OpenCores
URL https://opencores.org/ocsvn/zipcpu/zipcpu/trunk

Subversion Repositories zipcpu

[/] [zipcpu/] [trunk/] [rtl/] [cpudefs.v] - Rev 56

Go to most recent revision | Compare with Previous | Blame | View Log

///////////////////////////////////////////////////////////////////////////////
//
// Filename:	cpudefs.v
//
// Project:	Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose:	Some architectures have some needs, others have other needs.
//		Some of my projects need a Zip CPU with pipelining, others
//	can't handle the timing required to get the answer from the ALU
//	back into the input for the ALU.  As each different projects has
//	different needs, I can either 1) reconfigure my entire baseline prior
//	to building each project, or 2) host a configuration file which contains
//	the information regarding each baseline.  This file is that
//	configuration file.  It controls how the CPU (not the system,
//	peripherals, or other) is defined and implemented.  Several options
//	are available within here, making the Zip CPU pipelined or not,
//	able to handle a faster clock with more stalls or a slower clock with
//	no stalls, etc.
//
//	This file encapsulates those control options.
//
//	The number of LUTs the Zip CPU uses varies dramatically with the
//	options defined in this file.
//
//
// Creator:	Dan Gisselquist, Ph.D.
//		Gisselquist Tecnology, LLC
//
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of  the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
//
// License:	GPL, v3, as defined and found on www.gnu.org,
//		http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////////
`ifndef	CPUDEFS_H
`define	CPUDEFS_H
//
//
// The first couple options control the Zip CPU instruction set, and how
// it handles various instructions within the set:
//
//
// OPT_CONDITIONAL_FLAGS controls whether or not a conditional instruction
// is allowed to set flags.  If conditional instructions can set flags, then
// strings of conditional instructions will die whenever a flag setting 
// instruction is executed.  If they cannot, then you can execute a string
// of functions with no further conditions in them.  Set this flag to enable
// strings of instructions, as these can be a lot cheaper than the pipeline
// stalls associated with a conditional branch.
//
// This option will likely be changed in the future so that "CMP" and "TST"
// instructions set the flags even if they are conditional, to allow multiple
// conditions to be tested at once.
//
// I recommend setting this flag
//
`define	OPT_CONDITIONAL_FLAGS
//
//
//
// OPT_ILLEGAL_INSTRUCTION is part of a new section of code that is supposed
// to recognize illegal instructions and interrupt the CPU whenever one such
// instruction is encountered.  The goal is to create a soft floating point
// unit via this approach, that can then be replaced with a true floating point
// unit.  As I'm not there yet, it just catches illegal instructions and
// interrupts the CPU on any such instruction--when defined.  Otherwise,
// illegal instructions are quietly ignored and their behaviour is ...
// undefined. (Many get treated like NOOPs ...)
//
// I recommend setting this flag, although it can be taken out if area is
// critical ...
//
`define	OPT_ILLEGAL_INSTRUCTION
//
//
//
// OPT_MULTIPLY controls whether or not the multiply is built and included
// in the ALU by default.  Set this option and a parameter will be set that
// includes the multiply.  (This parameter may still be overridden, as with
// any parameter ...)  If the multiply is not included and
// OPT_ILLEGAL_INSTRUCTION is set, then the multiply will create an illegal
// instruction that will then trip the illegal instruction trap.
//
//
`define	OPT_MULTIPLY
//
//
//
// OPT_SINGLE_FETCH controls whether or not the prefetch has a cache, and 
// whether or not it can issue one instruction per clock.  When set, the
// prefetch has no cache, and only one instruction is fetched at a time.
// This effectively sets the CPU so that only one instruction is ever 
// in the pipeline at once, and hence you may think of this as a "kill 
// pipeline" option.  However, since the pipelined fetch component uses so
// much area on the FPGA, this is an important option to use in trimming down
// used area if necessary.  Hence, it needs to be maintained for that purpose.
// Be aware, though, it will drop your performance by a factor between 2x and
// 3x.
//
// I recommend only defining this if you "need" to, if area is tight and
// speed isn't as important.  Otherwise, just leave this undefined.
//
// `define	OPT_SINGLE_FETCH
//
//
//
// The next several options are pipeline optimization options.  They make no
// sense in a single instruction fetch mode, hence we #ifndef them so they
// are only defined if we are in a full pipelined mode (i.e. OPT_SINGLE_FETCH
// is not defined).
//
`ifndef	OPT_SINGLE_FETCH
//
//
//
// OPT_PRECLEAR_BUS allows an upcoming, unconditional, LOD/STO instruction
// to kick the prefetch off the memory bus so that the LOD/STO instruction may
// use the bus without waiting for the prefetch cycle to complete.  While it
// sounds like this should speed things up, it isn't clear that it speeds up
// programs that much--often the bus gets precleared for the LOD/STO, only
// to have the next instruction stall because it wasn't loaded in time.
//
// While I recommend setting this flag, that recommendation may change in the
// future.
//
`define	OPT_PRECLEAR_BUS
//
//
//
// OPT_EARLY_BRANCHING is an attempt to execute a BRA statement as early
// as possible, to avoid as many pipeline stalls on a branch as possible.
// It's not tremendously successful yet--BRA's suffer 3 stalls instead of 5,
// but I intend to keep working on this approach until the number of stalls
// gets down to one or (ideally) zero.  That way a "BRA" can be used as the
// compiler's branch prediction optimizer: BRA's don't stall, while branches on 
// conditions will always suffer about 5 stalls or so.
//
// I recommend setting this flag, so as to turn early branching on.
//
`define	OPT_EARLY_BRANCHING
//
//
//
// OPT_PIPELINED_BUS_ACCESS controls whether or not LOD/STO instructions
// can take advantaged of pipelined bus instructions.  To be eligible, the
// operations must be identical (cannot pipeline loads and stores, just loads
// only or stores only), and the addresses must either be identical or one up
// from the previous address.  Further, the load/store string must all have
// the same conditional.  This approach gains the must use, in my humble
// opinion, when saving registers to or restoring registers from the stack
// at the beginning/end of a procedure, or when doing a context swap.
//
// I recommend setting this flag, for performance reasons, especially if your
// wishbone bus can handle pipelined bus accesses.
//
`define	OPT_PIPELINED_BUS_ACCESS
//
//
//
// OPT_SINGLE_CYCLE controls how the Zip CPU handles operations where the
// second of two instructions uses a register output from the first of the
// two.  If set, there will be no stalling between such a pair of instructions.
// If not set, the CPU will insert a stall between such a pair to give the
// result time to propagate to the second instruction.  Other than the existence
// of a stall, the CPU will still yield the same results for the same
// instructions.
//
// The purpose of this is really timing: With this option defined, a logical
// or combinatorial mux is placed prior to the input of the ALU.  This mux,
// together with whatever ALU operation is to take place, must both fit within
// one clock cycle.  If they cannot be made to fit within the one clock cycle,
// then either the clock must be slowed down so that they can fit, or this
// flag needs to be turned off (not set) to get rid of the mux--hence speeding
// up the clock while slowing down some instructions.
//
`define	OPT_SINGLE_CYCLE
//
//
`endif	// OPT_SINGLE_FETCH
//
//
`endif	// CPUDEFS_H
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.