URL
https://opencores.org/ocsvn/zipcpu/zipcpu/trunk
Subversion Repositories zipcpu
[/] [zipcpu/] [trunk/] [rtl/] [core/] [div.v] - Rev 209
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: div.v // // Project: Zip CPU -- a small, lightweight, RISC CPU soft core // // Purpose: Provide an Integer divide capability to the Zip CPU. Provides // for both signed and unsigned divide. // // Steps: // i_reset The DIVide unit starts in idle. It can also be placed into an // idle by asserting the reset input. // // i_wr When i_reset is asserted, a divide begins. On the next clock: // // o_busy is set high so everyone else knows we are at work and they can // wait for us to complete. // // pre_sign is set to true if we need to do a signed divide. In this // case, we take a clock cycle to turn the divide into an unsigned // divide. // // o_quotient, a place to store our result, is initialized to all zeros. // // r_dividend is set to the numerator // // r_divisor is set to 2^31 * the denominator (shift left by 31, or add // 31 zeros to the right of the number. // // pre_sign When true (clock cycle after i_wr), a clock cycle is used // to take the absolute value of the various arguments (r_dividend // and r_divisor), and to calculate what sign the output result // should be. // // // At this point, the divide is has started. The divide works by walking // through every shift of the // // DIVIDEND over the // DIVISOR // // If the DIVISOR is bigger than the dividend, the divisor is shifted // right, and nothing is done to the output quotient. // // DIVIDEND // DIVISOR // // This repeats, until DIVISOR is less than or equal to the divident, as in // // DIVIDEND // DIVISOR // // At this point, if the DIVISOR is less than the dividend, the // divisor is subtracted from the dividend, and the DIVISOR is again // shifted to the right. Further, a '1' bit gets set in the output // quotient. // // Once we've done this for 32 clocks, we've accumulated our answer into // the output quotient, and we can proceed to the next step. If the // result will be signed, the next step negates the quotient, otherwise // it returns the result. // // On the clock when we are done, o_busy is set to false, and o_valid set // to true. (It is a violation of the ZipCPU internal protocol for both // busy and valid to ever be true on the same clock. It is also a // violation for busy to be false with valid true thereafter.) // // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2019, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory. Run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // `default_nettype none // // `include "cpudefs.v" // module div(i_clk, i_reset, i_wr, i_signed, i_numerator, i_denominator, o_busy, o_valid, o_err, o_quotient, o_flags); parameter BW=32, LGBW = 5; input wire i_clk, i_reset; // Input parameters input wire i_wr, i_signed; input wire [(BW-1):0] i_numerator, i_denominator; // Output parameters output reg o_busy, o_valid, o_err; output reg [(BW-1):0] o_quotient; output wire [3:0] o_flags; // r_busy is an internal busy register. It will clear one clock // before we are valid, so it can't be o_busy ... // reg r_busy; reg [BW-1:0] r_divisor; reg [(2*BW-2):0] r_dividend; wire [(BW):0] diff; // , xdiff[(BW-1):0]; assign diff = r_dividend[2*BW-2:BW-1] - r_divisor; reg r_sign, pre_sign, r_z, r_c, last_bit; reg [(LGBW-1):0] r_bit; reg zero_divisor; // The Divide logic begins with r_busy. We use r_busy to determine // whether or not the divide is in progress, vs being complete. // Here, we clear r_busy on any reset and set it on i_wr (the request // do to a divide). The divide ends when we are on the last bit, // or equivalently when we discover we are dividing by zero. initial r_busy = 1'b0; always @(posedge i_clk) if (i_reset) r_busy <= 1'b0; else if (i_wr) r_busy <= 1'b1; else if ((last_bit)||(zero_divisor)) r_busy <= 1'b0; // o_busy is very similar to r_busy, save for some key differences. // Primary among them is that o_busy needs to (possibly) be true // for an extra clock after r_busy clears. This would be that extra // clock where we negate the result (assuming a signed divide, and that // the result is supposed to be negative.) Otherwise, the two are // identical. initial o_busy = 1'b0; always @(posedge i_clk) if (i_reset) o_busy <= 1'b0; else if (i_wr) o_busy <= 1'b1; else if (((last_bit)&&(!r_sign))||(zero_divisor)) o_busy <= 1'b0; else if (!r_busy) o_busy <= 1'b0; always @(posedge i_clk) if (i_wr) zero_divisor <= (i_denominator == 0); // o_valid is part of the ZipCPU protocol. It will be set to true // anytime our answer is valid and may be used by the calling module. // Indeed, the ZipCPU will halt (and ignore us) once the i_wr has been // set until o_valid gets set. // // Here, we clear o_valid on a reset, and any time we are on the last // bit while busy (provided the sign is zero, or we are dividing by // zero). Since o_valid is self-clearing, we don't need to clear // it on an i_wr signal. initial o_valid = 1'b0; always @(posedge i_clk) if ((i_reset)||(o_valid)) o_valid <= 1'b0; else if ((r_busy)&&(zero_divisor)) o_valid <= 1'b1; else if (r_busy) begin if (last_bit) o_valid <= (!r_sign); end else if (r_sign) begin o_valid <= 1'b1; end else o_valid <= 1'b0; // Division by zero error reporting. Anytime we detect a zero divisor, // we set our output error, and then hold it until we are valid and // everything clears. initial o_err = 1'b0; always @(posedge i_clk) if (i_reset) o_err <= 1'b0; else if ((r_busy)&&(zero_divisor)) o_err <= 1'b1; else o_err <= 1'b0; // r_bit // // Keep track of which "bit" of our divide we are on. This number // ranges from 31 down to zero. On any write, we set ourselves to // 5'h1f. Otherwise, while we are busy (but not within the pre-sign // adjustment stage), we subtract one from our value on every clock. initial r_bit = 0; always @(posedge i_clk) if (i_reset) r_bit <= 0; else if ((r_busy)&&(!pre_sign)) r_bit <= r_bit + 1'b1; else r_bit <= 0; // last_bit // // This logic replaces a lot of logic that was inside our giant state // machine with ... something simpler. In particular, we'll use this // logic to determine if we are processing our last bit. The only trick // is, this bit needs to be set whenever (r_busy) and (r_bit == -1), // hence we need to set on (r_busy) and (r_bit == -2) so as to be set // when (r_bit == 0). initial last_bit = 1'b0; always @(posedge i_clk) if (i_reset) last_bit <= 1'b0; else if (r_busy) last_bit <= (r_bit == {(LGBW){1'b1}}-1'b1); else last_bit <= 1'b0; // pre_sign // // This is part of the state machine. pre_sign indicates that we need // a extra clock to take the absolute value of our inputs. It need only // be true for the one clock, and then it must clear itself. initial pre_sign = 1'b0; always @(posedge i_clk) if (i_reset) pre_sign <= 1'b0; else pre_sign <= (i_wr)&&(i_signed)&&((i_numerator[BW-1])||(i_denominator[BW-1])); // As a result of our operation, we need to set the flags. The most // difficult of these is the "Z" flag indicating that the result is // zero. Here, we'll use the same logic that sets the low-order // bit to clear our zero flag, and leave the zero flag set in all // other cases. always @(posedge i_clk) if (i_wr) r_z <= 1'b1; else if ((r_busy)&&(!pre_sign)&&(!diff[BW])) r_z <= 1'b0; // r_dividend // This is initially the numerator. On a signed divide, it then becomes // the absolute value of the numerator. We'll subtract from this value // the divisor for every output bit we are looking for--just as with // traditional long division. always @(posedge i_clk) if (pre_sign) begin // If we are doing a signed divide, then take the // absolute value of the dividend if (r_dividend[BW-1]) begin r_dividend[2*BW-2:0] <= {(2*BW-1){1'b1}}; r_dividend[BW-1:0] <= -r_dividend[BW-1:0]; end end else if (r_busy) begin r_dividend <= { r_dividend[2*BW-3:0], 1'b0 }; if (!diff[BW]) r_dividend[2*BW-2:BW] <= diff[(BW-2):0]; end else if (!r_busy) // Once we are done, and r_busy is no longer high, we'll // always accept new values into our dividend. This // guarantees that, when i_wr is set, the new value // is already set as desired. r_dividend <= { 31'h0, i_numerator }; initial r_divisor = 0; always @(posedge i_clk) if (i_reset) r_divisor <= 0; else if ((pre_sign)&&(r_busy)) begin if (r_divisor[BW-1]) r_divisor <= -r_divisor; end else if (!r_busy) r_divisor <= i_denominator; // r_sign // is a flag for our state machine control(s). r_sign will be set to // true any time we are doing a signed divide and the result must be // negative. In that case, we take a final logic stage at the end of // the divide to negate the output. This flag is what tells us we need // to do that. r_busy will be true during the divide, then when r_busy // goes low, r_sign will be checked, then the idle/reset stage will have // been reached. For this reason, we cannot set r_sign unless we are // up to something. initial r_sign = 1'b0; always @(posedge i_clk) if (i_reset) r_sign <= 1'b0; else if (pre_sign) r_sign <= ((r_divisor[(BW-1)])^(r_dividend[(BW-1)])); else if (r_busy) r_sign <= (r_sign)&&(!zero_divisor); else r_sign <= 1'b0; initial o_quotient = 0; always @(posedge i_clk) if (i_reset) o_quotient <= 0; else if (r_busy) begin o_quotient <= { o_quotient[(BW-2):0], 1'b0 }; if (!diff[BW]) o_quotient[0] <= 1'b1; end else if (r_sign) o_quotient <= -o_quotient; else o_quotient <= 0; // Set Carry on an exact divide // Perhaps nothing uses this, but ... well, I suppose we could remove // this logic eventually, just ... not yet. initial r_c = 1'b0; always @(posedge i_clk) if (i_reset) r_c <= 1'b0; else r_c <= (r_busy)&&(diff == 0); // The last flag: Negative. This flag is set assuming that the result // of the divide was negative (i.e., the high order bit is set). This // will also be true of an unsigned divide--if the high order bit is // ever set upon completion. Indeed, you might argue that there's no // logic involved. wire w_n; assign w_n = o_quotient[(BW-1)]; assign o_flags = { 1'b0, w_n, r_c, r_z }; `ifdef FORMAL reg f_past_valid; initial f_past_valid = 0; always @(posedge i_clk) f_past_valid <= 1'b1; `ifdef DIV `define ASSUME assume `else `define ASSUME assert `endif initial `ASSUME(i_reset); always @(*) if (!f_past_valid) `ASSUME(i_reset); always @(posedge i_clk) if ((!f_past_valid)||($past(i_reset))) begin assert(!o_busy); assert(!o_valid); assert(!o_err); // assert(!r_busy); // assert(!zero_divisor); assert(r_bit==0); assert(!last_bit); assert(!pre_sign); // assert(!r_z); // assert(r_dividend==0); assert(o_quotient==0); assert(!r_c); assert(r_divisor==0); `ASSUME(!i_wr); end always @(*) if (o_busy) `ASSUME(!i_wr); always @(posedge i_clk) if ((f_past_valid)&&(!$past(i_reset))&&($past(o_busy))&&(!o_busy)) begin assert(o_valid); end // A formal methods section // // This section isn't yet complete. For now, it is just // a description of things I think should be in here ... not // yet a description of what it would take to prove // this divide (yet). always @(*) if (o_err) assert(o_valid); always @(posedge i_clk) if ((f_past_valid)&&(!$past(i_wr))) assert(!pre_sign); always @(posedge i_clk) if ((f_past_valid)&&(!$past(i_reset))&&($past(i_wr))&&($past(i_signed)) &&(|$past({i_numerator[BW-1],i_denominator[BW-1]}))) assert(pre_sign); // always @(posedge i_clk) // if ((f_past_valid)&&(!$past(pre_sign))) // assert(!r_sign); reg [BW:0] f_bits_set; always @(posedge i_clk) if ((f_past_valid)&&(!$past(i_reset))&&($past(i_wr))) assert(o_busy); always @(posedge i_clk) if ((f_past_valid)&&($past(o_valid))) assert(!o_valid); always @(*) if ((o_valid)&&(!o_err)) assert(r_z == ((o_quotient == 0)? 1'b1:1'b0)); else if (o_busy) assert(r_z == (((o_quotient&f_bits_set[BW-1:0]) == 0)? 1'b1: 1'b0)); always @(*) if ((o_valid)&&(!o_err)) assert(w_n == o_quotient[BW-1]); always @(posedge i_clk) if ((f_past_valid)&&(!$past(r_busy))&&(!$past(i_wr))) assert(!o_busy); always @(posedge i_clk) assert((!o_busy)||(!o_valid)); always @(*) if(r_busy) assert(o_busy); always @(posedge i_clk) if (i_reset) f_bits_set <= 0; else if (i_wr) f_bits_set <= 0; else if ((r_busy)&&(!pre_sign)) f_bits_set <= { f_bits_set[BW-1:0], 1'b1 }; always @(posedge i_clk) if (r_busy) assert(((1<<r_bit)-1) == f_bits_set); always @(*) if ((o_valid)&&(!o_err)) assert((!f_bits_set[BW])&&(&f_bits_set[BW-1:0])); /* always @(posedge i_clk) if ((f_past_valid)&&(!$past(i_reset))&&($past(r_busy)) &&($past(r_divisor[2*BW-2:BW])==0)) begin if ($past(r_divisor) == 0) assert(o_err); else if ($past(pre_sign)) begin if ($past(r_dividend[BW-1])) assert(r_dividend == -$past(r_dividend)); if ($past(r_divisor[(2*BW-2)])) begin assert(r_divisor[(2*BW-2):(BW-1)] == -$past(r_divisor[(2*BW-2):(BW-1)])); assert(r_divisor[BW-2:0] == 0); end end else begin if (o_quotient[0]) assert(r_dividend == $past(diff)); else assert(r_dividend == $past(r_dividend)); // r_divisor should shift down on every step assert(r_divisor[2*BW-2]==0); assert(r_divisor[2*BW-3:0]==$past(r_divisor[2*BW-2:1])); end if ($past(r_dividend) >= $past(r_divisor[BW-1:0])) assert(o_quotient[0]); else assert(!o_quotient[0]); end */ always @(*) if (r_busy) assert((f_bits_set & r_dividend[BW-1:0])==0); always @(*) if (r_busy) assert((r_divisor == 0) == zero_divisor); `ifdef VERIFIC // Verify unsigned division assert property (@(posedge i_clk) disable iff (i_reset) (i_wr)&&(i_denominator != 0)&&(!i_signed) |=> ((!o_err)&&(!o_valid)&&(o_busy)&&(!r_sign)&&(!pre_sign) throughout (r_bit == 0) ##1 ((r_bit == $past(r_bit)+1)&&({1'b0,r_bit}< BW-1)) [*0:$] ##1 ({ 1'b0, r_bit } == BW-1)) ##1 (!o_err)&&(o_valid)); // Verify division by zero assert property (@(posedge i_clk) disable iff (i_reset) (i_wr)&&(i_denominator == 0) |=> (zero_divisor throughout (!o_err)&&(!o_valid)&&(pre_sign) [*0:1] ##1 ((r_busy)&&(!o_err)&&(!o_valid)) ##1 ((o_err)&&(o_valid)))); `endif // VERIFIC `endif endmodule // // How much logic will this divide use, now that it's been updated to // a different (long division) algorithm? // // iCE40 stats (Updated) (Original) // Number of cells: 700 820 // SB_CARRY 125 125 // SB_DFF 1 // SB_DFFE 33 1 // SB_DFFESR 37 // SB_DFFESS 31 // SB_DFFSR 40 40 // SB_LUT4 433 553 // // Xilinx stats (Updated) (Original) // Number of cells: 758 831 // FDRE 142 142 // LUT1 97 97 // LUT2 69 174 // LUT3 6 5 // LUT4 1 6 // LUT5 68 35 // LUT6 94 98 // MUXCY 129 129 // MUXF7 12 8 // MUXF8 6 3 // XORCY 134 134