URL
https://opencores.org/ocsvn/zipcpu/zipcpu/trunk
Subversion Repositories zipcpu
[/] [zipcpu/] [trunk/] [rtl/] [core/] [cpuops.v] - Rev 209
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: cpuops.v // // Project: Zip CPU -- a small, lightweight, RISC CPU soft core // // Purpose: This is the ZipCPU ALU function. It handles all of the // instruction opcodes 0-13. (14-15 are divide opcodes). // // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2019, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory. Run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // `default_nettype none // // `include "cpudefs.v" // module cpuops(i_clk,i_reset, i_stb, i_op, i_a, i_b, o_c, o_f, o_valid, o_busy); parameter IMPLEMENT_MPY = `OPT_MULTIPLY; parameter [0:0] OPT_SHIFTS = 1'b1; input wire i_clk, i_reset, i_stb; input wire [3:0] i_op; input wire [31:0] i_a, i_b; output reg [31:0] o_c; output wire [3:0] o_f; output reg o_valid; output wire o_busy; genvar k; // Shift register pre-logic wire [32:0] w_lsr_result, w_asr_result, w_lsl_result; generate if (OPT_SHIFTS) begin : IMPLEMENT_SHIFTS wire signed [32:0] w_pre_asr_input, w_pre_asr_shifted; assign w_pre_asr_input = { i_a, 1'b0 }; assign w_pre_asr_shifted = w_pre_asr_input >>> i_b[4:0]; assign w_asr_result = (|i_b[31:5])? {(33){i_a[31]}} : w_pre_asr_shifted;// ASR assign w_lsr_result = ((|i_b[31:6])||(i_b[5]&&(i_b[4:0]!=0)))? 33'h00 :((i_b[5])?{32'h0,i_a[31]} : ( { i_a, 1'b0 } >> (i_b[4:0]) ));// LSR assign w_lsl_result = ((|i_b[31:6])||(i_b[5]&&(i_b[4:0]!=0)))? 33'h00 :((i_b[5])?{i_a[0], 32'h0} : ({1'b0, i_a } << i_b[4:0])); // LSL end else begin : NO_SHIFTS assign w_asr_result = { i_a[31], i_a[31:0] }; assign w_lsr_result = { 1'b0, i_a[31:0] }; assign w_lsl_result = { i_a[31:0], 1'b0 }; end endgenerate // // Bit reversal pre-logic wire [31:0] w_brev_result; generate for(k=0; k<32; k=k+1) begin : bit_reversal_cpuop assign w_brev_result[k] = i_b[31-k]; end endgenerate // Prelogic for our flags registers wire z, n, v; reg c, pre_sign, set_ovfl, keep_sgn_on_ovfl; always @(posedge i_clk) if (i_stb) // 1 LUT set_ovfl<=(((i_op==4'h0)&&(i_a[31] != i_b[31]))//SUB&CMP ||((i_op==4'h2)&&(i_a[31] == i_b[31])) // ADD ||(i_op == 4'h6) // LSL ||(i_op == 4'h5)); // LSR always @(posedge i_clk) if (i_stb) // 1 LUT keep_sgn_on_ovfl<= (((i_op==4'h0)&&(i_a[31] != i_b[31]))//SUB&CMP ||((i_op==4'h2)&&(i_a[31] == i_b[31]))); // ADD wire [63:0] mpy_result; // Where we dump the multiply result wire mpyhi; // Return the high half of the multiply wire mpybusy; // The multiply is busy if true wire mpydone; // True if we'll be valid on the next clock; // A 4-way multiplexer can be done in one 6-LUT. // A 16-way multiplexer can therefore be done in 4x 6-LUT's with // the Xilinx multiplexer fabric that follows. // Given that we wish to apply this multiplexer approach to 33-bits, // this will cost a minimum of 132 6-LUTs. wire this_is_a_multiply_op; assign this_is_a_multiply_op = (i_stb)&&((i_op[3:1]==3'h5)||(i_op[3:0]==4'hc)); // // Pull in the multiply logic from elsewhere // `ifdef FORMAL `define MPYOP abs_mpy `else `define MPYOP mpyop `endif `MPYOP #(.IMPLEMENT_MPY(IMPLEMENT_MPY)) thempy(i_clk, i_reset, this_is_a_multiply_op, i_op[1:0], i_a, i_b, mpydone, mpybusy, mpy_result, mpyhi); // // The master ALU case statement // always @(posedge i_clk) if (i_stb) begin pre_sign <= (i_a[31]); c <= 1'b0; casez(i_op) 4'b0000:{c,o_c } <= {1'b0,i_a}-{1'b0,i_b};// CMP/SUB 4'b0001: o_c <= i_a & i_b; // BTST/And 4'b0010:{c,o_c } <= i_a + i_b; // Add 4'b0011: o_c <= i_a | i_b; // Or 4'b0100: o_c <= i_a ^ i_b; // Xor 4'b0101:{o_c,c } <= w_lsr_result[32:0]; // LSR 4'b0110:{c,o_c } <= w_lsl_result[32:0]; // LSL 4'b0111:{o_c,c } <= w_asr_result[32:0]; // ASR 4'b1000: o_c <= w_brev_result; // BREV 4'b1001: o_c <= { i_a[31:16], i_b[15:0] }; // LODILO 4'b1010: o_c <= mpy_result[63:32]; // MPYHU 4'b1011: o_c <= mpy_result[63:32]; // MPYHS 4'b1100: o_c <= mpy_result[31:0]; // MPY default: o_c <= i_b; // MOV, LDI endcase end else // if (mpydone) // set the output based upon the multiply result o_c <= (mpyhi)?mpy_result[63:32]:mpy_result[31:0]; reg r_busy; initial r_busy = 1'b0; always @(posedge i_clk) if (i_reset) r_busy <= 1'b0; else if (IMPLEMENT_MPY > 1) r_busy <= ((i_stb)&&(this_is_a_multiply_op))||mpybusy; else r_busy <= 1'b0; assign o_busy = (r_busy); // ||((IMPLEMENT_MPY>1)&&(this_is_a_multiply_op)); assign z = (o_c == 32'h0000); assign n = (o_c[31]); assign v = (set_ovfl)&&(pre_sign != o_c[31]); wire vx = (keep_sgn_on_ovfl)&&(pre_sign != o_c[31]); assign o_f = { v, n^vx, c, z }; initial o_valid = 1'b0; always @(posedge i_clk) if (i_reset) o_valid <= 1'b0; else if (IMPLEMENT_MPY <= 1) o_valid <= (i_stb); else o_valid <=((i_stb)&&(!this_is_a_multiply_op))||(mpydone); `ifdef FORMAL initial assume(i_reset); reg f_past_valid; initial f_past_valid = 1'b0; always @(posedge i_clk) f_past_valid = 1'b1; `define ASSERT assert `ifdef CPUOPS `define ASSUME assume `else `define ASSUME assert `endif // No request should be given us if/while we are busy always @(posedge i_clk) if (o_busy) `ASSUME(!i_stb); // Following any request other than a multiply request, we should // respond in the next cycle always @(posedge i_clk) if ((f_past_valid)&&(!$past(o_busy))&&(!$past(this_is_a_multiply_op))) `ASSERT(!o_busy); // Valid and busy can never both be asserted always @(posedge i_clk) `ASSERT((!o_valid)||(!r_busy)); // Following any busy, we should always become valid always @(posedge i_clk) if ((f_past_valid)&&($past(o_busy))&&(!o_busy)) `ASSERT($past(i_reset) || o_valid); // Check the shift values always @(posedge i_clk) if ((f_past_valid)&&($past(i_stb))) begin if (($past(|i_b[31:6]))||($past(i_b[5:0])>6'd32)) begin assert(($past(i_op)!=4'h5) ||({o_c,c}=={(33){1'b0}})); assert(($past(i_op)!=4'h6) ||({c,o_c}=={(33){1'b0}})); assert(($past(i_op)!=4'h7) ||({o_c,c}=={(33){$past(i_a[31])}})); end else if ($past(i_b[5:0]==6'd32)) begin assert(($past(i_op)!=4'h5) ||(o_c=={(32){1'b0}})); assert(($past(i_op)!=4'h6) ||(o_c=={(32){1'b0}})); assert(($past(i_op)!=4'h7) ||(o_c=={(32){$past(i_a[31])}})); end if ($past(i_b)==0) begin assert(($past(i_op)!=4'h5) ||({o_c,c}=={$past(i_a), 1'b0})); assert(($past(i_op)!=4'h6) ||({c,o_c}=={1'b0, $past(i_a)})); assert(($past(i_op)!=4'h7) ||({o_c,c}=={$past(i_a), 1'b0})); end if ($past(i_b)==1) begin assert(($past(i_op)!=4'h5) ||({o_c,c}=={1'b0, $past(i_a)})); assert(($past(i_op)!=4'h6) ||({c,o_c}=={$past(i_a),1'b0})); assert(($past(i_op)!=4'h7) ||({o_c,c}=={$past(i_a[31]),$past(i_a)})); end if ($past(i_b)==2) begin assert(($past(i_op)!=4'h5) ||({o_c,c}=={2'b0, $past(i_a[31:1])})); assert(($past(i_op)!=4'h6) ||({c,o_c}=={$past(i_a[30:0]),2'b0})); assert(($past(i_op)!=4'h7) ||({o_c,c}=={{(2){$past(i_a[31])}},$past(i_a[31:1])})); end if ($past(i_b)==31) begin assert(($past(i_op)!=4'h5) ||({o_c,c}=={31'b0, $past(i_a[31:30])})); assert(($past(i_op)!=4'h6) ||({c,o_c}=={$past(i_a[1:0]),31'b0})); assert(($past(i_op)!=4'h7) ||({o_c,c}=={{(31){$past(i_a[31])}},$past(i_a[31:30])})); end end `endif endmodule // // iCE40 NoMPY,w/Shift NoMPY,w/o Shift // SB_CARRY 64 64 // SB_DFFE 3 3 // SB_DFFESR 1 1 // SB_DFFSR 33 33 // SB_LUT4 748 323