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Preface

Many people have asked me why I am building the Zip CPU. ARM processors are good and effective.
Xilinx makes and markets Microblaze, Altera Nios, and both have better toolsets than the Zip CPU
will ever have. OpenRISC is also available, RISC–V may be replacing it. Why build a new processor?

The easiest, most obvious answer is the simple one: Because I can.
There’s more to it, though. There’s a lot that I would like to do with a processor, and I want to

be able to do it in a vendor independent fashion. First, I would like to be able to place this processor
inside an FPGA. Without paying royalties, ARM is out of the question. I would then like to be
able to generate Verilog code, both for the processor and the system it sits within, that can run
equivalently on both Xilinx and Altera chips, and that can be easily ported from one manufacturer’s
chipsets to another. Even more, before purchasing a chip or a board, I would like to know that my
soft core works. I would like to build a test bench to test components with, and Verilator is my
chosen test bench. This forces me to use all Verilog, and it prevents me from using any proprietary
cores. For this reason, Microblaze and Nios are out of the question.

Why not OpenRISC? That’s a hard question. The OpenRISC team has done some wonderful
work on an amazing processor, and I’ll have to admit that I am envious of what they’ve accomplished.
I would like to port binutils to the Zip CPU, as I would like to port GCC and GDB. They are way
ahead of me. The OpenRISC processor, however, is complex and hefty at about 4,500 LUTs. It
has a lot of features of modern CPUs within it that ... well, let’s just say it’s not the little guy on
the block. The Zip CPU is lighter weight, costing only about 2,300 LUTs with no peripherals, and
3,200 LUTs with some very basic peripherals.

My final reason is that I’m building the Zip CPU as a learning experience. The Zip CPU has
allowed me to learn a lot about how CPUs work on a very micro level. For the first time, I am
beginning to understand many of the Computer Architecture lessons from years ago.

To summarize: Because I can, because it is open source, because it is light weight, and as an
exercise in learning.

Dan Gisselquist, Ph.D.
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1.

Introduction

The original goal of the Zip CPU was to be a very simple CPU. You might think of it as a poor man’s
alternative to the OpenRISC architecture. For this reason, all instructions have been designed to
be as simple as possible, and the base instructions are all designed to be executed in one instruction
cycle per instruction, barring pipeline stalls. Indeed, even the bus has been simplified to a constant
32-bit width, with no option for more or less. This has resulted in the choice to drop push and pop
instructions, pre-increment and post-decrement addressing modes, and more.

For those who like buzz words, the Zip CPU is:

• A 32-bit CPU: All registers are 32-bits, addresses are 32-bits, instructions are 32-bits wide,
etc.

• A RISC CPU. There is no microcode for executing instructions. All instructions are designed
to be completed in one clock cycle.

• A Load/Store architecture. (Only load and store instructions can access memory.)

• Wishbone compliant. All peripherals are accessed just like memory across this bus.

• A Von-Neumann architecture. (The instructions and data share a common bus.)

• A pipelined architecture, having stages for Prefetch, Decode, Read-Operand, a combined
stage containing the ALU, Memory, Divide, and Floating Point units, and then the final
Write-back stage. See Fig. 1.1 for a diagram of this structure.

• Completely open source, licensed under the GPL.1

The Zip CPU also has one very unique feature: the ability to do pipelined loads and stores. This
allows the CPU to access on-chip memory at one access per clock, minus a stall for the initial access.

1.1 Characteristics of a SwiC

Here, we shall define a soft core internal to an FPGA as a “System within a Chip,” or a SwiC. SwiCs
have some very unique properties internal to them that have influenced the design of the Zip CPU.
Among these are the bus, memory, and available peripherals.

Most other approaches to soft core CPU’s employ a Harvard architecture. This allows these other
CPU’s to have two separate bus structures: one for the program fetch, and the other for the memory.

1Should you need a copy of the Zip CPU licensed under other terms, please contact me.
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Figure 1.1: Zip CPU internal pipeline architecture

The Zip CPU is fairly unique in its approach because it uses a von Neumann architecture. This was
done for simplicity. By using a von Neumann architecture, only one bus needs to be implemented
within any FPGA. This helps to minimize real-estate, while maintaining a high clock speed. The
disadvantage is that it can severely degrade the overall instructions per clock count.

Soft core’s within an FPGA have an additional characteristic regarding memory access: it is
slow. While memory on chip may be accessed at a single cycle per access, small FPGA’s often have
only a limited amount of memory on chip. Going off chip, however, is expensive. Two examples
will prove this point. On the XuLA2 board, Flash can be accessed at 128 cycles per 32–bit word,
or 64 cycles per subsequent word in a pipelined architecture. Likewise, the SDRAM chip on the
XuLA2 board allows a 6 cycle access for a write, 10 cycles per read, and 2 cycles for any subsequent
pipelined access read or write. Either way you look at it, this memory access will be slow and this
doesn’t account for any logic delays should the bus implementation logic get complicated.

As may be noticed from the above discussion about memory speed, a second characteristic of
memory is that all memory accesses may be pipelined, and that pipelined memory access is faster
than non–pipelined access. Therefore, a SwiC soft core should support pipelined operations, but it
should also allow a higher priority subsystem to get access to the bus (no starvation).

As a further characteristic of SwiC memory options, on-chip cache’s are expensive. If you want
to have a minimum of logic, cache logic may not be the highest on the priority list.

In sum, memory is slow. While one processor on one FPGA may be able to fill its pipeline, the
same processor on another FPGA may struggle to get more than one instruction at a time into the
pipeline. Any SwiC must be able to deal with both cases: fast and slow memories.

A final characteristic of SwiC’s within FPGA’s is the peripherals. Specifically, FPGA’s are highly
reconfigurable. Soft peripherals can easily be created on chip to support the SwiC if necessary. As
an example, a simple 30-bit peripheral could easily support reversing 30-bit numbers: a read from
the peripheral returns it’s bit–reversed address. This is cheap within an FPGA, but expensive in

www.opencores.com Rev. 0.7 2
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instructions. Reading from another 16–bit peripheral might calculate a sine function, where the
16–bit address internal to the peripheral was the angle of the sine wave.

Indeed, anything that must be done fast within an FPGA is likely to already be done–elsewhere
in the fabric. This leaves the CPU with the simple role of solely handling sequential tasks that need
a lot of state.

This means that the SwiC needs to live within a very unique environment, separate and different
from the traditional SoC. That isn’t to say that a SwiC cannot be turned into a SoC, just that this
SwiC has not been designed for that purpose.

1.2 Lessons Learned

Now, however, that I’ve worked on the Zip CPU for a while, it is not nearly as simple as I originally
hoped. Worse, I’ve had to adjust to create capabilities that I was never expecting to need. These
include:

• External Debug: Once placed upon an FPGA, some external means is still necessary to
debug this CPU. That means that there needs to be an external register that can control
the CPU: reset it, halt it, step it, and tell whether it is running or not. My chosen interface
includes a second register similar to this control register. This second register allows the
external controller or debugger to examine registers internal to the CPU.

• Internal Debug: Being able to run a debugger from within a user process requires an ability
to step a user process from within a debugger. It also requires a break instruction that can
be substituted for any other instruction, and substituted back. The break is actually difficult:
the break instruction cannot be allowed to execute. That way, upon a break, the debugger
should be able to jump back into the user process to step the instruction that would’ve been
at the break point initially, and then to replace the break after passing it.

Incidentally, this break messes with the prefetch cache and the pipeline: if you change an
instruction partially through the pipeline, the whole pipeline needs to be cleansed. Likewise
if you change an instruction in memory, you need to make sure the cache is reloaded with the
new instruction.

• Prefetch Cache: My original implementation, prefetch, had a very simple prefetch stage.
Any time the PC changed the prefetch would go and fetch the new instruction. While this
was perhaps this simplest approach, it cost roughly five clocks for every instruction. This was
deemed unacceptable, as I wanted a CPU that could execute instructions in one cycle.

My second implementation, pipefetch, attempted to make the most use of pipelined memory.
When a new CPU address was issued, it would start reading memory in a pipelined fashion,
and issuing instructions as soon as they were ready. This cache was a sliding window in
memory. This suffered from some difficult performance problems, though. If the CPU was
alternating between two diverse sections of code, both could never be in the cache at the same
time–causing lots of cache misses. Further, the extra logic to implement this window cost an
extra clock cycle in the cache implementation, slowing down branches.

The Zip CPU now has a third cache implementation, pfcache. This new implementation takes
only a single cycle per access, but costs a full cache line miss on any miss. While configurable,
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a full cache line miss might mean that the CPU needs to read 256 instructions from memory
before it can execute the first one of them.

• Operating System: In order to support an operating system, interrupts and so forth, the
CPU needs to support supervisor and user modes, as well as a means of switching between
them. For example, the user needs a means of executing a system call. This is the purpose of
the ‘trap’ instruction. This instruction needs to place the CPU into supervisor mode (here
equivalent to disabling interrupts), as well as handing it a parameter such as identifying which
O/S function was called.

My initial approach to building a trap instruction was to create an external peripheral which,
when written to, would generate an interrupt and could return the last value written to it. In
practice, this approach didn’t work at all: the CPU executed two instructions while waiting
for the trap interrupt to take place. Since then, I’ve decided to keep the rest of the CC register
for that purpose so that a write to the CC register, with the GIE bit cleared, could be used to
execute a trap. This has other problems, though, primarily in the limitation of the uses of the
CC register. In particular, the CC register is the best place to put CPU state information and
to “announce” special CPU features (floating point, etc). So the trap instruction still switches
to interrupt mode, but the CC register is not nearly as useful for telling the supervisor mode
processor what trap is being executed.

Modern timesharing systems also depend upon a Timer interrupt to handle task swapping.
For the Zip CPU, this interrupt is handled external to the CPU as part of the CPU System,
found in zipsystem.v. The timer module itself is found in ziptimer.v.

• Bus Errors: My original implementation had no logic to handle what would happen if the
CPU attempted to read or write a non-existent memory address. This changed after I needed
to troubleshoot a failure caused by a subroutine return to a non-existent address.

My next problem bus problem was caused by a misbehaving peripheral. Whenever the CPU
attempted to read from or write to this peripheral, the peripheral would take control of the
wishbone bus and not return it. For example, it might never return an ACK to signal the end of
the bus transaction. This led to the implementation of a wishbone bus watchdog that would
create a bus error if any particular bus action didn’t complete in a timely fashion.

• Pipeline Stalls: My original plan was to not support pipeline stalls at all, but rather to require
the compiler to properly schedule all instructions so that stalls would never be necessary. After
trying to build such an architecture, I gave up, having learned some things:

First, and ideal pipeline might look something like Fig. 1.2. Notice that, in this figure, all
the pipeline stages are complete and full. Every instruction takes one clock and there are no
delays. However, as the discussion above pointed out, the memory associated with a SwiC
may not allow single clock access. It may be instead that you can only read every two clocks.
In that case, what shall the pipeline look like? Should it look like Fig. 1.3, where instructions
are held back until the pipeline is full, or should it look like Fig. 1.4, where each instruction is
allowed to move through the pipeline independently? For better or worse, the Zip CPU allows
instructions to move through the pipeline independently.

One approach to avoiding stalls is to use a branch delay slot, such as is shown in Fig. 1.5.
In this figure, instructions BR (a branch), BD (a branch delay instruction), are followed by
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clk

PF I0 I1 I2 I3 I4 I5 I6

DC I0 I1 I2 I3 I4 I5

OP I0 I1 I2 I3 I4

ALU I0 I1 I2 I3

WB I0 I1 I2

Figure 1.2: An Ideal Pipeline: One instruction per clock cycle

clk

PF I0 I1 I2 I3 I4

DC I0 I1 I2 I3

OP I0 I1 I2

ALU I0 I1

WB I0

Figure 1.3: Instructions wait for each other

clk

PF I0 I1 I2 I3 I4

DC I0 I1 I2 I3

OP I0 I1 I2 I3

ALU I0 I1 I2

WB I0 I1 I2

Figure 1.4: Instructions proceed independently
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clk

PF BR BD IA IB IC ID IE

DC BR BD IA IB IC ID

OP BR BD IA IB IC

ALU BR BD IA IB

WB BR BD IA

Figure 1.5: A typical branch delay slot approach

clk

PF BR BD IA IB

DC BR CLR IA IB

OP BR IA

ALU BR IA

WB BR IA

Figure 1.6: The branch delay slot breaks with a slow memory

instructions after the branch: IA, IB, etc. Since it takes a processor a clock cycle to execute a
branch, the delay slot allows the processor to do something useful in that branch. The problem
the Zip CPU has with this approach is, what happens when the pipeline looks like Fig. 1.6? In
this case, the branch delay slot never gets filled in the first place, and so the pipeline squashes
it before it gets executed. If not that, then what happens when handling interrupts or debug
stepping: when has the CPU finished an instruction? When the BR instruction has finished,
or must BD follow every BR? and, again, what if the pipeline isn’t full? These thoughts killed
any hopes of doing delayed branching.

So I switched to a model of discrete execution: Once an instruction enters into either the ALU
or memory unit, the instruction is guaranteed to complete. If the logic recognizes a branch or
a condition that would render the instruction entering into this stage possibly inappropriate
(i.e. a conditional branch preceding a store instruction for example), then the pipeline stalls
for one cycle until the conditional branch completes. Then, if it generates a new PC address,
the stages preceding are all wiped clean.
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clk

SLP

PF I1 I2 I3 I4 I5 I6 I7

DC WT I1 I2 I3 I4 I5 I6

OP WT I1 I2 I3 I4 I5

ALU WT I1 I2 I3 I4

WB WT I1 I2 I3

Figure 1.7: How the CPU halts when sleeping

clk

PF RD I1 I2 I3

DC RD I1 I2

OP RD I1 I2

Mem RD

ALU I1 I2

WB RD I1 I2

Figure 1.8: Instructions can stack up behind a stalled instruction

This model, however, generated too many pipeline stalls, so the discrete execution model was
modified to allow instructions to go through the ALU unit and be canceled before writeback.
This removed the stall associated with ALU instructions before untaken branches.

The discrete execution model allows such things as sleeping, as outlined in Fig. 1.7. If the
CPU is put to “sleep,” the ALU and memory stages stall and back up everything before them.
Likewise, anything that has entered the ALU or memory stage when the CPU is placed to sleep
continues to completion. To handle this logic, each pipeline stage has three control signals: a
valid signal, a stall signal, and a clock enable signal. In general, a stage stalls if it’s contents
are valid and the next step is stalled. This allows the pipeline to fill any time a later stage
stalls, as illustrated in Fig. 1.8. However, if a pipeline hazard is detected, a stage can stall in
order to prevent the previous from moving forward.

This approach is also different from other pipeline approaches. Instead of keeping the entire
pipeline filled, each stage is treated independently. Therefore, individual stages may move
forward as long as the subsequent stage is available, regardless of whether the stage behind it
is filled.

With that introduction out of the way, let’s move on to the instruction set.
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2.

CPU Architecture

The Zip CPU supports a set of two operand instructions, where the second operand (always a
register) is the result. The only exception is the store instruction, where the first operand (always
a register) is the source of the data to be stored.

2.1 Simplified Bus

The bus architecture of the Zip CPU is that of a simplified WISHBONE bus. It has been simplified
in this fashion: all operations are 32–bit operations. The bus is neither little endian nor big endian.
For this reason, all words are 32–bits. All instructions are also 32–bits wide. Everything has been
built around the 32–bit word.

2.2 Register Set

The Zip CPU supports two sets of sixteen 32-bit registers, a supervisor and a user set as shown in
Fig. 2.1. The supervisor set is used in interrupt mode when interrupts are disabled, whereas the
user set is used otherwise. Of this register set, the Program Counter (PC) is register 15, whereas the
status register (SR) or condition code register (CC) is register 14. By convention, the stack pointer
will be register 13 and noted as (SP)–although there is nothing special about this register other
than this convention. Also by convention register 12 will point to a global offset table, and may be
abbreviated as the (GBL) register. The CPU can access both register sets via move instructions
from the supervisor state, whereas the user state can only access the user registers.

The status register is special, and bears further mention. As shown in Fig. 2.1, the lower 11 bits
of the status register form a set of CPU state and condition codes. Writes to other bits of this
register are preserved.

Of the condition codes, the bottom four bits are the current flags: Zero (Z), Carry (C), Negative
(N), and Overflow (V). On those instructions that set the flags, these flags will be set based upon
the output of the instruction. If the result is zero, the Z flag will be set. If the high order bit is set,
the N flag will be set. If the instruction caused a bit to fall off the end, the carry bit will be set.
Finally, if the instruction causes a signed integer overflow, the V flag will be set afterwards.

The next bit is a sleep bit. Set this bit to one to disable instruction execution and place the CPU
to sleep, or to zero to keep the pipeline running. Setting this bit will cause the CPU to wait for an
interrupt (if interrupts are enabled), or to completely halt (if interrupts are disabled). In order to
prevent users from halting the CPU, only the supervisor is allowed to both put the CPU to sleep
and disable interrupts. Any user attempt to do so will simply result in a switch to supervisor mode.
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Figure 2.1: Zip CPU Register File

Bit # Access Description

31. . . 13 R/W Reserved for future uses
12 R (Reserved for) Floating Point Exception
11 R Division by Zero Exception
10 R Bus-Error Flag
9 R Trap, or user interrupt, Flag. Cleared on return to userspace.
8 R Illegal Instruction Flag
7 R/W Break–Enable
6 R/W Step
5 R/W Global Interrupt Enable (GIE)
4 R/W Sleep. When GIE is also set, the CPU waits for an interrupt.
3 R/W Overflow
2 R/W Negative. The sign bit was set as a result of the last ALU in-

struction.
1 R/W Carry
0 R/W Zero. The last ALU operation produced a zero.

Table 2.1: Condition Code Register Bit Assignment
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The sixth bit is a global interrupt enable bit (GIE). When this sixth bit is a ‘1’ interrupts will be
enabled, else disabled. When interrupts are disabled, the CPU will be in supervisor mode, otherwise
it is in user mode. Thus, to execute a context switch, one only need enable or disable interrupts.
(When an interrupt line goes high, interrupts will automatically be disabled, as the CPU goes and
deals with its context switch.) Special logic has been added to keep the user mode from setting the
sleep register and clearing the GIE register at the same time, with clearing the GIE register taking
precedence.

The seventh bit is a step bit. This bit can be set from supervisor mode only. After setting this bit,
should the supervisor mode process switch to user mode, it would then accomplish one instruction
in user mode before returning to supervisor mode. Then, upon return to supervisor mode, this bit
will be automatically cleared. This bit has no effect on the CPU while in supervisor mode.

This functionality was added to enable a userspace debugger functionality on a user process,
working through supervisor mode of course.

The eighth bit is a break enable bit. This controls whether a break instruction in user mode will
halt the processor for an external debugger (break enabled), or whether the break instruction will
simply send send the CPU into interrupt mode. Encountering a break in supervisor mode will halt
the CPU independent of the break enable bit. This bit can only be set within supervisor mode.

This functionality was added to enable an external debugger to set and manage breakpoints.
The ninth bit is an illegal instruction bit. When the CPU tries to execute either a non-existant

instruction, or an instruction from an address that produces a bus error, the CPU will (if imple-
mented) switch to supervisor mode while setting this bit. The bit will automatically be cleared upon
any return to user mode.

The tenth bit is a trap bit. It is set whenever the user requests a soft interrupt, and cleared on
any return to userspace command. This allows the supervisor, in supervisor mode, to determine
whether it got to supervisor mode from a trap or from an external interrupt or both.

2.3 Instruction Format

All Zip CPU instructions fit in one of the formats shown in Fig. 2.2. The basic format is that some
operation, defined by the OpCode, is applied if a condition, Cnd, is true in order to produce a result
which is placed in the destination register, or DR. The Load 23–bit signed immediate instruction is
different in that it requires no conditions, and uses only a 4-bit opcode.

This is actually a second version of instruction set definition, given certain lessons learned. For
example, the original instruction set had the following problems:

1. No opcodes were available for divide or floating point extensions to be made available. Al-
though there was space in the instruction set to add these types of instructions, this instruction
space was going to require extra logic to use.

2. The carveouts for instructions such as NOOP and LDIHI/LDILO required extra logic to pro-
cess.

3. The instruction set wasn’t very compact. One bus operation was required for every instruction.

This second version was designed with two criteria. The first was that the new instruction set
needed to be compatible, at the assembly language level, with the previous instruction set. Thus,
it must be able to support all of the previous menumonics and more. This was achieved with the
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012345678910111213141516171819202122232425262728293031

0 DR OpCode Cnd 0 18-bit Signed Immediate

0 DR 1 BR 14-bit Signed Immediate
Standard

{

0 DR 5’hf Cnd A BR B 13-bit Signed ImmediateMOV
{

0 DR 4’hb 23-bit Signed ImmediateLDI
{

0 3’h7 11 xxx IgnoredNOOP
{

1 DR OpCode Cnd 0 Imm. —

1 1 BR —

1 4’hb 5’b Imm —

1 — Cnd — DR OpCode 0 Imm

1 — — 1 Reg

1 — — 4’hb 5’b Imm

VLIW















































Figure 2.2: Zip Instruction Set Format

sole exception that instruction immediates are generally two bits shorter than before. (One bit was
lost to the VLIW bit in front, another from changing from 4–bit to 5–bit opcodes.) Second, the new
instruction set needed to be a drop–in replacement for the decoder, modifying nothing else. This
was almost achieved, save for two issues: the ALU unit needed to be replaced since the OpCodes
were reordered, and some condition code logic needed to be adjusted since the condition codes were
renumbered as well. In the end, maximum reuse of the existing RTL (Verilog) code was achieved in
this upgrade.

As of this second version of the Zip CPU instruction set, the Zip CPU also supports a very long
instruction word (VLIW) set of instructions. These instruction formats pack two instructions into
a single instuction word, trading immediate instruction space to do this, but in just about all other
respects these are identical to two standard instructions. Other than instruction format, the only
basic difference is that the CPU will not switch to interrupt mode in between the two instructions.
Likewise a new job given to the assembler is that of automatically packing as many instructions as
possible into the VLIW format. Where necessary to place both VLIW instructions on the same line,
they will be separated by a vertical bar.

2.4 Instruction OpCodes

With a 5–bit opcode field, there are 32–possible instructions as shown in Tbl. 2.2. Of these opcodes,
the BREV and POPC are experimental, and may be replaced later, and two floating point instruction
opcodes are reserved for future use.
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OpCode Instruction Sets CC

5’h00 SUB Subtract
5’h01 AND Bitwise And
5’h02 ADD Add two numbers
5’h03 OR Bitwise Or Y
5’h04 XOR Bitwise Exclusive Or
5’h05 LSR Logical Shift Right
5’h06 LSL Logical Shift Left
5’h07 ASR Arithmetic Shift Right
5’h08 LDIHI Load Immediate High N
5’h09 LDILO Load Immediate Low
5’h0a MPYU Unsigned 16–bit Multiply
5’h0b MPYS Signed 16–bit Multiply Y
5’h0c BREV Bit Reverse
5’h0d POPC Population Count
5’h0e ROL Rotate left
5’h0f MOV Move register N
5’h10 CMP Compare Y
5’h11 TST Test (AND w/o setting result)
5’h12 LOD Load from memory N
5’h13 STO Store a register into memory

5’h14 DIVU Divide, unsigned Y
5’h15 DIVS Divide, signed

5’h16/7 LDI Load 23–bit signed immediate N

5’h18 FPADD Floating point add
5’h19 FPSUB Floating point subtract
5’h1a FPMPY Floating point multiply Y
5’h1b FPDIV Floating point divide
5’h1c FPCVT Convert integer to floating point
5’h1d FPINT Convert to integer
5’h1e Reserved for future use
5’h1f Reserved for future use

Table 2.2: Zip CPU OpCodes
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Code Mneumonic Condition
3’h0 None Always execute the instruction
3’h1 .LT Less than (’N’ set)
3’h2 .Z Only execute when ’Z’ is set
3’h3 .NZ Only execute when ’Z’ is not set
3’h4 .GT Greater than (’N’ not set, ’Z’ not set)
3’h5 .GE Greater than or equal (’N’ not set, ’Z’ irrelevant)
3’h6 .C Carry set
3’h7 .V Overflow set

Table 2.3: Conditions for conditional operand execution

CMP 1,R0

;Condition codes are now set based upon R0-1
CMP.Z 2,R1

;If R0 6= 1, conditions are unchanged.
;If R0 = 1, conditions are set based upon R1-2.
;Now do something based upon the conjunction of both conditions.
;While we use the example of a STO, it could be any instruction.
STO.Z R0,(R2)

Table 2.4: An example of a double conditional

2.5 Conditional Instructions

Most, although not quite all, instructions may be conditionally executed. The 23–bit load immediate
instruction, together with the NOOP, BREAK, and LOCK instructions are the only exception to this rule.

From the four condition code flags, eight conditions are defined for standard instructions. These
are shown in Tbl. 2.3. There is no condition code for less than or equal, not C or not V—there just
wasn’t enough space in 3–bits. Conditioning on a non–supported condition is still possible, but it
will take an extra instruction and a pipeline stall. (Ex: (Stall); TST $4,CC; STO.NZ R0,(R1)) As an
alternative, it is often possible to reverse the condition, and thus recovering those extra two clocks.
Thus instead of CMP Rx,Ry; BNV label you can issue a CMP Ry,Rx; BV label.

Conditionally executed instructions will not further adjust the condition codes, with the exception
of CMP and TST instructions. Conditional CMP or TST instructions will adjust conditions whenever
they are executed. In this way, multiple conditions may be evaluated without branches. For example,
to do something if R0 is one and R1 is two, one might try code such as Tbl. 2.4.

In the case of VLIW instructions, only four conditions are defined as shown in Tbl. 2.5. Further,
the first bit is given a special meaning. If the first bit is set, the conditions apply to the second
half of the instruction, otherwise the conditions will only apply to the first half of a conditional
instruction.
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Code Mneumonic Condition
2’h0 None Always execute the instruction
2’h1 .LT Less than (’N’ set)
2’h2 .Z Only execute when ’Z’ is set
2’h3 .NZ Only execute when ’Z’ is not set

Table 2.5: VLIW Conditions

0123456789101112131415161718

0 18-bit Signed Immediate

1 Reg 14-bit Signed Immediate

Table 2.6: Bit allocation for Operand B

2.6 Operand B

Many instruction forms have a 19-bit source “Operand B” associated with them. This “Operand
B” is shown in Fig. 2.2 as part of the standard instructions. This Operand B is either equal to a
register plus a 14–bit signed immediate offset, or an 18–bit signed immediate offset by itself. This
value is encoded as shown in Tbl. 2.6.

Fourteen and eighteen bit immediate values don’t make sense for all instructions. For example,
what is the point of an 18–bit immediate when executing a 16–bit multiply? Or a 16–bit load–
immediate? In these cases, the extra bits are simply ignored.

VLIW instructions still use the same operand B, only there was no room for any instruction
plus immediate addressing. Therefore, VLIW instructions have either a register or a 4–bit signed
immediate as their operand B. The only exception is the load immediate instruction, which permits
a 5–bit signed operand B.1

2.7 Address Modes

The Zip CPU supports two addressing modes: register plus immediate, and immediate address.
Addresses are therefore encoded in the same fashion as Operand B’s, shown above. Practically, the
VLIW instruction set only offers register addressing, necessitating a non–VLIW instruction for most
memory operations.

A lot of long hard thought was put into whether to allow pre/post increment and decrement
addressing modes. Finding no way to use these operators without taking two or more clocks per
instruction,2 these addressing modes have been removed from the realm of possibilities. This means
that the Zip CPU has no native way of executing push, pop, return, or jump to subroutine operations.
Each of these instructions can be emulated with a set of instructions from the existing set.

1Although the space exists to extend this VLIW load immediate instruction to six bits, the 5–bit limit was chosen

to simplify the disassembler. This may change in the future.
2The two clocks figure comes from the design of the register set, allowing only one write per clock. That write is

either from the memory unit or the ALU, but never both.
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2.8 Move Operands

The previous set of operands would be perfect and complete, save only that the CPU needs access to
non–supervisory registers while in supervisory mode. Therefore, the MOV instruction is special and
offers access to these registers . . . when in supervisory mode. To keep the compiler simple, the extra
bits are ignored in non-supervisory mode (as though they didn’t exist), rather than being mapped
to new instructions or additional capabilities. The bits indicating which register set each register
lies within are the A-User, marked ‘A’ in Fig. 2.2, and B-User bits, marked as ‘B’. When set to a
one, these refer to a user mode register. When set to a zero, these refer to a register in the current
mode, whether user or supervisor. Further, because a load immediate instruction exists, there is no
move capability between an immediate and a register: all moves come from either a register or a
register plus an offset.

This actually leads to a bit of a problem: since the MOV instruction encodes which register set
each register is coming from or moving to, how shall a compiler or assembler know how to compile a
MOV instruction without knowing the mode of the CPU at the time? For this reason, the compiler
will assume all MOV registers are supervisor registers, and display them as normal. Anything with
the user bit set will be treated as a user register and displayed special. Since the CPU quietly ignores
the supervisor bits while in user mode, anything marked as a user register will always be specific.

2.9 Multiply Operations

The Zip CPU supports two Multiply operations, a 16x16 bit signed multiply (MPYS) and a 16x16 bit
unsigned multiply (MPYU). A 32–bit multiply, should it be desired, needs to be created via software
from this 16x16 bit multiply.

2.10 Divide Unit

The Zip CPU also has a divide unit which can be built alongside the ALU. This divide unit provides
the Zip CPU with its first two instructions that cannot be executed in a single cycle: DIVS, or
signed divide, and DIVU, the unsigned divide. These are both 32–bit divide instructions, dividing
one 32–bit number by another. In this case, the Operand B field, whether it be register or register
plus immediate, constitutes the denominator, whereas the numerator is given by the other register.

The Divide is also a multi–clock instruction. While the divide is running, the ALU, memory
unit, and floating point unit (if installed) will be idle. Once the divide completes, other units may
continue.

Of course, divides can have errors: division by zero. In the case of division by zero, an exception
will be caused that will send the CPU either from user mode to supervisor mode, or halt the CPU
if it is already in supervisor mode.

2.11 NOOP, BREAK, and Bus Lock Instruction

Three instructions are not listed in the opcode list in Tbl. 2.2, yet fit in the NOOP type instruction
format of Fig. 2.2. These are the NOOP, Break, and bus LOCK instructions. These are encoded
according to Fig. 2.3, and have the following meanings:
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012345678910111213141516171819202122232425262728293031

0 3’h7 11 001 Ignored

1 3’h7 11 001 —

1 — — — 3’h7 11 001 Ignored

NOOP















0 3’h7 11 010 IgnoredBREAK
{

0 3’h7 11 100 IgnoredLOCK
{

Figure 2.3: NOOP/Break/LOCK Instruction Format

The NOOP instruction is just that: an instruction that does not perform any operation. While
many other instructions, such as a move from a register to itself, could also fit these roles, only the
NOOP instruction guarantees that it will not stall waiting for a register to be available. For this
reason, it gets its own place in the instruction set.

The BREAK instruction is useful for creating a debug instruction that will halt the CPU without
executing. If in user mode, depending upon the setting of the break enable bit, it will either switch
to supervisor mode or halt the CPU–depending upon where the user wishes to do his debugging.

Finally, the LOCK instruction was added in order to make a test and set multi–CPU operation
possible. Following a LOCK instruction, the next two instructions, if they are memory LOD/STO
instructions, will execute without dropping the wishbone CYC line between the instructions. Thus a
LOCK followed by LOD (Rx),Ry and a STO Rz,(Rx), where Rz is initially set, can be used to set an
address while guaranteeing that Ry was the value before setting the address to Rz. This is a useful
instruction while trying to achieve concurrency among multiple CPU’s.

2.12 Floating Point

Although the Zip CPU does not (yet) have a floating point unit, the current instruction set offers
eight opcodes for floating point operations, and treats floating point exceptions like divide by zero
errors. Once this unit is built and integrated together with the rest of the CPU, the Zip CPU will
support 32–bit floating point instructions natively. Any 64–bit floating point instructions will still
need to be emulated in software.

2.13 Derived Instructions

The Zip CPU supports many other common instructions, but not all of them are single cycle in-
structions. The derived instruction tables, Tbls. 2.7, 2.8, 2.9 and 2.10, help to capture some of how
these other instructions may be implemented on the Zip CPU. Many of these instructions will have
assembly equivalents, such as the branch instructions, to facilitate working with the CPU.

www.opencores.com Rev. 0.7 16



Gisselquist Technology, LLC Specification 2015/12/23

Mapped Actual Notes
ABS Rx TST -1,Rx

NEG.LT Rx

Absolute value, depends upon derived NEG.

ADD Ra,Rx

ADDC Rb,Ry

Add Ra,Rx

ADD.C $1,Ry

Add Rb,Ry

Add with carry

BRA.Cond +/-$Addr MOV.cond $Addr+PC,PC Branch or jump on condition. Works for 13–bit
signed address offsets.

BRA.Cond +/-$Addr LDI $Addr,Rx

ADD.cond Rx,PC

Branch/jump on condition. Works for 23 bit ad-
dress offsets, but costs a register and an extra
instruction. With LDIHI and LDILO this can
be made to work anywhere in the 32-bit address
space, but yet cost an additional instruction still.

BNC PC+$Addr Test $Carry,CC

MOV.Z PC+$Addr,PC

Example of a branch on an unsupported condition,
in this case a branch on not carry

BUSY MOV $-1(PC),PC Execute an infinite loop
CLRF.NZ Rx XOR.NZ Rx,Rx Clear Rx, and flags, if the Z-bit is not set
CLR Rx LDI $0,Rx Clears Rx, leaves flags untouched. This instruc-

tion cannot be conditional.
EXCH.W Rx ROL $16,Rx Exchanges the top and bottom 16’bit words of Rx
HALT Or $SLEEP,CC This only works when issued in inter-

rupt/supervisor mode. In user mode this is
simply a wait until interrupt instruction.

INT LDI $0,CC This is also known as a trap instruction
IRET OR $GIE,CC Also known as an RTU instruction (Return to

Userspace)
JMP R6+$Addr MOV $Addr(R6),PC

LJMP $Addr LOD (PC),PC

Address

Although this only works for an unconditional
jump, and it only works in a Von Neumann archi-
tecture, this instruction combination makes for a
nice combination that can be adjusted by a linker
at a later time.

JSR PC+$Addr MOV $1+PC,R0

MOV $addr+PC,PC

This is similar to the jump and link instructions
from other architectures, save only that it requires
a specific link instruction, also known as the MOV

instruction on the left.

Table 2.7: Derived Instructions
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Mapped Actual Notes
LDI.l $val,Rx LDIHI

($val>>16)&0x0ffff,

Rx

LDILO ($val&0x0ffff),Rx

Sadly, there’s not enough instruction space to
load a complete immediate value into any regis-
ter. Therefore, fully loading any register takes
two cycles. The LDIHI (load immediate high) and
LDILO (load immediate low) instructions have
been created to facilitate this.
This is also the appropriate means for setting a
register value to an arbitrary 32–bit value in a
post–assembly link operation.

LOD.b $addr,Rx LDI $addr,Ra

LDI $addr,Rb

LSR $2,Ra

AND $3,Rb

LOD (Ra),Rx

LSL $3,Rb

SUB $32,Rb

ROL Rb,Rx

AND $0ffh,Rx

This CPU is designed for 32’bit word length in-
structions. Byte addressing is not supported by
the CPU or the bus, so it therefore takes more
work to do.
Note also that in this example, $Addr is a byte-
wise address, where all other addresses in this doc-
ument are 32-bit wordlength addresses. For this
reason, we needed to drop the bottom two bits.
This also limits the address space of character ac-
cesses using this method from 16 MB down to
4MB.

LSL $1,Rx

LSLC $1,Ry

LSL $1,Ry

LSL $1,Rx

OR.C $1,Ry

Logical shift left with carry. Note that the instruc-
tion order is now backwards, to keep the condi-
tions valid. That is, LSL sets the carry flag, so if
we did this the other way with Rx before Ry, then
the condition flag wouldn’t have been right for an
OR correction at the end.

LSR $1,Rx

LSRC $1,Ry

CLR Rz

LSR $1,Ry

LDIHI.C $8000h,Rz

LSR $1,Rx

OR Rz,Rx

Logical shift right with carry

NEG Rx XOR $-1,Rx

ADD $1,Rx
NEG.C Rx MOV.C $-1+Rx,Rx

XOR.C $-1,Rx
NOOP NOOP While there are many operations that do nothing,

such as MOV Rx,Rx, or OR $0,Rx, these opera-
tions have consequences in that they might stall
the bus if Rx isn’t ready yet. For this reason, we
have a dedicated NOOP instruction.

NOT Rx XOR $-1,Rx

POP Rx LOD $(SP),Rx

ADD $1,SP

Table 2.8: Derived Instructions, continued
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PUSH Rx SUB $1,SP

STO Rx,$(SP)

Note that for pipelined operation, it helps to co-
alesce all the SUB’s into one command, and place
the STO’s right after each other. Further, to avoid
a pipeline stall, the immediate value for the store
must be zero.

PUSH Rx-Ry SUB $n,SP

STO Rx,$(SP) ...

STO Ry,$(n− 1)(SP)

Multiple pushes at once only need the single sub-
tract from the stack pointer. This derived instruc-
tion is analogous to a similar one on the Motoroloa
68k architecture, although the Zip Assembler does
not support this instruction (yet). This instruc-
tion also supports pipelined memory access.

RESET STO

$1,$watchdog(R12)

NOOP

NOOP

This depends upon the peripheral base address be-
ing preloaded into R12.
Another opportunity might be to jump to the reset
address from within supervisor mode.

RET MOV R0,PC This depends upon the form of the JSR given on
the previous page that stores the return address
into R0.

STEP Rr,Rt LSR $1,Rr

XOR.C Rt,Rr

Step a Galois implementation of a Linear Feedback
Shift Register, Rr, using taps Rt

STO.b Rx,$addr LDI $addr,Ra

LDI $addr,Rb

LSR $2,Ra

AND $3,Rb

SUB $32,Rb

LOD (Ra),Ry

AND $0ffh,Rx

AND ~$0ffh,Ry

ROL Rb,Rx

OR Rx,Ry

STO Ry,(Ra)

This CPU and it’s bus are not optimized for byte-
wise operations.
Note that in this example, $addr is a byte-wise
address, whereas in all of our other examples it is
a 32-bit word address. This also limits the address
space of character accesses from 16 MB down to
4MB.F Further, this instruction implies a byte or-
dering, such as big or little endian.

SWAP Rx,Ry XOR Ry,Rx

XOR Rx,Ry

XOR Ry,Rx

While no extra registers are needed, this example
does take 3-clocks.

Table 2.9: Derived Instructions, continued
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TRAP #X LDI $x,R0

AND ~$GIE,CC

This works because whenever a user lowers the
$GIE flag, it sets a TRAP bit within the CC regis-
ter. Therefore, upon entering the supervisor state,
the CPU only need check this bit to know that it
got there via a TRAP. The trap could be made
conditional by making the LDI and the AND con-
ditional. In that case, the assembler would qui-
etly turn the LDI instruction into an LDILO and
LDIHI pair, but the effect would be the same.

TS Rx,Ry,(Rz) LDI 1,Rx

LOCK

LOD (Rz),Ry

STO Rx,(Rz)

A test and set instruction. The LOCK instruction
insures that the next two instructions lock the bus
between the instructions, so no one else can use it.
Thus guarantees that the operation is atomic.

TST Rx TST $-1,Rx Set the condition codes based upon Rx. Could also
do a CMP $0,Rx, ADD $0,Rx, SUB $0,Rx, etc,
AND $-1,Rx, etc. The TST and CMP approaches
won’t stall future pipeline stages looking for the
value of Rx. (Future versions of the assembler
may shorten this to a TST Rx instruction.)

WAIT Or $GIE | $SLEEP,CC Wait until the next interrupt, then jump to super-
visor/interrupt mode.

Table 2.10: Derived Instructions, continued
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2.14 Interrupt Handling

The Zip CPU does not maintain any interrupt vector tables. If an interrupt takes place, the CPU
simply switches to interrupt mode. The supervisor code continues in this interrupt mode from where
it left off before, after executing a return to userspace RTU instruction.

At this point, the supervisor code needs to determine first whether an interrupt has occurred,
and then whether it is in interrupt mode due to an exception and handle each case appropriately.

2.15 Pipeline Stages

As mentioned in the introduction, and highlighted in Fig. 1.1, the Zip CPU supports a five stage
pipeline.

1. Prefetch: Reads instruction from memory and into a cache, if so configured. This stage is
actually pipelined itself, and so it will stall if the PC ever changes. Stalls are also created here
if the instruction isn’t in the prefetch cache.

The Zip CPU supports one of three prefetch methods, depending upon a flag set at build time
within the cpudefs.v file. The simplest is a non–cached implementation of a prefetch. This
implementation is fairly small, and ideal for users of the Zip CPU who need the extra space
on the FPGA fabric. However, because this non–cached version has no cache, the maximum
number of instructions per clock is limited to about one per five.

The second prefetch module is a pipelined prefetch with a cache. This module tries to keep the
instruction address within a window of valid instruction addresses. While effective, it is not a
traditional cache implementation. One unique feature of this cache implementation, however,
is that it can be cleared in a single clock. A disappointing feature, though, was that it needs
an extra internal pipeline stage to be implemented.

The third prefetch and cache module implements a more traditional cache. While the resulting
code tends to be twice as fast as the pipelined cache architecture, this implementation uses a
large amount of distributed FPGA RAM to be successful. This then inflates the Zip CPU’s
FPGA usage statistics.

2. Decode: Decodes an instruction into OpCode, register(s) to read, and immediate offset. This
stage also determines whether the flags will be set or whether the result will be written back.

3. Read Operands: Read registers and apply any immediate values to them. There is no
means of detecting or flagging arithmetic overflow or carry when adding the immediate to the
operand. This stage will stall if any source operand is pending.

4. Split into one of four tracks: An ALU track which will accomplish a simple instruction, the
MemOps stage which handles LOD (load) and STO (store) instructions, the divide unit, and
the floating point unit.

• Loads will stall instructions in the decode stage until the entire pipeline until complete,
lest a register be read in the read operands stage only to be updated unseen by the Load.

• Condition codes are available upon completion of the ALU, divide, or FPU stage.
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clk

PF I4 IA IB IC ID IE IF

I3 IA IB ID IE

I2 IA IB ID

ALU I1 IA IB

WB B IA IB

Figure 2.4: A conditional branch generates 4 stall cycles

• Issuing a non–pipelined memory instruction to the memory unit while the memory unit
is busy will stall the entire pipeline.

5. Write-Back: Conditionally write back the result to the register set, applying the condition.
This routine is quad-entrant: either the ALU, the memory, the divide, or the FPU may write
back a register. The only design rule is that no more than a single register may be written
back in any given clock.

The Zip CPU does not support out of order execution. Therefore, if the memory unit stalls,
every other instruction stalls. The same is true for divide or floating point instructions–all other
instructions will stall while waiting for these to complete. Memory stores, however, can take place
concurrently with non–memory operations, although memory reads (loads) cannot.

2.16 Pipeline Stalls

The processing pipeline can and will stall for a variety of reasons. Some of these are obvious, some
less so. These reasons are listed below:

• When the prefetch cache is exhausted

This reason should be obvious. If the prefetch cache doesn’t have the instruction in memory,
the entire pipeline must stall until an instruction can be made ready. In the case of the
pipefetch windowed approach to the prefetch cache, this means the pipeline will stall until
enough of the prefetch cache is loaded to support the next instruction. In the case of the more
traditional pfcache approach, the entire cache line must fill before instruction execution can
continue.

• While waiting for the pipeline to load following any taken branch, jump, return from interrupt
or switch to interrupt context (4 stall cycles)

Fig. 2.4 illustrates the situation for a conditional branch. In this case, the branch instruction,
BC, is nominally followed by instructions I1 and so forth. However, since the branch is taken,
the next instruction must be IA. Therefore, the pipeline needs to be cleared and reloaded.
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clk

PF BR I1 IA IB IC ID IE IF

DC BR CLR IA IB IC ID IE

BR IA IB IC ID

ALU BR IA IB IC

WB BR IA IB

Figure 2.5: An expedited branch costs a single stall cycle

Given that there are five stages to the pipeline, that accounts for the four stalls. (Were the
pipefetch cache chosen, there would be another stall internal to the pipefetch cache.)

The Zip CPU handles MOV $X(PC),PC, ADD $X,PC, and LDI $X,PC instructions specially, how-
ever. These instructions, when not conditioned on the flags, can execute with only a single
stall cycle, such as is shown in Fig. 2.5.3 In this example, BR is a branch always taken, I1 is
the instruction following the branch in memory, while IA is the first instruction at the branch
address. (CLR denotes a clear–pipeline operation, and does not represent any instruction.)

• When reading from a prior register while also adding an immediate offset

1. OPCODE ?,RA

2. (stall)

3. OPCODE I+RA,RB

Since the addition of the immediate register within OpB decoding gets applied during the read
operand stage so that it can be nicely settled before the ALU, any instruction that will write
back an operand must be separated from the opcode that will read and apply an immediate
offset by one instruction. The good news is that this stall can easily be mitigated by proper
scheduling. That is, any instruction that does not add an immediate to RA may be scheduled
into the stall slot.

This is also the reason why, when setting up a stack frame, the top of the stack frame is used
first: it eliminates this stall cycle. Hence, to save registers at the top of a procedure, one would
write:

1. SUB 2,SP

2. STO R1,(SP)

3. STO R2,1(SP)

3Note that when using the pipefetch cache, this requires an additional stall cycle due to that cache’s implemen-

tation.
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Had R1 instead been stored at 1(SP) as the top of the stack, there would’ve been an extra
stall in setting up the stack frame.

• When reading from the CC register after setting the flags

1. ALUOP RA,RB ; Ex: a compare opcode

2. (stall)

3. TST sys.ccv,CC

4. BZ somewhere

The reason for this stall is simply performance: many of the flags are determined via combina-
torial logic during the writeback cycle. Trying to then place these into the input for one of the
operands for an ALU instruction during the same cycle created a time delay loop that would
no longer execute in a single 100 MHz clock cycle. (The time delay of the multiply within the
ALU wasn’t helping either . . . ).

This stall may be eliminated via proper scheduling, by placing an instruction that does not
set flags in between the ALU operation and the instruction that references the CC register.
For example, MOV $addr+PC,uPC followed by an RTU (OR $GIE,CC) instruction will not incur
this stall, whereas an OR $BREAKEN,CC followed by an OR $STEP,CC will incur the stall, while
a LDI $BREAKEN|$STEP,CC will not since it doesn’t read the condition codes before executing.

• When waiting for a memory read operation to complete

1. LOD address,RA

2. (multiple stalls, bus dependent, 4 clocks best)

3. OPCODE I+RA,RB

Remember, the Zip CPU does not support out of order execution. Therefore, anytime the
memory unit becomes busy both the memory unit and the ALU must stall until the memory
unit is cleared. This is illustrated in Fig. 2.6, since it is especially true of a load instruction,
which must still write its operand back to the register file. Further, note that on a pipelined
memory operation, the instruction must stall in the decode operand stage, lest it try to read
a result from the register file before the load result has been written to it. Finally, note that
there is an extra stall at the end of the memory cycle, so that the memory unit will be idle for
two clocks before an instruction will be accepted into the ALU. Store instructions are different,
as shown in Fig. 2.7, since they can be busy with the bus without impacting later write back
pipeline stages. Hence, only loads stall the pipeline.

This, of course, also assumes that the memory being accessed is a single cycle memory and that
there are no stalls to get to the memory. Slower memories, such as the Quad SPI flash, will
take longer–perhaps even as long as forty clocks. During this time the CPU and the external
bus will be busy, and unable to do anything else. Likewise, if it takes a couple of clock cycles
for the bus to be free, as shown in both Figs. 2.6 and 2.7, there will be stalls.

• Memory operation followed by a memory operation

1. STO address,RA
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clk

PF LC I1 I2 I3 I4 I5 I6

DC LB LC I1 I2 I3 I4 I5

OP LA LB LC I1 I2 I3 I4

ALU I1 I2 I3

MEM L

C C

ADR LA LB LC

A

DA A LA LB LC

WB LA LB LC I1 I2

Figure 2.6: Pipeline handling of a load instruction
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clk

PF SC I1 I2 I3 I4 I5 I6 I7

DC SB SC I1 I2 I3 I4 I5 I6

OP SA SB SC I1 I2 I3 I4 I5

ALU I1 I2 I3 I4

MEM e

C C

ADR A

DA A A

A

WB I1 I2 I3

Figure 2.7: Pipeline handling of a store instruction

2. (multiple stalls, bus dependent, 4 clocks best)

3. LOD address,RB

4. (multiple stalls, bus dependent, 4 clocks best)

In this case, the LOD instruction cannot start until the STO is finished, as illustrated by
Fig. 2.8. With proper scheduling, it is possible to do something in the ALU while the memory
unit is busy with the STO instruction, but otherwise this pipeline will stall while waiting for
it to complete before the load instruction can start.

The Zip CPU does have the capability of supporting pipelined memory access, but only under
the following conditions: all accesses within the pipeline must all be reads or all be writes, all
must use the same register for their address, and there can be no stalls or other instructions
between pipelined memory access instructions. Further, the offset to memory must be increas-
ing by one address each instruction. These conditions work well for saving or storing registers
to the stack. Indeed, if you noticed, both Fig. 2.6 and Fig. 2.7 illustrated pipelined memory
accesses.
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clk

PF I1 I2 I3 I4 I5

DC LB I1 I2 I3 I4

OP SA LB I1 I2 I3

ALU I1 I2

MEM e L

C C

ADR A LB

DA A A

A

DA A LB

WB LB I1

Figure 2.8: Pipeline handling of a store followed by a load instruction
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3.

Peripherals

While the previous chapter describes a CPU in isolation, the Zip System includes a minimum set of
peripherals as well. These peripherals are shown in Fig. 3.1 and described here. They are designed
to make the Zip CPU more useful in an Embedded Operating System environment.

3.1 Interrupt Controller

Perhaps the most important peripheral within the Zip System is the interrupt controller. While
the Zip CPU itself can only handle one interrupt, and has only the one interrupt state: disabled or
enabled, the interrupt controller can make things more interesting.

The Zip System interrupt controller module supports up to 15 interrupts, all controlled from
one register. Bit 31 of the interrupt controller controls overall whether interrupts are enabled (1’b1)
or disabled (1’b0). Bits 16–30 control whether individual interrupts are enabled (1’b1) or disabled
(1’b0). Bit 15 is an indicator showing whether or not any interrupt is active, and bits 0–15 indicate
whether or not an individual interrupt is active.

The interrupt controller has been designed so that bits can be controlled individually without
having any knowledge of the rest of the controller setting. To enable an interrupt, write to the
register with the high order global enable bit set and the respective interrupt enable bit set. No
other bits will be affected. To disable an interrupt, write to the register with the high order global
enable bit cleared and the respective interrupt enable bit set. To clear an interrupt, write a ‘1’ to
that interrupts status pin. Zero’s written to the register have no affect, save that a zero written to
the master enable will disable all interrupts.

As an example, suppose you wished to enable interrupt #4. You would then write to the register
a 0x80100010 to enable interrupt #4 and to clear any past active state. When you later wish to
disable this interrupt, you would write a 0x00100010 to the register. As before, this both disables
the interrupt and clears the active indicator. This also has the side effect of disabling all interrupts,
so a second write of 0x80000000 may be necessary to re-enable any other interrupts.

The Zip System currently hosts two interrupt controllers, a primary and a secondary. The
primary interrupt controller has one (or more) interrupt line(s) which may come from an external
interrupt source, and one interrupt line from the secondary controller. Other primary interrupts
include the system timers, the jiffies interrupt, and the manual cache interrupt. The secondary
interrupt controller maintains an interrupt state for all of the processor accounting counters.
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Figure 3.1: Zip System Peripherals

3.2 Counter

The Zip Counter is a very simple counter: it just counts. It cannot be halted. When it rolls over, it
issues an interrupt. Writing a value to the counter just sets the current value, and it starts counting
again from that value.

Eight counters are implemented in the Zip System for process accounting. This may change in
the future, as nothing as yet uses these counters.

3.3 Timer

The Zip Timer is also very simple: it simply counts down to zero. When it transitions from a one
to a zero it creates an interrupt.

Writing any non-zero value to the timer starts the timer. If the high order bit is set when writing
to the timer, the timer becomes an interval timer and reloads its last start time on any interrupt.
Hence, to mark seconds, one might set the timer to 100 million (the number of clocks per second),
and set the high bit. Ever after, the timer will interrupt the CPU once per second (assuming a
100 MHz clock). This reload capability also limits the maximum timer value to 231 − 1 (about
21 seconds using a 100 MHz clock), rather than 232 − 1.

3.4 Watchdog Timer

The watchdog timer is no different from any of the other timers, save for one critical difference: the
interrupt line from the watchdog timer is tied to the reset line of the CPU. Hence writing a ‘1’ to
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the watchdog timer will always reset the CPU. To stop the Watchdog timer, write a ‘0’ to it. To
start it, write any other number to it—as with the other timers.

While the watchdog timer supports interval mode, it doesn’t make as much sense as it did with
the other timers.

3.5 Bus Watchdog

There is an additional watchdog timer on the Wishbone bus. This timer, however, is hardware
configured and not software configured. The timer is reset at the beginning of any bus transaction,
and only counts clocks during such bus transactions. If the bus transaction takes longer than the
number of counts the timer allots, it will raise a bus error flag to terminate the transaction. This
is useful in the case of any peripherals that are misbehaving. If the bus watchdog terminates a bus
transaction, the CPU may then read from its port to find out which memory location created the
problem.

Aside from its unusual configuration, the bus watchdog is just another implementation of the
fundamental timer described above–stripped down for simplicity.

3.6 Jiffies

This peripheral is motivated by the Linux use of ‘jiffies’ whereby a process can request to be put
to sleep until a certain number of ‘jiffies’ have elapsed. Using this interface, the CPU can read the
number of ‘jiffies’ from the peripheral (it only has the one location in address space), add the sleep
length to it, and write the result back to the peripheral. The zipjiffies peripheral will record
the value written to it only if it is nearer the current counter value than the last current waiting
interrupt time. If no other interrupts are waiting, and this time is in the future, it will be enabled.
(There is currently no way to disable a jiffie interrupt once set, other than to disable the interrupt
line in the interrupt controller.) The processor may then place this sleep request into a list among
other sleep requests. Once the timer expires, it would write the next Jiffy request to the peripheral
and wake up the process whose timer had expired.

Indeed, the Jiffies register is nothing more than a glorified counter with an interrupt. Unlike the
other counters, the Jiffies register cannot be set. Writes to the jiffies register create an interrupt
time. When the Jiffies register later equals the value written to it, an interrupt will be asserted and
the register then continues counting as though no interrupt had taken place.

The purpose of this register is to support alarm times within a CPU. To set an alarm for a
particular process N clocks in advance, read the current Jiffies value, and N , and write it back to
the Jiffies register. The O/S must also keep track of values written to the Jiffies register. Thus,
when an ‘alarm’ trips, it should be removed from the list of alarms, the list should be resorted, and
the next alarm in terms of Jiffies should be written to the register–possibly for a second time.

3.7 Direct Memory Access Controller

The Direct Memory Access (DMA) controller can be used to either move memory from one location
to another, to read from a peripheral into memory, or to write from a peripheral into memory all
without CPU intervention. Further, since the DMA controller can issue (and does issue) pipeline
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wishbone accesses, any DMA memory move will by nature be faster than a corresponding program
accomplishing the same move. To put this to numbers, it may take a program 18 clocks per word
transferred, whereas this DMA controller can move one word in two clocks–provided it has bus
access. (The CPU gets priority over the bus.)

When copying memory from one location to another, the DMA controller will copy in units of a
given transfer length–up to 1024 words at a time. It will read that transfer length into its internal
buffer, and then write to the destination address from that buffer.

When coupled with a peripheral, the DMA controller can be configured to start a memory copy
when any interrupt line going high. Further, the controller can be configured to issue reads from (or
to) the same address instead of incrementing the address at each clock. The DMA completes once
the total number of items specified (not the transfer length) have been transferred.

In each case, once the transfer is complete and the DMA unit returns to idle, the DMA will issue
an interrupt.
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4.

Operation

The Zip CPU, and even the Zip System, is not a System on a Chip (SoC). It needs to be connected
to its operational environment in order to be used. Specifically, some per system adjustments need
to be made:

1. The Zip System depends upon an external 32-bit Wishbone bus. This must exist, and must
be connected to the Zip CPU for it to work.

2. The Zip System needs to be told of its RESET ADDRESS. This is the program counter of the first
instruction following a reset.

3. To conserve logic, you’ll want to set the ADDRESS WIDTH parameter to the number of address
bits on your wishbone bus.

4. Likewise, the LGICACHE parameter sets the number of bits in the instruction cache address.
This means that the instruction cache will have 2LGICACHE locations within it.

5. If you want the Zip System to start up on its own, you will need to set the START HALTED

parameter to zero. Otherwise, if you wish to manually start the CPU, that is if upon reset
you want the CPU start start in its halted, reset state, then set this parameter to one. This
latter configuration is useful for a CPU that should be idle (i.e. halted) until given an explicit
instruction from somewhere else to start.

6. The third parameter to set is the number of interrupts you will be providing from external to
the CPU. This can be anything from one to sixteen, but it cannot be zero. (Set this to 1 and
wire the single interrupt line to a 1’b0 if you do not wish to support any external interrupts.)

7. Finally, you need to place into some wishbone accessible address, whether RAM or (more
likely) ROM, the initial instructions for the CPU.

If you have enabled your CPU to start automatically, then upon power up the CPU will immediately
start executing your instructions, starting at the given RESET ADDRESS.

This is, however, not how I have used the Zip CPU. I have instead used the Zip CPU in a more
controlled environment. For me, the CPU starts in a halted state, and waits to be told to start.
Further, the RESET address is a location in RAM. After bringing up the board I am using, and
further the bus that is on it, the RAM memory is then loaded externally with the program I wish
the Zip System to run. Once the RAM is loaded, I release the CPU. The CPU then runs until either
its halt condition or an exception occurrs in supervisor mode, at which point its task is complete.

Eventually, I intend to place an operating system onto the ZipSystem, I’m just not there yet.
The rest of this chapter examines some common programming models, and how they might be

applied to the Zip System, and then finish with a couple of examples.

www.opencores.com Rev. 0.7 32



Gisselquist Technology, LLC Specification 2015/12/23

supervisor idle:

; While not strictly required, the following move helps to
; ensure that the prefetch doesn’t try to fetch an instruction
; outside of the CPU’s address space when it switches to user
; mode.
MOV supervisor idle continue,uPC

; Put the processor into user mode and to sleep in the same
; instruction.
OR $SLEEP|$GIE,CC

supervisor idle continue:

; Now, if we haven’t done this inline, we need to return
; to whatever function called us.
RETN

Table 4.1: Executing an idle from supervisor mode

4.1 System High

The easiest and simplest way to run the Zip CPU is in the system high mode. In this mode, the
CPU runs your program in supervisor mode from reboot to power down, and is never interrupted.
You will need to poll the interrupt controller to determine when any external condition has become
active. This mode is useful, and can handle many microcontroller tasks.

Even better, in system high mode, all of the user registers are available to the system high
program as variables. Accessing these registers can be done in a single clock cycle, which would
move them to the active register set or move them back. While this may seem like a load or store
instruction, none of these register accesses will suffer from memory delays.

The one thing that cannot be done in supervisor mode is a wait for interrupt instruction. This,
however, is easily rectified by jumping to a user task within the supervisors memory space, such as
Tbl. 4.1.

4.2 Traditional Interrupt Handling

Although the Zip CPU does not have a traditional interrupt architecture, it is possible to create
the more traditional interrupt approach via software. In this mode, the programmable interrupt
controller is used together with the supervisor state to create the illusion of more traditional interrupt
handling.

To set this up, upon reboot the supervisor task:

1. Creates a (single) user context, a user stack, and sets the user program counter to the entry
of the user task

2. Creates a task table of ISR entries

3. Enables the master interrupt enable via the interrupt controller, albeit without enabling any
of the fifteen potential underlying interrupts.
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4. Switches to user mode, as the first part of the while loop in Tbl. 4.2.

We can work through the interrupt handling process by examining Tbl. 4.2. First, remember,
the CPU is always running either the user or the supervisor context. Once the supervisor switches
to user mode, control does not return until either an interrupt or a trap has taken place. (Okay,
there’s also the possibility of a bus error, or an illegal instruction such as an unimplemented floating
point instruction—but for now we’ll just focus on the trap instruction.) Therefore, if the trap bit
isn’t set, then we know an interrupt has taken place.

To process an interrupt, we steal the user’s stack: the PC and CC registers are saved on the
stack, as outlined in Tbl. 4.3. This is much cheaper than the full context swap of a preemptive
multitasking kernel, but it also depends upon the ISR saving any state it uses. Further, if multiple
ISR’s get called at once, this looses its optimality property very quickly.

As Sec. 3.1 discusses, the top of the PIC register stores which interrupts are enabled, and the
bottom stores which have tripped. (Interrupts may trip without being enabled, they just will not
generate an interrupt to the CPU.) Our first step is to query the register to find out our interrupt
state, and then to disable any interrupts that have tripped. To do that, we write a one to the
enable half of the register while also clearing the top bit (master interrupt enable). This has the
consequence of disabling any and all further interrupts, not just the ones that have tripped. Hence,
upon completion, we re–enable the master interrupt bit again. Finally, we keep track of which
interrupts have tripped.

Using the bit mask of interrupts that have tripped, we walk through all fifteen possible interrupts.
If there is an ISR installed, we acknowledge and reset the interrupt within the PIC, and then call
the ISR. The ISR, however, cannot re–enable its interrupt without re-enabling the master interrupt
bit. Thus, to keep things simple, when the ISR is finished it places its interrupt mask back into
R0, or clears R0. This tells the supervisor mode process which interrupts to re–enable. Any other
registers that the ISR uses must be saved and restored. (This is only truly optimal if only a single
ISR is called.) As a final instruction, the ISR clears the GIE bit executing a user trap. (Remember,
the Zip CPU has no RETI instruction to restore the stack and return to userland. It needs to go
through the supervisor mode to get there.)

Then, once all interrupts are handled, the user context is restored in a fashion similar to Tbl. 4.4.
Again, this is short and sweet simply because any other registers that needed saving were saved within
the ISR.

There you have it: the Zip CPU, with its non-traditional interrupt architecture, can still process
interrupts in a very traditional fashion.

4.3 Example: Idle Task

One task every operating system needs is the idle task, the task that takes place when nothing else
can run. On the Zip CPU, this task is quite simple, and it is shown in assemble in Tbl. 4.5. When
this task runs, the CPU will fill up all of the pipeline stages up the ALU. The WAIT instruction,
upon leaving the ALU, places the CPU into a sleep state where nothing more moves. Sure, there
may be some more settling, the pipe cache continue to read until full, other instructions may issue
until the pipeline fills, but then everything will stall. Then, once an interrupt takes place, control
passes to the supervisor task to handle the interrupt. When control passes back to this task, it will
be on the next instruction. Since that next instruction sends us back to the top of the task, the idle
task thus does nothing but wait for an interrupt.
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while(true) {
rtu();

if (trap) { // Here, we allow users to install ISRs, or
// whatever else they may wish to do in supervisor mode.

} else {
volatile int *pic = PIC ADDRESS;

// Save the user context before running any ISRs. This could easily be
// implemented as an inline assembly routine or macro
SAVE PARTIAL CONTEXT;

// At this point, we know an interrupt has taken place: Ask the programmable
// interrupt controller (PIC) which interrupts are enabled and which are active.
int picv = *pic;

// Turn off all active interrupts
// Globally disable interrupt generation in the process
int active = (picv >> 16) & picv & 0x07fff;

*pic = (active<<16);

// We build a mask of interrupts to re-enable in picv.
picv = 0;

for(int i=0,msk=1; i<15; i++, msk<<=1) {
if ((active & msk)&&(isr table[i])) {

mov(isr table[i],uPC);

// Acknowledge this particular interrupt. While we could acknowledge all
// interrupts at once, by acknowledging only those with ISR’s we allow
// the user process to use peripherals manually, and to manually check
// whether or no those other interrupts had occurred.
*pic = msk;

rtu();

// The ISR will only exit on a trap in the Zip archtecture. There is
// no RETI instruction. Since the PIC holds all interrupts disabled,
// there is no need to check for further interrupts.
//
// The tricky part is that, because of how the PIC is built, the ISR cannot
// re-enable its own interrupt without re-enabling all interrupts. Hence, we
// look at R0 upon ISR completion to know if an interrupt needs to be
// re-enabled.
mov(uR0,tmp);

picv |= (tmp & 0x7fff) << 16;

}
}
RESTORE PARTIAL CONTEXT;

// Re-activate all (requested) interrupts
*pic = picv | 0x80000000;

}
}

Table 4.2: Traditional Interrupt handling
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SAVE PARTIAL CONTEXT:
; We save R0, CC, and PC only
MOV -3(uSP),R3

MOV uR0,R0

MOV uCC,R1

MOV uPC,R2

STO R0,(R3) ; Exploit memory pipelining:
STO R1,1(R3) ; All instructions write to stack
STO R2,2(R3) ; All offsets increment by one
MOV R3,uSP ; Return the updated stack pointer

Table 4.3: Example Saving Minimal User Context

RESTORE PARTIAL CONTEXT:
; We retore R0, CC, and PC only
MOV uSP,R3 ; Return the updated stack pointer
LOD R0,(R3),R0 ; Exploit memory pipelining:
LOD R1,1(R3),R1 ; All instructions write to stack
LOD R2,2(R3),R2 ; All offsets increment by one
MOV R0,uR0

MOV R1,uCC

MOV R2,uPC

MOV 3(R3),uSP

Table 4.4: Example Restoring Minimal User Context

idle task:

; Wait for the next interrupt, then switch to supervisor task
WAIT

; When we come back, it’s because the supervisor wishes to
; wait for an interrupt again, so go back to the top.
BRA idle task

Table 4.5: Example Idle Loop
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void memcp(void *dest, void *src, int len) {
for(int i=0; i<len; i++)

*dest++ = *src++;

}

Table 4.6: Example Memory Copy code in C

This should be the lowest priority task, the task that runs when nothing else can. It will help
lower the FPGA power usage overall—at least its dynamic power usage.

4.4 Example: Memory Copy

One common operation is that of a memory move or copy. Consider the C code shown in Tbl. 4.6.
This same code can be translated in Zip Assembly as shown in Tbl. 4.7. This example points out
several things associated with the Zip CPU. First, a straightforward implementation of a for loop
is not the fastest loop structure. For this reason, we have placed the test to continue at the end.
Second, all pointers are void pointers to arbitrary 32–bit data types. The Zip CPU does not have
explicit support for smaller or larger data types, and so this memory copy cannot be applied at a
byte level. Third, we’ve optimized the conditional jump to a return instruction into a conditional
return instruction.

4.5 Example: Context Switch

Fundamental to any multiprocessing system is the ability to switch from one task to the next. In the
ZipSystem, this is accomplished in one of a couple ways. The first step is that an interrupt happens.
Anytime an interrupt happens, the CPU needs to execute the following tasks in supervisor mode:

1. Check for a trap instruction, or other user exception such as a break, bus error, division by
zero error, or floating point exception. That is, if the user process needs attending then we
may not wish to adjust the context, check interrupts, or call the scheduler. Tbl. 4.8 shows the
rudiments of this code, while showing nothing of how the actual trap would be implemented.

You may also wish to note that the instruction before the first instruction in our context swap
must be a return to userspace instruction. Remember, the supervisor process is re–entered
where it left off. This is different from many other processors that enter interrupt mode at
some vector or other. In this case, we always enter supervisor mode right where we last left.1

2. Capture user counters. If the operating system is keeping track of system usage via the
accounting counters, those counters need to be copied and accumulated into some master
counter at this point.

1The one exception to this rule is upon reset where supervisor mode is entered at a pre–programmed wishbone

memory address.
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memcp:
; R0 = *dest, R1 = *src, R2 = LEN, R3 = return addr
; The following will operate in 12N + 19 clocks.
CMP 0,R2

MOV.Z R3,PC ; A conditional return
SUB 1,SP ; Create a stack frame
STO R4,(SP) ; and a local variable
; (4 stalls, cannot be further scheduled away)

loop:
LOD (R1),R4

; (4 stalls, cannot be scheduled away)
STO R4,(R0) ; (4 schedulable stalls, has no impact now)
SUB 1,R2

BZ memcpend

ADD 1,R0

ADD 1,R1

BRA loop

; (1 stall on a BRA instruction)
memcpend: LOD (SP),R4

; (4 stalls, cannot be further scheduled away)
ADD 1,SP

JMP R3

; (4 stalls)

Table 4.7: Example Memory Copy code in Zip Assembly

return to user:

; The instruction before the context switch processing must
; be the RTU instruction that enacted user mode in the first
; place. We show it here just for reference.
RTU

trap check:

MOV uCC,R0

TST $TRAP |$BUSERR |$DIVE |$FPE,R0
BNZ swap out

; Do something here to execute the trap
; Don’t need to call the scheduler, so we can just return
BRA return to user

Table 4.8: Checking for whether the user task needs our attention
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swap out:

MOV -15(uSP),R5

STO R5,stack(R12)

MOV uR0,R0

MOV uR1,R1

MOV uR2,R2

MOV uR3,R3

MOV uR4,R4

STO R0,(R5) ; Exploit memory pipelining:
STO R1,1(R5) ; All instructions write to stack
STO R2,2(R5) ; All offsets increment by one
STO R3,3(R5) ; Longest pipeline is 5 cycles.
STO R4,4(R5)

. . . ; Need to repeat for all user registers
MOV uR10,R0

MOV uR11,R1

MOV uR12,R2

MOV uCC,R3

MOV uPC,R4

STO R0,10(R5)

STO R1,11(R5)

STO R2,12(R5)

STO R3,13(R5)

STO R4,14(R5)

; We can skip storing the stack, uSP, since it’ll be stored
; elsewhere (in the task structure)

Table 4.9: Example Storing User Task Context

3. Preserve the old context. This involves pushing all the user registers onto the user stack and
then copying the resulting stack address into the tasks task structure, as shown in Tbl. 4.9.
For the sake of discussion, we assume the supervisor maintains a pointer to the current task’s
structure in supervisor register R12, and that stack is an offset to the beginning of this
structure indicating where the stack pointer is to be kept within it.

For those who are still interested, the full code for this context save can be found as an
assembler macro within the assembler include file, sys.i.

4. Reset the watchdog timer. If you are using the watchdog timer, it should be reset on a context
swap, to know that things are still working. Example code for this is shown in Tbl. 4.10.

5. Interrupt handling. An interrupt handler within the Zip System is nothing more than a task.
At context swap time, the supervisor needs to disable all of the interrupts that have tripped,
and then enable all of the tasks that would deal with each of these interrupts. These can be
user tasks, run at higher priority than any other user tasks. Either way, they will need to
re–enable their own interrupt themselves, if the interrupt is still relevant.
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‘define WATCHDOG ADDRESS 32’hc000 0002

‘define WATCHDOG TICKS 32’d1 000 000 ; = 10 ms
LDI WATCHDOG ADDRESS,R0

LDI WATCHDOG TICKS,R1

STO R1,(R0)

Table 4.10: Example Watchdog Reset

An example of this master interrut handling is shown in Tbl. 4.11.

6. Calling the scheduler. This needs to be done to pick the next task to switch to. It may be an
interrupt handler, or it may be a normal user task. From a priority standpoint, it would make
sense that the interrupt handlers all have a higher priority than the user tasks, and that once
they have been called the user tasks may then be called again. If no task is ready to run, run
the idle task to wait for an interrupt.

This suggests a minimum of four task priorities:

(a) Interrupt handlers, executed with their interrupts disabled

(b) Device drivers, executed with interrupts re-enabled

(c) User tasks

(d) The idle task, executed when nothing else is able to execute

For our purposes here, we’ll just assume that a pointer to the current task is maintained in
R12, that a JSR scheduler is called, and that the next current task is likewise placed into
R12.

7. Restore the new tasks context. Given that the scheduler has returned a task that can be run
at this time, the stack pointer needs to be pulled out of the tasks task structure, placed into
the user register, and then the rest of the user registers need to be popped back off of the
stack to run this task. An example of this is shown in Tbl. 4.12, assuming as before that the
task pointer is found in supervisor register R12. As with storing the user context, the full code
associated with restoring the user context can be found in the assembler include file, sys.i.

8. Clear the userspace accounting registers. In order to keep track of per process system usage,
these registers need to be cleared before reactivating the userspace process. That way, upon
the next interrupt, we’ll know how many clocks the userspace program has encountered, and
how many instructions it was able to issue in those many clocks.

9. Jump back to the instruction just before saving the last tasks context, because that location
in memory contains the return from interrupt command that we are going to need to execute,
in order to guarantee that we return back here again.
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pre handler:

LDI PIC ADDRESS,R0

; Start by grabbing the interrupt state from the interrupt
; controller. We’ll store this into the register R7 so that
; we can keep and preserve this information for the scheduler
; to use later.
LOD (R0),R1

MOV R1,R7

; As a next step, we need to acknowledge and disable all active
; interrupts. We’ll start by calculating all of our active
; interrupts.
AND 0x07fff,R1

; Put the active interrupts into the upper half of R1
ROL 16,R1

LDILO 0x0ffff,R1

AND R7,R1

; Acknowledge and disable active interrupts
; This also disables all interrupts from the controller, so
; we’ll need to re-enable interrupts in general shortly
STO R1,(R0)

; We leave our active interrupt mask in R7 so the scheduler can
; release any tasks that depended upon them.

Table 4.11: Example checking for active interrupts
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swap in:

LOD stack(R12),R5

MOV 15(R1),uSP

; Be sure to exploit the memory pipelining capability
LOD (R5),R0

LOD 1(R5),R1

LOD 2(R5),R2

LOD 3(R5),R3

LOD 4(R5),R4

MOV R0,uR0

MOV R1,uR1

MOV R2,uR2

MOV R3,uR3

MOV R4,uR4

. . . ; Need to repeat for all user registers
LOD 10(R5),R0

LOD 11(R5),R1

LOD 12(R5),R2

LOD 13(R5),R3

LOD 14(R5),R4

MOV R0,uR10

MOV R1,uR11

MOV R2,uR12

MOV R3,uCC

MOV R4,uPC

BRA return to user

Table 4.12: Example Restoring User Task Context
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5.

Registers

The ZipSystem registers fall into two categories, ZipSystem internal registers accessed via the
ZipCPU shown in Tbl. 5.1, and the two debug registers shown in Tbl. 5.2.

Name Address Width Access Description

PIC 0xc0000000 32 R/W Primary Interrupt Controller
WDT 0xc0000001 32 R/W Watchdog Timer

0xc0000002 32 R Address of last bus error
CTRIC 0xc0000003 32 R/W Secondary Interrupt Controller
TMRA 0xc0000004 32 R/W Timer A
TMRB 0xc0000005 32 R/W Timer B
TMRC 0xc0000006 32 R/W Timer C
JIFF 0xc0000007 32 R/W Jiffies
MTASK 0xc0000008 32 R/W Master Task Clock Counter
MMSTL 0xc0000009 32 R/W Master Stall Counter
MPSTL 0xc000000a 32 R/W Master Pre–Fetch Stall Counter
MICNT 0xc000000b 32 R/W Master Instruction Counter
UTASK 0xc000000c 32 R/W User Task Clock Counter
UMSTL 0xc000000d 32 R/W User Stall Counter
UPSTL 0xc000000e 32 R/W User Pre–Fetch Stall Counter
UICNT 0xc000000f 32 R/W User Instruction Counter
DMACTRL 0xc0000010 32 R/W DMA Control Register
DMALEN 0xc0000011 32 R/W DMA total transfer length
DMASRC 0xc0000012 32 R/W DMA source address
DMADST 0xc0000013 32 R/W DMA destination address

Table 5.1: Zip System Internal/Peripheral Registers

Name Address Width Access Description

ZIPCTRL 0 32 R/W Debug Control Register
ZIPDATA 1 32 R/W Debug Data Register

Table 5.2: Zip System Debug Registers
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Bit # Access Description

31 R/W Master Interrupt Enable
30. . . 16 R/W Interrupt Enables, write ‘1’ to change
15 R Current Master Interrupt State
15. . . 0 R/W Input Interrupt states, write ‘1’ to clear

Table 5.3: Interrupt Controller Register Bits

5.1 Peripheral Registers

The peripheral registers, listed in Tbl. 5.1, are shown in the CPU’s address space. These may be
accessed by the CPU at these addresses, and when so accessed will respond as described in Chapt. 3.
These registers will be discussed briefly again here.

5.1.1 Interrupt Controller(s)

The Zip CPU Interrupt controller has four different types of bits, as shown in Tbl. 5.3. The high
order bit, or bit–31, is the master interrupt enable bit. When this bit is set, then any time an
interrupt occurs the CPU will be interrupted and will switch to supervisor mode, etc.

Bits 30 . . . 16 are interrupt enable bits. Should the interrupt line go hi while enabled, an interrupt
will be generated. (All interrupts are positive edge triggered.) To set an interrupt enable bit, one
needs to write the master interrupt enable while writing a ‘1’ to this the bit. To clear, one need only
write a ‘0’ to the master interrupt enable, while leaving this line high.

Bits 15. . . 0 are the current state of the interrupt vector. Interrupt lines trip when they go high,
and remain tripped until they are acknowledged. If the interrupt goes high for longer than one pulse,
it may be high when a clear is requested. If so, the interrupt will not clear. The line must go low
again before the status bit can be cleared.

As an example, consider the following scenario where the Zip CPU supports four interrupts,
3. . . 0.

1. The Supervisor will first, while in the interrupts disabled mode, write a 32’h800f000f to the
controller. The supervisor may then switch to the user state with interrupts enabled.

2. When an interrupt occurs, the supervisor will switch to the interrupt state. It will then cycle
through the interrupt bits to learn which interrupt handler to call.

3. If the interrupt handler expects more interrupts, it will clear its current interrupt when it is
done handling the interrupt in question. To do this, it will write a ‘1’ to the low order interrupt
mask, such as writing a 32’h0000 0001.

4. If the interrupt handler does not expect any more interrupts, it will instead clear the interrupt
from the controller by writing a 32’h0001 0001 to the controller.

5. Once all interrupts have been handled, the supervisor will write a 32’h8000 0000 to the
interrupt register to re-enable interrupt generation.
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Bit # Access Description

31 R/W Auto-Reload
30. . . 0 R/W Current timer value

Table 5.4: Timer Register Bits

Bit # Access Description

31. . . 0 R Current jiffy value
31. . . 0 W Value/time of next interrupt

Table 5.5: Jiffies Register Bits

6. The supervisor should also check the user trap bit, and possible soft interrupt bits here, but
this action has nothing to do with the interrupt control register.

7. The supervisor will then leave interrupt mode, possibly adjusting whichever task is running,
by executing a return from interrupt command.

5.1.2 Timer Register

Leaving the interrupt controller, we show the timer registers bit definitions in Tbl. 5.4. As you may
recall, the timer just counts down to zero and then trips an interrupt. Writing to the current timer
value sets that value, and reading from it returns that value. Writing to the current timer value
while also setting the auto–reload bit will send the timer into an auto–reload mode. In this mode,
upon setting its interrupt bit for one cycle, the timer will also reset itself back to the value of the
timer that was written to it when the auto–reload option was written to it. To clear and stop the
timer, just simply write a ‘32’h00’ to this register.

5.1.3 Jiffies

The Jiffies register is somewhat similar in that the register always changes. In this case, the register
counts up, whereas the timer always counted down. Reads from this register, as shown in Tbl. 5.5,
always return the time value contained in the register. Writes greater than the current Jiffy value,
that is where the new value minus the old value is greater than zero while ignoring truncation, will
set a new Jiffy interrupt time. At that time, the Jiffy vector will clear, and another interrupt time
may either be written to it, or it will just continue counting without activating any more interrupts.

5.1.4 Performance Counters

The Zip CPU also supports several counter peripherals, mostly in the way of process accounting.
This peripherals have a single register associated with them, shown in Tbl. 5.6. Writes to this
register set the new counter value. Reads read the current counter value.

The current design operation of these counters is that of performance counting. Two sets of four
registers are available for keeping track of performance. The first is a task counter. This just counts

www.opencores.com Rev. 0.7 45



Gisselquist Technology, LLC Specification 2015/12/23

Bit # Access Description

31. . . 0 R/W Current counter value

Table 5.6: Counter Register Bits

clock ticks. The second counter is a prefetch stall counter, then an master stall counter. These allow
the CPU to be evaluated as to how efficient it is. The fourth and final counter is an instruction
counter, which counts how many instructions the CPU has issued.

It is envisioned that these counters will be used as follows: First, every time a master counter
rolls over, the supervisor (Operating System) will record the fact. Second, whenever activating a
user task, the Operating System will set the four user counters to zero. When the user task has
completed, the Operating System will read the timers back off, to determine how much of the CPU
the process had consumed. To keep this accurate, the user counters will only increment when the
GIE bit is set to indicate that the processor is in user mode.

5.1.5 DMA Controller

The final peripheral to discuss is the DMA controller. This controller has four registers. Of these
four, the length, source and destination address registers should need no further explanation. They
are full 32–bit registers specifying the entire transfer length, the starting address to read from, and
the starting address to write to. The registers can be written to when the DMA is idle, and read at
any time. The control register, however, will need some more explanation.

The bit allocation of the control register is shown in Tbl. 5.7. This control register has been
designed so that the common case of memory access need only set the key and the transfer length.
Hence, writing a 32’h0fed03ff to the control register will start any memory transfer. On the other
hand, if you wished to read from a serial port (constant address) and put the result into a buffer
every time a word was available, you might wish to write 32’h2fed8000–this assumes, of course, that
you have a serial port wired to the zero bit of this interrupt control. (The DMA controller does not
use the interrupt controller, and cannot clear interrupts.) As a third example, if you wished to write
to an external FIFO anytime it was less than half full (had fewer than 512 items), and interrupt line
2 indicated this condition, you might wish to issue a 32’h1fed8dff to this port.

5.2 Debug Port Registers

Accessing the Zip System via the debug port isn’t as straight forward as accessing the system via
the wishbone bus. The debug port itself has been reduced to two addresses, as outlined earlier in
Tbl. 5.2. Access to the Zip System begins with the Debug Control register, shown in Tbl. 5.8.

The first step in debugging access is to determine whether or not the CPU is halted, and to halt
it if not. To do this, first write a ‘1’ to the Command HALT bit. This will halt the CPU and place
it into debug mode. Once the CPU is halted, the stall status bit will drop to zero. Thus, if bit 10
is high and bit 9 low, the debug port is open to examine the internal state of the CPU.

At this point, the external debugger may examine internal state information from within the
CPU. To do this, first write again to the command register a value (with command halt still high)
containing the address of an internal register of interest in the bottom 6 bits. Internal registers that
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Bit # Access Description

31 R DMA Active
30 R Wishbone error, transaction aborted. This bit is cleared the next

time this register is written to.
29 R/W Set to ‘1’ to prevent the controller from incrementing the source

address, ‘0’ for normal memory copy.
28 R/W Set to ‘1’ to prevent the controller from incrementing the desti-

nation address, ‘0’ for normal memory copy.
27 . . . 16 W The DMA Key. Write a 12’hfed to these bits to start the activate

any DMA transfer.
27 R Always reads ‘0’, to force the deliberate writing of the key.
26 . . . 16 R Indicates the number of items in the transfer buffer that have yet

to be written.
15 R/W Set to ‘1’ to trigger on an interrupt, or ‘0’ to start immediately

upon receiving a valid key.
14. . . 10 R/W Select among one of 32 possible interrupt lines.
9. . . 0 R/W Intermediate transfer length minus one. Thus, to transfer one

item at a time set this value to 0. To transfer 1024 at a time, set
it to 1024.

Table 5.7: DMA Control Register Bits

Bit # Access Description

31. . . 14 R External interrupt state. Bit 14 is valid for one interrupt only,
bit 15 for two, etc.

13 R CPU GIE setting
12 R CPU is sleeping
11 W Command clear PF cache
10 R/W Command HALT, Set to ‘1’ to halt the CPU
9 R Stall Status, ‘1’ if CPU is busy (i.e., not halted yet)
8 R/W Step Command, set to ‘1’ to step the CPU, also sets the halt bit
7 R Interrupt Request Pending
6 R/W Command RESET
5. . . 0 R/W Debug Register Address

Table 5.8: Debug Control Register Bits
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may be accessed this way are listed in Tbl. 5.9. Primarily, these “registers” include access to the
entire CPU register set, as well as the internal peripherals. To read one of these registers once the
address is set, simply issue a read from the data port. To write one of these registers or peripheral
ports, simply write to the data port after setting the proper address.

In this manner, all of the CPU’s internal state may be read and adjusted.
As an example of how to use this, consider what would happen in the case of an external break

point. If and when the CPU hits a break point that causes it to halt, the Command HALT bit will
activate on its own, the CPU will then raise an external interrupt line and wait for a debugger to
examine its state. After examining the state, the debugger will need to remove the breakpoint by
writing a different instruction into memory and by writing to the command register while holding
the clear cache, command halt, and step CPU bits high, (32’hd00). The debugger may then replace
the breakpoint now that the CPU has gone beyond it, and clear the cache again (32’h500).

To leave this debug mode, simply write a ‘32’h0’ value to the command register.
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Name Address Width Access Description

sR0 0 32 R/W Supervisor Register R0
sR1 0 32 R/W Supervisor Register R1
sSP 13 32 R/W Supervisor Stack Pointer
sCC 14 32 R/W Supervisor Condition Code Register
sPC 15 32 R/W Supervisor Program Counter
uR0 16 32 R/W User Register R0
uR1 17 32 R/W User Register R1
uSP 29 32 R/W User Stack Pointer
uCC 30 32 R/W User Condition Code Register
uPC 31 32 R/W User Program Counter
PIC 32 32 R/W Primary Interrupt Controller
WDT 33 32 R/W Watchdog Timer
BUS 34 32 R Last Bus Error
CTRIC 35 32 R/W Secondary Interrupt Controller
TMRA 36 32 R/W Timer A
TMRB 37 32 R/W Timer B
TMRC 38 32 R/W Timer C
JIFF 39 32 R/W Jiffies peripheral
MTASK 40 32 R/W Master task clock counter
MMSTL 41 32 R/W Master memory stall counter
MPSTL 42 32 R/W Master Pre-Fetch Stall counter
MICNT 43 32 R/W Master instruction counter
UTASK 44 32 R/W User task clock counter
UMSTL 45 32 R/W User memory stall counter
UPSTL 46 32 R/W User Pre-Fetch Stall counter
UICNT 47 32 R/W User instruction counter
DMACMD 48 32 R/W DMA command and status register
DMALEN 49 32 R/W DMA transfer length
DMARD 50 32 R/W DMA read address
DMAWR 51 32 R/W DMA write address

Table 5.9: Debug Register Addresses
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6.

Wishbone Datasheets

The Zip System supports two wishbone ports, a slave debug port and a master port for the system
itself. These are shown in Tbl. 6.1 and Tbl. 6.2 respectively. I do not recommend that you connect

Description Specification

Revision level of wishbone WB B4 spec
Type of interface Slave, Read/Write, single words only
Address Width 1–bit
Port size 32–bit
Port granularity 32–bit
Maximum Operand Size 32–bit
Data transfer ordering (Irrelevant)
Clock constraints Works at 100 MHz on a Basys–3 board,

and 80 MHz on a XuLA2–LX25

Signal Names

Signal Name Wishbone Equivalent
i clk CLK I

i dbg cyc CYC I

i dbg stb STB I

i dbg we WE I

i dbg addr ADR I

i dbg data DAT I

o dbg ack ACK O

o dbg stall STALL O

o dbg data DAT O

Table 6.1: Wishbone Datasheet for the Debug Interface

these together through the interconnect. Rather, the debug port of the CPU should be accessible
regardless of the state of the master bus.

You may wish to notice that neither the LOCK nor the RTY (retry) wires have been connected to
the CPU’s master interface. If necessary, a rudimentary LOCK may be created by tying the wire to
the wb cyc line. As for the RTY, all the CPU recognizes at this point are bus errors—it cannot tell
the difference between a temporary and a permanent bus error.
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Description Specification

Revision level of wishbone WB B4 spec
Type of interface Master, Read/Write, single cycle or

pipelined
Address Width (Zip System parameter, can be up to 32–

bit bits)
Port size 32–bit
Port granularity 32–bit
Maximum Operand Size 32–bit
Data transfer ordering (Irrelevant)
Clock constraints Works at 100 MHz on a Basys–3 board,

and 80 MHz on a XuLA2–LX25

Signal Names

Signal Name Wishbone Equivalent
i clk CLK O

o wb cyc CYC O

o wb stb STB O

o wb we WE O

o wb addr ADR O

o wb data DAT O

i wb ack ACK I

i wb stall STALL I

i wb data DAT I

i wb err ERR I

Table 6.2: Wishbone Datasheet for the CPU as Master
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7.

Clocks

This core is based upon the Basys–3 development board sold by Digilent. The Basys–3 development
board contains one external 100 MHz clock, which is sufficient to run the Zip CPU core. I hesitate

Name Source Rates (MHz) Description
Max Min

i clk External 100 MHz 100 MHz System clock.

Table 7.1: List of Clocks

to suggest that the core can run faster than 100 MHz, since I have had struggled with various timing
violations to keep it at 100 MHz. So, for now, I will only state that it can run at 100 MHz.

On a SPARTAN 6, the clock can run successfully at 80 MHz.
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8.

I/O Ports

The I/O ports to the Zip CPU may be grouped into three categories. The first is that of the master
wishbone used by the CPU, then the slave wishbone used to command the CPU via a debugger,
and then the rest. The first two of these were already discussed in the wishbone chapter. They are
listed here for completeness in Tbl. 8.1 and 8.2 respectively.

There are only four other lines to the CPU: the external clock, external reset, incoming external
interrupt line(s), and the outgoing debug interrupt line. These are shown in Tbl. 8.3. The clock line
was discussed briefly in Chapt. 7. We typically run it at 100 MHz, although we’ve needed to slow it
down to 80 MHz for some implementations. The reset line is an active high reset. When asserted,
the CPU will start running again from its reset address in memory. Further, depending upon how
the CPU is configured and specifically based upon how the START HALTED parameter is set, the CPU
may or may not start running automatically following a reset. The i ext int line is for an external
interrupt. This line may actually be as wide as 16 external interrupts, depending upon the setting
of the EXTERNAL INTERRUPTS parameter. Finally, the Zip System produces one external interrupt
whenever the entire CPU halts to wait for the debugger.

Port Width Direction Description

o wb cyc 1 Output Indicates an active Wishbone cycle
o wb stb 1 Output WB Strobe signal
o wb we 1 Output Write enable
o wb addr 32 Output Bus address
o wb data 32 Output Data on WB write
i wb ack 1 Input Slave has completed a R/W cycle
i wb stall 1 Input WB bus slave not ready
i wb data 32 Input Incoming bus data
i wb err 1 Input Bus Error indication

Table 8.1: CPU Master Wishbone I/O Ports
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Port Width Direction Description

i wb cyc 1 Input Indicates an active Wishbone cycle
i wb stb 1 Input WB Strobe signal
i wb we 1 Input Write enable
i wb addr 1 Input Bus address, command or data port
i wb data 32 Input Data on WB write
o wb ack 1 Output Slave has completed a R/W cycle
o wb stall 1 Output WB bus slave not ready
o wb data 32 Output Incoming bus data

Table 8.2: CPU Debug Wishbone I/O Ports

Port Width Direction Description

i clk 1 Input The master CPU clock
i rst 1 Input Active high reset line
i ext int 1. . . 16 Input Incoming external interrupts, actual value set by imple-

mentation parameter
o ext int 1 Output CPU Halted interrupt

Table 8.3: I/O Ports
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9.

Initial Assessment

Having now worked with the Zip CPU for a while, it is worth offering an honest assessment of how
well it works and how well it was designed. At the end of this assessment, I will propose some
changes that may take place in a later version of this Zip CPU to make it better.

9.1 The Good

• The Zip CPU can be configured to be relatively light weight and fully featured as it exists today.
For anyone who wishes to build a general purpose CPU and then to experiment with building
and adding particular features, the Zip CPU makes a good starting point–it is fairly simple.
Modifications should be simple enough. Indeed, a non–pipelined version of the bare ZipBones
(with no peripherals) has been built that only uses 1.1k LUTs. When using pipelining, the full
cache, and all of the peripherals, the ZipSystem can top 5 k LUTs. Where it fits in between
is a function of your needs.

• The Zip CPU was designed to be an implementable soft core that could be placed within an
FPGA, controlling actions internal to the FPGA. It fits this role rather nicely. It does not fit
the role of a system on a chip very well, but then it was never intended to be a system on a
chip but rather a system within a chip.

• The extremely simplified instruction set of the Zip CPU was a good choice. Although it does
not have many of the commonly used instructions, PUSH, POP, JSR, and RET among them,
the simplified instruction set has demonstrated an amazing versatility. I will contend therefore
and for anyone who will listen, that this instruction set offers a full and complete capability
for whatever a user might wish to do with two exceptions: bytewise character access and
accelerated floating-point support.

• This simplified instruction set is easy to decode.

• The simplified bus transactions (32-bit words only) were also very easy to implement.

• The pipelined load/store approach is novel, and can be used to greatly increase the speed of
the processor.

• The novel approach of having a single interrupt vector, which just brings the CPU back to
the instruction it left off at within the last interrupt context doesn’t appear to have been that
much of a problem. If most modern systems handle interrupt vectoring in software anyway,
why maintain hardware support for it?
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• My goal of a high rate of instructions per clock may not be the proper measure. For example,
if instructions are being read from a SPI flash device, such as is common among FPGA
implementations, these same instructions may suffer stalls of between 64 and 128 cycles per
instruction just to read the instruction from the flash. Executing the instruction in a single
clock cycle is no longer the appropriate measure. At the same time, it should be possible to use
the DMA peripheral to copy instructions from the FLASH to a temporary memory location,
after which they may be executed at a single instruction cycle per access again.

9.2 The Not so Good

• The CPU has no character support. This is both good and bad. Realistically, the CPU
works just fine without it. Characters can be supported as subsets of 32-bit words without
any problem. Practically, though, it will make compiling non-Zip CPU code difficult–especially
anything that assumes sizeof(int)=4*sizeof(char), or that tries to create unions with characters
and integers and then attempts to reference the address of the characters within that union.

• The Zip CPU does not support a data cache. One can still be built externally, but this is
a limitation of the CPU proper as built. Further, under the theory of the Zip CPU design
(that of an embedded soft-core processor within an FPGA, where any “address” may reference
either memory or a peripheral that may have side-effects), any data cache would need to be
based upon an initial knowledge of whether or not it is supporting memory (cachable) or
peripherals. This knowledge must exist somewhere, and that somewhere is currently (and by
design) external to the CPU.

This may also be written off as a “feature” of the Zip CPU, since the addition of a data cache
can greatly increase the LUT count of a soft core.

The Zip CPU compensates for this via its pipelined load and store instructions.

• Many other instruction sets offer three operand instructions, whereas the Zip CPU only offers
two operand instructions. This means that it takes the Zip CPU more instructions to do many
of the same operations. The good part of this is that it gives the Zip CPU a greater amount of
flexibility in its immediate operand mode, although that increased flexibility isn’t necessarily
as valuable as one might like.

• The Zip CPU doesn’t support out of order execution. I suppose it could be modified to do
so, but then it would no longer be the “simple” and low LUT count CPU it was designed to
be. The two primary results are that 1) loads may unnecessarily stall the CPU, even if other
things could be done while waiting for the load to complete, 2) bus errors on stores will never
be caught at the point of the error, and 3) branch prediction becomes more difficult.

• Although switching to an interrupt context in the Zip CPU design doesn’t require a tremendous
swapping of registers, in reality it still does–since any task swap still requires saving and
restoring all 16 user registers. That’s a lot of memory movement just to service an interrupt.

• The Zip CPU is by no means generic: it will never handle addresses larger than 32-bits (16GB)
without a complete and total redesign. This may limit its utility as a generic CPU in the future,
although as an embedded CPU within an FPGA this isn’t really much of a limit or restriction.
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• While the Zip CPU has its own assembler, it has no linker and does not (yet) support a
compiler. The standard C library is an even longer shot. My dream of having binutils and gcc
support has not been realized and at this rate may not be realized. (I’ve been intimidated by
the challenge everytime I’ve looked through those codes.)

9.3 The Next Generation

This section could also be labeled as my “To do” list. Today’s list is much different than it was for
the last version of this document, as much of the prior to do list (such as VLIW instructions, and
a more traditional instruction cache) has now been implemented. The only things really and truly
waiting on my list today are assembler support for the VLIW instruction set, linker and compiler
support.

Stay tuned, these are likely to be coming next.
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