OpenCores
URL https://opencores.org/ocsvn/zipcpu/zipcpu/trunk

Subversion Repositories zipcpu

[/] [zipcpu/] [trunk/] [rtl/] [core/] [cpuops.v] - Rev 205

Go to most recent revision | Compare with Previous | Blame | View Log

////////////////////////////////////////////////////////////////////////////////
//
// Filename:	cpuops.v
//
// Project:	Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose:	This supports the instruction set reordering of operations
//		created by the second generation instruction set, as well as
//	the new operations of POPC (population count) and BREV (bit reversal).
//
//
// Creator:	Dan Gisselquist, Ph.D.
//		Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of  the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program.  (It's in the $(ROOT)/doc directory.  Run make with no
// target there if the PDF file isn't present.)  If not, see
// <http://www.gnu.org/licenses/> for a copy.
//
// License:	GPL, v3, as defined and found on www.gnu.org,
//		http://www.gnu.org/licenses/gpl.html
//
//
////////////////////////////////////////////////////////////////////////////////
//
`include "cpudefs.v"
//
module	cpuops(i_clk,i_rst, i_ce, i_op, i_a, i_b, o_c, o_f, o_valid,
			o_busy);
	parameter	IMPLEMENT_MPY = `OPT_MULTIPLY;
	input		i_clk, i_rst, i_ce;
	input		[3:0]	i_op;
	input		[31:0]	i_a, i_b;
	output	reg	[31:0]	o_c;
	output	wire	[3:0]	o_f;
	output	reg		o_valid;
	output	wire		o_busy;
 
	// Shift register pre-logic
	wire	[32:0]		w_lsr_result, w_asr_result, w_lsl_result;
	wire	signed	[32:0]	w_pre_asr_input, w_pre_asr_shifted;
	assign	w_pre_asr_input = { i_a, 1'b0 };
	assign	w_pre_asr_shifted = w_pre_asr_input >>> i_b[4:0];
	assign	w_asr_result = (|i_b[31:5])? {(33){i_a[31]}}
				: w_pre_asr_shifted;// ASR
	assign	w_lsr_result = ((|i_b[31:6])||(i_b[5]&&(i_b[4:0]!=0)))? 33'h00
				:((i_b[5])?{32'h0,i_a[31]}
 
				: ( { i_a, 1'b0 } >> (i_b[4:0]) ));// LSR
	assign	w_lsl_result = ((|i_b[31:6])||(i_b[5]&&(i_b[4:0]!=0)))? 33'h00
				:((i_b[5])?{i_a[0], 32'h0}
				: ({1'b0, i_a } << i_b[4:0]));	// LSL
 
	// Bit reversal pre-logic
	wire	[31:0]	w_brev_result;
	genvar	k;
	generate
	for(k=0; k<32; k=k+1)
	begin : bit_reversal_cpuop
		assign w_brev_result[k] = i_b[31-k];
	end endgenerate
 
	// Prelogic for our flags registers
	wire	z, n, v;
	reg	c, pre_sign, set_ovfl, keep_sgn_on_ovfl;
	always @(posedge i_clk)
		if (i_ce) // 1 LUT
			set_ovfl<=(((i_op==4'h0)&&(i_a[31] != i_b[31]))//SUB&CMP
				||((i_op==4'h2)&&(i_a[31] == i_b[31])) // ADD
				||(i_op == 4'h6) // LSL
				||(i_op == 4'h5)); // LSR
	always @(posedge i_clk)
		if (i_ce) // 1 LUT
			keep_sgn_on_ovfl<=
				(((i_op==4'h0)&&(i_a[31] != i_b[31]))//SUB&CMP
				||((i_op==4'h2)&&(i_a[31] == i_b[31]))); // ADD
 
	wire	[63:0]	mpy_result; // Where we dump the multiply result
	reg	mpyhi;		// Return the high half of the multiply
	wire	mpybusy;	// The multiply is busy if true
	wire	mpydone;	// True if we'll be valid on the next clock;
 
	// A 4-way multiplexer can be done in one 6-LUT.
	// A 16-way multiplexer can therefore be done in 4x 6-LUT's with
	//	the Xilinx multiplexer fabric that follows. 
	// Given that we wish to apply this multiplexer approach to 33-bits,
	// this will cost a minimum of 132 6-LUTs.
 
	wire	this_is_a_multiply_op;
	assign	this_is_a_multiply_op = (i_ce)&&((i_op[3:1]==3'h5)||(i_op[3:0]==4'hc));
 
	generate
	if (IMPLEMENT_MPY == 0)
	begin // No multiply support.
		assign	mpy_result = 63'h00;
	end else if (IMPLEMENT_MPY == 1)
	begin // Our single clock option (no extra clocks)
		wire	signed	[63:0]	w_mpy_a_input, w_mpy_b_input;
		assign	w_mpy_a_input = {{(32){(i_a[31])&(i_op[0])}},i_a[31:0]};
		assign	w_mpy_b_input = {{(32){(i_b[31])&(i_op[0])}},i_b[31:0]};
		assign	mpy_result = w_mpy_a_input * w_mpy_b_input;
		assign	mpybusy = 1'b0;
		assign	mpydone = 1'b0;
		always @(*) mpyhi = 1'b0; // Not needed
	end else if (IMPLEMENT_MPY == 2)
	begin // Our two clock option (ALU must pause for 1 clock)
		reg	signed	[63:0]	r_mpy_a_input, r_mpy_b_input;
		always @(posedge i_clk)
		begin
			r_mpy_a_input <={{(32){(i_a[31])&(i_op[0])}},i_a[31:0]};
			r_mpy_b_input <={{(32){(i_b[31])&(i_op[0])}},i_b[31:0]};
		end
 
		assign	mpy_result = r_mpy_a_input * r_mpy_b_input;
		assign	mpybusy = 1'b0;
 
		reg	mpypipe;
		initial	mpypipe = 1'b0;
		always @(posedge i_clk)
			if (i_rst)
				mpypipe <= 1'b0;
			else
				mpypipe <= (this_is_a_multiply_op);
 
		assign	mpydone = mpypipe; // this_is_a_multiply_op;
		always @(posedge i_clk)
			if (this_is_a_multiply_op)
				mpyhi  = i_op[1];
	end else if (IMPLEMENT_MPY == 3)
	begin // Our three clock option (ALU pauses for 2 clocks)
		reg	signed	[63:0]	r_smpy_result;
		reg		[63:0]	r_umpy_result;
		reg	signed	[31:0]	r_mpy_a_input, r_mpy_b_input;
		reg		[1:0]	mpypipe;
		reg		[1:0]	r_sgn;
 
		initial	mpypipe = 2'b0;
		always @(posedge i_clk)
			if (i_rst)
				mpypipe <= 2'b0;
			else
			mpypipe <= { mpypipe[0], this_is_a_multiply_op };
 
		// First clock
		always @(posedge i_clk)
		begin
			r_mpy_a_input <= i_a[31:0];
			r_mpy_b_input <= i_b[31:0];
			r_sgn <= { r_sgn[0], i_op[0] };
		end
 
		// Second clock
`ifdef	VERILATOR
		wire	signed	[63:0]	s_mpy_a_input, s_mpy_b_input;
		wire		[63:0]	u_mpy_a_input, u_mpy_b_input;
 
		assign	s_mpy_a_input = {{(32){r_mpy_a_input[31]}},r_mpy_a_input};
		assign	s_mpy_b_input = {{(32){r_mpy_b_input[31]}},r_mpy_b_input};
		assign	u_mpy_a_input = {32'h00,r_mpy_a_input};
		assign	u_mpy_b_input = {32'h00,r_mpy_b_input};
		always @(posedge i_clk)
			r_smpy_result = s_mpy_a_input * s_mpy_b_input;
		always @(posedge i_clk)
			r_umpy_result = u_mpy_a_input * u_mpy_b_input;
`else
 
		wire		[31:0]	u_mpy_a_input, u_mpy_b_input;
 
		assign	u_mpy_a_input = r_mpy_a_input;
		assign	u_mpy_b_input = r_mpy_b_input;
 
		always @(posedge i_clk)
			r_smpy_result = r_mpy_a_input * r_mpy_b_input;
		always @(posedge i_clk)
			r_umpy_result = u_mpy_a_input * u_mpy_b_input;
`endif
 
		always @(posedge i_clk)
			if (this_is_a_multiply_op)
				mpyhi  = i_op[1];
		assign	mpybusy = mpypipe[0];
		assign	mpy_result = (r_sgn[1])?r_smpy_result:r_umpy_result;
		assign	mpydone = mpypipe[1];
 
		// Results are then set on the third clock
	end else // if (IMPLEMENT_MPY <= 4)
	begin // The three clock option
		reg	[63:0]	r_mpy_result;
		reg	[31:0]	r_mpy_a_input, r_mpy_b_input;
		reg		r_mpy_signed;
		reg	[2:0]	mpypipe;
 
		// First clock, latch in the inputs
		initial	mpypipe = 3'b0;
		always @(posedge i_clk)
		begin
			// mpypipe indicates we have a multiply in the
			// pipeline.  In this case, the multiply
			// pipeline is a two stage pipeline, so we need 
			// two bits in the pipe.
			if (i_rst)
				mpypipe <= 3'h0;
			else begin
				mpypipe[0] <= this_is_a_multiply_op;
				mpypipe[1] <= mpypipe[0];
				mpypipe[2] <= mpypipe[1];
			end
 
			if (i_op[0]) // i.e. if signed multiply
			begin
				r_mpy_a_input <= {(~i_a[31]),i_a[30:0]};
				r_mpy_b_input <= {(~i_b[31]),i_b[30:0]};
			end else begin
				r_mpy_a_input <= i_a[31:0];
				r_mpy_b_input <= i_b[31:0];
			end
			// The signed bit really only matters in the
			// case of 64 bit multiply.  We'll keep track
			// of it, though, and pretend in all other
			// cases.
			r_mpy_signed  <= i_op[0];
 
			if (this_is_a_multiply_op)
				mpyhi  = i_op[1];
		end
 
		assign	mpybusy = |mpypipe[1:0];
		assign	mpydone = mpypipe[2];
 
		// Second clock, do the multiplies, get the "partial
		// products".  Here, we break our input up into two
		// halves, 
		//
		//   A  = (2^16 ah + al)
		//   B  = (2^16 bh + bl)
		//
		// and use these to compute partial products.
		//
		//   AB = (2^32 ah*bh + 2^16 (ah*bl + al*bh) + (al*bl)
		//
		// Since we're following the FOIL algorithm to get here,
		// we'll name these partial products according to FOIL.
		//
		// The trick is what happens if A or B is signed.  In
		// those cases, the real value of A will not be given by
		//	A = (2^16 ah + al)
		// but rather
		//	A = (2^16 ah[31^] + al) - 2^31
		//  (where we have flipped the sign bit of A)
		// and so ...
		//
		// AB= (2^16 ah + al - 2^31) * (2^16 bh + bl - 2^31)
		//	= 2^32(ah*bh)
		//		+2^16 (ah*bl+al*bh)
		//		+(al*bl)
		//		- 2^31 (2^16 bh+bl + 2^16 ah+al)
		//		- 2^62
		//	= 2^32(ah*bh)
		//		+2^16 (ah*bl+al*bh)
		//		+(al*bl)
		//		- 2^31 (2^16 bh+bl + 2^16 ah+al + 2^31)
		//
		reg	[31:0]	pp_f, pp_l; // F and L from FOIL
		reg	[32:0]	pp_oi; // The O and I from FOIL
		reg	[32:0]	pp_s;
		always @(posedge i_clk)
		begin
			pp_f<=r_mpy_a_input[31:16]*r_mpy_b_input[31:16];
			pp_oi<=r_mpy_a_input[31:16]*r_mpy_b_input[15: 0]
				+ r_mpy_a_input[15: 0]*r_mpy_b_input[31:16];
			pp_l<=r_mpy_a_input[15: 0]*r_mpy_b_input[15: 0];
			// And a special one for the sign
			if (r_mpy_signed)
				pp_s <= 32'h8000_0000-(
				  	r_mpy_a_input[31:0]
					+ r_mpy_b_input[31:0]);
			else
				pp_s <= 33'h0;
		end
 
		// Third clock, add the results and produce a product
		always @(posedge i_clk)
		begin
			r_mpy_result[15:0] <= pp_l[15:0];
			r_mpy_result[63:16] <=
			  	{ 32'h00, pp_l[31:16] }
				+ { 15'h00, pp_oi }
				+ { pp_s, 15'h00 }
				+ { pp_f, 16'h00 };
		end
 
		assign	mpy_result = r_mpy_result;
		// Fourth clock -- results are clocked into writeback
	end
	endgenerate // All possible multiply results have been determined
 
	//
	// The master ALU case statement
	//
	always @(posedge i_clk)
	if (i_ce)
	begin
		pre_sign <= (i_a[31]);
		c <= 1'b0;
		casez(i_op)
		4'b0000:{c,o_c } <= {1'b0,i_a}-{1'b0,i_b};// CMP/SUB
		4'b0001:   o_c   <= i_a & i_b;		// BTST/And
		4'b0010:{c,o_c } <= i_a + i_b;		// Add
		4'b0011:   o_c   <= i_a | i_b;		// Or
		4'b0100:   o_c   <= i_a ^ i_b;		// Xor
		4'b0101:{o_c,c } <= w_lsr_result[32:0];	// LSR
		4'b0110:{c,o_c } <= w_lsl_result[32:0]; // LSL
		4'b0111:{o_c,c } <= w_asr_result[32:0];	// ASR
		4'b1000:   o_c   <= w_brev_result;	// BREV
		4'b1001:   o_c   <= { i_a[31:16], i_b[15:0] }; // LODILO
		4'b1010:   o_c   <= mpy_result[63:32];	// MPYHU
		4'b1011:   o_c   <= mpy_result[63:32];	// MPYHS
		4'b1100:   o_c   <= mpy_result[31:0];	// MPY
		default:   o_c   <= i_b;		// MOV, LDI
		endcase
	end else // if (mpydone)
		o_c <= (mpyhi)?mpy_result[63:32]:mpy_result[31:0];
 
	reg	r_busy;
	initial	r_busy = 1'b0;
	always @(posedge i_clk)
		if (i_rst)
			r_busy <= 1'b0;
		else
			r_busy <= ((IMPLEMENT_MPY > 1)
					&&(this_is_a_multiply_op))||mpybusy;
	assign	o_busy = (r_busy); // ||((IMPLEMENT_MPY>1)&&(this_is_a_multiply_op));
 
 
	assign	z = (o_c == 32'h0000);
	assign	n = (o_c[31]);
	assign	v = (set_ovfl)&&(pre_sign != o_c[31]);
	wire	vx = (keep_sgn_on_ovfl)&&(pre_sign != o_c[31]);
 
	assign	o_f = { v, n^vx, c, z };
 
	initial	o_valid = 1'b0;
	always @(posedge i_clk)
		if (i_rst)
			o_valid <= 1'b0;
		else if (IMPLEMENT_MPY <= 1)
			o_valid <= (i_ce);
		else
			o_valid <=((i_ce)&&(!this_is_a_multiply_op))||(mpydone);
 
endmodule
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2022 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.