset state, then set this parameter to one.

4. The third parameter to set is the number of interrupts you will be providing from external to
the CPU. This can be anything from one to nine, but it cannot be zero. (Wire this line to a
1’b0 if you do not wish to support any external interrupts.)

5. Finally, you need to place into some wishbone accessible address, whether RAM or (more
likely) ROM, the initial instructions for the CPU.

If you have enabled your CPU to start automatically, then upon power up the CPU will immediately
start executing your instructions.

This is, however, not how I have used the Zip CPU. I have instead used the ZIP CPU in a more
controlled environment. For me, the CPU starts in a halted state, and waits to be told to start.
Further, the RESET address is a location in RAM. After bringing up the board I am using, and
further the bus that is on it, the RAM memory is then loaded externally with the program I wish
the Zip System to run. Once the RAM is loaded, I release the CPU. The CPU then runs until its
halt condition, at which point its task is complete.

Eventually, I intend to place an operating system onto the ZipSystem, I’m just not there yet.

www.opencores.com Rev. 0.3 20

Gisselquist Technology, LLC Specification 2015/08/22

5.

Registers

The ZipSystem registers fall into two categories, ZipSystem internal registers accessed via the
ZipCPU shown in Tbl. 5.1, and the two debug registers shown in Tbl. 5.2.

Name Address Width Access Description

PIC 0xc0000000 32 R/W Primary Interrupt Controller
WDT 0xc0000001 32 R/W Watchdog Timer
CCHE 0xc0000002 32 R/W Manual Cache Controller
CTRIC 0xc0000003 32 R/W Secondary Interrupt Controller
TMRA 0xc0000004 32 R/W Timer A
TMRB 0xc0000005 32 R/W Timer B
TMRC 0xc0000006 32 R/W Timer C
JIFF 0xc0000007 32 R/W Jiffies
MTASK 0xc0000008 32 R/W Master Task Clock Counter
MMSTL 0xc0000009 32 R/W Master Stall Counter
MPSTL 0xc000000a 32 R/W Master Pre–Fetch Stall Counter
MICNT 0xc000000b 32 R/W Master Instruction Counter
UTASK 0xc000000c 32 R/W User Task Clock Counter
UMSTL 0xc000000d 32 R/W User Stall Counter
UPSTL 0xc000000e 32 R/W User Pre–Fetch Stall Counter
UICNT 0xc000000f 32 R/W User Instruction Counter

Table 5.1: Zip System Internal/Peripheral Registers

Name Address Width Access Description

ZIPCTRL 0 32 R/W Debug Control Register
ZIPDATA 1 32 R/W Debug Data Register

Table 5.2: Zip System Debug Registers

www.opencores.com Rev. 0.3 21

Gisselquist Technology, LLC Specification 2015/08/22

Bit # Access Description

31 R/W Master Interrupt Enable
30. . . 16 R/W Interrupt Enables, write ’1’ to change
15 R Current Master Interrupt State
15. . . 0 R/W Input Interrupt states, write ’1’ to clear

Table 5.3: Interrupt Controller Register Bits

5.1 Peripheral Registers

The peripheral registers, listed in Tbl. 5.1, are shown in the CPU’s address space. These may be
accessed by the CPU at these addresses, and when so accessed will respond as described in Chapt. 3.
These registers will be discussed briefly again here.

The Zip CPU Interrupt controller has four different types of bits, as shown in Tbl. 5.3. The
high order bit, or bit–31, is the master interrupt enable bit. When this bit is set, then any time an
interrupt occurs the CPU will be interrupted and will switch to supervisor mode, etc.

Bits 30 . . . 16 are interrupt enable bits. Should the interrupt line go ghile while enabled, an
interrupt will be generated. To set an interrupt enable bit, one needs to write the master interrupt
enable while writing a ‘1’ to this the bit. To clear, one need only write a ‘0’ to the master interrupt
enable, while leaving this line high.

Bits 15. . . 0 are the current state of the interrupt vector. Interrupt lines trip when they go high,
and remain tripped until they are acknowledged. If the interrupt goes high for longer than one pulse,
it may be high when a clear is requested. If so, the interrupt will not clear. The line must go low
again before the status bit can be cleared.

As an example, consider the following scenario where the Zip CPU supports four interrupts,
3. . . 0.

1. The Supervisor will first, while in the interrupts disabled mode, write a 32’h800f000f to the
controller. The supervisor may then switch to the user state with interrupts enabled.

2. When an interrupt occurs, the supervisor will switch to the interrupt state. It will then cycle
through the interrupt bits to learn which interrupt handler to call.

3. If the interrupt handler expects more interrupts, it will clear its current interrupt when it is
done handling the interrupt in question. To do this, it will write a ’1’ to the low order interrupt
mask, such as writing a 32’h80000001.

4. If the interrupt handler does not expect any more interrupts, it will instead clear the interrupt
from the controller by writing a 32’h00010001 to the controller.

5. Once all interrupts have been handled, the supervisor will write a 32’h80000000 to the inter-
rupt register to re-enable interrupt generation.

6. The supervisor should also check the user trap bit, and possible soft interrupt bits here, but
this action has nothing to do with the interrupt control register.

www.opencores.com Rev. 0.3 22

Gisselquist Technology, LLC Specification 2015/08/22

Bit # Access Description

31 R/W Auto-Reload
30. . . 0 R/W Current timer value

Table 5.4: Timer Register Bits

Bit # Access Description

31. . . 0 R Current jiffy value
31. . . 0 W Value/time of next interrupt

Table 5.5: Jiffies Register Bits

7. The supervisor will then leave interrupt mode, possibly adjusting whichever task is running,
by executing a return from interrupt command.

Leaving the interrupt controller, we show the timer registers bit definitions in Tbl. 5.4. As you
may recall, the timer just counts down to zero and then trips an interrupt. Writing to the current
timer value sets that value, and reading from it returns that value. Writing to the current timer
value while also setting the auto–reload bit will send the timer into an auto–reload mode. In this
mode, upon setting its interrupt bit for one cycle, the timer will also reset itself back to the value of
the timer that was written to it when the auto–reload option was written to it. To clear and stop
the timer, just simply write a ‘32’h00’ to this register.

The Jiffies register is somewhat similar in that the register always changes. In this case, the
register counts up, whereas the timer always counted down. Reads from this register, as shown in
Tbl. 5.5, always return the time value contained in the register. Writes greater than the current
Jiffy value, that is where the new value minus the old value is greater than zero while ignoring
truncation, will set a new Jiffy interrupt time. At that time, the Jiffy vector will clear, and another
interrupt time may either be written to it, or it will just continue counting without activating any
more interrupts.

The Zip CPU also supports several counter peripherals, mostly in the way of process accounting.
This peripherals have a single register associated with them, shown in Tbl. 5.6. Writes to this
register set the new counter value. Reads read the current counter value.

The current design operation of these counters is that of performance counting. Two sets of four
registers are available for keeping track of performance. The first is a task counter. This just counts
clock ticks. The second counter is a prefetch stall counter, then an master stall counter. These allow
the CPU to be evaluated as to how efficient it is. The fourth and final counter is an instruction
counter, which counts how many instructions the CPU has issued.

Bit # Access Description

31. . . 0 R/W Current counter value

Table 5.6: Counter Register Bits

www.opencores.com Rev. 0.3 23

Gisselquist Technology, LLC Specification 2015/08/22

Bit # Access Description

31. . . 14 R Reserved
13 R CPU GIE setting
12 R CPU is sleeping
11 W Command clear PF cache
10 R/W Command HALT, Set to ’1’ to halt the CPU
9 R Stall Status, ’1’ if CPU is busy
8 R/W Step Command, set to ’1’ to step the CPU
7 R Interrupt Request
6 R/W Command RESET
5. . . 0 R/W Debug Register Address

Table 5.7: Debug Control Register Bits

It is envisioned that these counters will be used as follows: First, every time a master counter
rolls over, the supervisor (Operating System) will record the fact. Second, whenever activating a
user task, the Operating System will set the four user counters to zero. When the user task has
completed, the Operating System will read the timers back off, to determine how much of the CPU
the process had consumed.

5.2 Debug Port Registers

Accessing the Zip System via the debug port isn’t as straight forward as accessing the system via
the wishbone bus. The debug port itself has been reduced to two addresses, as outlined earlier in
Tbl. 5.2. Access to the Zip System begins with the Debug Control register, shown in Tbl. 5.7.

The first step in debugging access is to determine whether or not the CPU is halted, and to halt
it if not. To do this, first write a ’1’ to the Command HALT bit. This will halt the CPU and place
it into debug mode. Once the CPU is halted, the stall status bit will drop to zero. Thus, if bit 10
is high and bit 9 low, the debug port is open to examine the internal state of the CPU.

At this point, the external debugger may examine internal state information from within the
CPU. To do this, first write again to the command register a value (with command halt still high)
containing the address of an internal register of interest in the bottom 6 bits. Internal registers that
may be accessed this way are listed in Tbl. 5.8. Primarily, these “registers” include access to the
entire CPU register set, as well as the 16 internal peripherals. To read one of these registers once the
address is set, simply issue a read from the data port. To write one of these registers or peripheral
ports, simply write to the data port after setting the proper address.

In this manner, all of the CPU’s internal state may be read and adjusted.
As an example of how to use this, consider what would happen in the case of an external break

point. If and when the CPU hits a break point that causes it to halt, the Command HALT bit will
activate on its own, the CPU will then raise an external interrupt line and wait for a debugger to
examine its state. After examining the state, the debugger will need to remove the breakpoint by
writing a different instruction into memory and by writing to the command register while holding

www.opencores.com Rev. 0.3 24

Gisselquist Technology, LLC Specification 2015/08/22

Name Address Width Access Description

sR0 0 32 R/W Supervisor Register R0
sR1 0 32 R/W Supervisor Register R1
sSP 13 32 R/W Supervisor Stack Pointer
sCC 14 32 R/W Supervisor Condition Code Register
sPC 15 32 R/W Supervisor Program Counter
uR0 16 32 R/W User Register R0
uR1 17 32 R/W User Register R1
uSP 29 32 R/W User Stack Pointer
uCC 30 32 R/W User Condition Code Register
uPC 31 32 R/W User Program Counter
PIC 32 32 R/W Primary Interrupt Controller
WDT 33 32 R/W Watchdog Timer
CCHE 34 32 R/W Manual Cache Controller
CTRIC 35 32 R/W Secondary Interrupt Controller
TMRA 36 32 R/W Timer A
TMRB 37 32 R/W Timer B
TMRC 38 32 R/W Timer C
JIFF 39 32 R/W Jiffies peripheral
MTASK 40 32 R/W Master task clock counter
MMSTL 41 32 R/W Master memory stall counter
MPSTL 42 32 R/W Master Pre-Fetch Stall counter
MICNT 43 32 R/W Master instruction counter
UTASK 44 32 R/W User task clock counter
UMSTL 45 32 R/W User memory stall counter
UPSTL 46 32 R/W User Pre-Fetch Stall counter
UICNT 47 32 R/W User instruction counter

Table 5.8: Debug Register Addresses

www.opencores.com Rev. 0.3 25

Gisselquist Technology, LLC Specification 2015/08/22

the clear cache, command halt, and step CPU bits high, (32’hd00). The debugger may then replace
the breakpoint now that the CPU has gone beyond it, and clear the cache again (32’h500).

To leave this debug mode, simply write a ‘32’h0’ value to the command register.

www.opencores.com Rev. 0.3 26

Gisselquist Technology, LLC Specification 2015/08/22

6.

Wishbone Datasheets

The Zip System supports two wishbone ports, a slave debug port and a master port for the system
itself. These are shown in Tbl. 6.1 and Tbl. 6.2 respectively. I do not recommend that you connect

Description Specification

Revision level of wishbone WB B4 spec
Type of interface Slave, Read/Write, single words only
Address Width 1–bit
Port size 32–bit
Port granularity 32–bit
Maximum Operand Size 32–bit
Data transfer ordering (Irrelevant)
Clock constraints Works at 100 MHz on a Basys–3 board

Signal Names

Signal Name Wishbone Equivalent
i clk CLK I

i dbg cyc CYC I

i dbg stb STB I

i dbg we WE I

i dbg addr ADR I

i dbg data DAT I

o dbg ack ACK O

o dbg stall STALL O

o dbg data DAT O

Table 6.1: Wishbone Datasheet for the Debug Interface

these together through the interconnect. Rather, the debug port of the CPU should be accessible
regardless of the state of the master bus.

You may wish to notice that neither the ERR nor the RETRY wires have been implemented. What
this means is that the CPU is currently unable to detect a bus error condition, and so may stall
indefinitely (hang) should it choose to access a value not on the bus, or a peripheral that is not yet
properly configured.

www.opencores.com Rev. 0.3 27

Gisselquist Technology, LLC Specification 2015/08/22

Description Specification

Revision level of wishbone WB B4 spec
Type of interface Master, Read/Write, single cycle or

pipelined
Address Width 32–bit bits
Port size 32–bit
Port granularity 32–bit
Maximum Operand Size 32–bit
Data transfer ordering (Irrelevant)
Clock constraints Works at 100 MHz on a Basys–3 board

Signal Names

Signal Name Wishbone Equivalent
i clk CLK O

o wb cyc CYC O

o wb stb STB O

o wb we WE O

o wb addr ADR O

o wb data DAT O

i wb ack ACK I

i wb stall STALL I

i wb data DAT I

Table 6.2: Wishbone Datasheet for the CPU as Master

www.opencores.com Rev. 0.3 28

Gisselquist Technology, LLC Specification 2015/08/22

7.

Clocks

This core is based upon the Basys–3 development board sold by Digilent. The Basys–3 development
board contains one external 100 MHz clock, which is sufficient to run the ZIP CPU core. I hesitate

Name Source Rates (MHz) Description
Max Min

i clk External 100 MHz 100 MHz System clock.

Table 7.1: List of Clocks

to suggest that the core can run faster than 100 MHz, since I have had struggled with various timing
violations to keep it at 100 MHz. So, for now, I will only state that it can run at 100 MHz.

www.opencores.com Rev. 0.3 29

Gisselquist Technology, LLC Specification 2015/08/22

8.

I/O Ports

The I/O ports to the Zip CPU may be grouped into three categories. The first is that of the master
wishbone used by the CPU, then the slave wishbone used to command the CPU via a debugger,
and then the rest. The first two of these were already discussed in the wishbone chapter. They are
listed here for completeness in Tbl. 8.1 and 8.2 respectively.

There are only four other lines to the CPU: the external clock, external reset, incoming external
interrupt line(s), and the outgoing debug interrupt line. These are shown in Tbl. 8.3. The clock line
was discussed briefly in Chapt. 7. We typically run it at 100 MHz. The reset line is an active high
reset. When asserted, the CPU will start running again from its reset address in memory. Further,
depending upon how the CPU is configured and specifically on the START HALTED parameter, it may
or may not start running automatically. The i ext int line is for an external interrupt. This line
may be as wide as 6 external interrupts, depending upon the setting of the EXTERNAL INTERRUPTS

line. As currently configured, the ZipSystem only supports one such interrupt line by default. For
us, this line is the output of another interrupt controller, but that’s a board specific setup detail.
Finally, the Zip System produces one external interrupt whenever the CPU halts to wait for the
debugger.

Port Width Direction Description

o wb cyc 1 Output Indicates an active Wishbone cycle
o wb stb 1 Output WB Strobe signal
o wb we 1 Output Write enable
o wb addr 32 Output Bus address
o wb data 32 Output Data on WB write
i wb ack 1 Input Slave has completed a R/W cycle
i wb stall 1 Input WB bus slave not ready
i wb data 32 Input Incoming bus data

Table 8.1: CPU Master Wishbone I/O Ports

www.opencores.com Rev. 0.3 30

Gisselquist Technology, LLC Specification 2015/08/22

Port Width Direction Description

i wb cyc 1 Input Indicates an active Wishbone cycle
i wb stb 1 Input WB Strobe signal
i wb we 1 Input Write enable
i wb addr 1 Input Bus address, command or data port
i wb data 32 Input Data on WB write
o wb ack 1 Output Slave has completed a R/W cycle
o wb stall 1 Output WB bus slave not ready
o wb data 32 Output Incoming bus data

Table 8.2: CPU Debug Wishbone I/O Ports

Port Width Direction Description

i clk 1 Input The master CPU clock
i rst 1 Input Active high reset line
i ext int 1. . . 6 Input Incoming external interrupts
o ext int 1 Output CPU Halted interrupt

Table 8.3: I/O Ports

www.opencores.com Rev. 0.3 31

