OpenCores
URL https://opencores.org/ocsvn/zipcpu/zipcpu/trunk

Subversion Repositories zipcpu

[/] [zipcpu/] [trunk/] [sim/] [verilator/] [zipcpu_tb.cpp] - Rev 209

Compare with Previous | Blame | View Log

////////////////////////////////////////////////////////////////////////////////
//
// Filename:	zipcpu_tb.cpp
//
// Project:	Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose:	A bench simulator for the CPU.  Eventually, you should be
//		able to give this program the name of a piece of compiled
//	code to load into memory.  For now, we hand assemble with the computers
//	help.
//
//
// Creator:	Dan Gisselquist, Ph.D.
//		Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015-2018, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of  the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program.  (It's in the $(ROOT)/doc directory.  Run make with no
// target there if the PDF file isn't present.)  If not, see
// <http://www.gnu.org/licenses/> for a copy.
//
// License:	GPL, v3, as defined and found on www.gnu.org,
//		http://www.gnu.org/licenses/gpl.html
//
//
////////////////////////////////////////////////////////////////////////////////
//
//
#include <signal.h>
#include <time.h>
#include <unistd.h>
#include <poll.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <ctype.h>
 
#include <ncurses.h>
 
#include "verilated.h"
#include "verilated_vcd_c.h"
 
#ifdef	ZIPBONES
#include "Vzipbones.h"
#define	SIMCLASS	Vzipbones
#else
#define	ZIPSYSTEM
#include "Vzipsystem.h"
#define	SIMCLASS	Vzipsystem
#endif
 
#include "cpudefs.h"
 
#include "testb.h"
#include "zipelf.h"
// #include "twoc.h"
// #include "qspiflashsim.h"
#include "byteswap.h"
#include "memsim.h"
#include "zopcodes.h"
 
#define	CMD_REG		0
#define	CMD_DATA	4
#define	CMD_GO		0
#define	CMD_GIE		(1<<13)
#define	CMD_SLEEP	(1<<12)
#define	CMD_CLEAR_CACHE	(1<<11)
#define	CMD_HALT	(1<<10)
#define	CMD_STALL	(1<<9)
#define	CMD_INT		(1<<7)
#define	CMD_RESET	(1<<6)
#define	CMD_STEP	((1<<8)|CMD_HALT)
#define	CPU_HALT	CMD_HALT
#define	CPU_sPC		15
 
#define	KEY_ESCAPE	27
#define	KEY_RETURN	10
#define	CTRL(X)		((X)&0x01f)
 
#define	MAXERR		10000
 
 
// Some versions of Verilator require a prefix starting with the top level
// module name, rather than v__DOT__....  For these versions of Verilator,
// you will need to replace these variable prefixes with either
//	zipsystem__DOT__...
// or
//	zipbones__DOT__...
 
#ifdef	NEW_VERILATOR
#ifdef	ZIPBONES
#define	VVAR(A)	zipbones__DOT_ ## A
#else
#define	VVAR(A)	zipsystem__DOT_ ## A
#endif
#else
#define	VVAR(A)	v__DOT_ ## A
#endif
 
#define	CPUVAR(A)	VVAR(_thecpu__DOT_ ##A)
 
#ifdef	OPT_DCACHE
///
	// dcache
  #define	MEMVAR(A)	CPUVAR(_MEM_DCACHE__DOT__docache__DOT_ ## A)
///
#elif defined(OPT_PIPELINED_BUS_ACCESS)
///
	// pipemem
  #define	MEMVAR(A) CPUVAR(_NO_CACHE__DOT__MEM__DOT__domem__DOT_ ## A)
  #define	mem_wraddr	MEMVAR(_wraddr)
  #define	mem_rdaddr	MEMVAR(_rdaddr)
///
#else
///
	// memops
  #define	MEMVAR(A) CPUVAR(_NO_CACHE__DOT__MEM__DOT__domem__DOT_ ## A)
#endif
 
#define	cpu_halt	VVAR(_cmd_halt)
#define	cmd_reset	VVAR(_cmd_reset)
#define	cmd_step	VVAR(_cmd_step)
#define	cmd_addr	VVAR(_cmd_addr)
 
#ifdef	OPT_SINGLE_FETCH
#define	early_branch	VVAR(_thecpu__DOT__instruction_decoder__DOT__GEN_EARLY_BRANCH_LOGIC__DOT__r_early_branch)
#else
#define	early_branch	VVAR(_thecpu__DOT__instruction_decoder__DOT__GEN_EARLY_BRANCH_LOGIC__DOT__r_early_branch)
#endif
#define	early_branch_pc VVAR(_thecpu__DOT__instruction_decoder__DOT__GEN_EARLY_BRANCH_LOGIC__DOT__r_branch_pc)
 
#define	dcdRmx		VVAR(_thecpu__DOT____Vcellout__instruction_decoder____pinNumber15)
#define	dcdA		VVAR(_thecpu__DOT____Vcellout__instruction_decoder____pinNumber15)
#define	dcdB		VVAR(_thecpu__DOT____Vcellout__instruction_decoder____pinNumber16)
 
#define	new_pc		VVAR(_thecpu__DOT__new_pc)
#define	cpu_ipc		VVAR(_thecpu__DOT__ipc)
#define	cpu_upc		VVAR(_thecpu__DOT__SET_USER_PC__DOT__r_upc)
#define	pf_pc		VVAR(_thecpu__DOT__pf_pc)
 
// PF
#define	pf_cyc	VVAR(_thecpu__DOT__pf_cyc)
#define	pf_stb	VVAR(_thecpu__DOT__pf_stb)
#define	pf_we	VVAR(_thecpu__DOT__pf_we)
#define	pf_addr	VVAR(_thecpu__DOT__pf_addr)
#define	pf_ack	VVAR(_thecpu__DOT__pf_ack)
#define	pf_valid	VVAR(_thecpu__DOT__pf_valid)
#define	pf_illegal	VVAR(_thecpu__DOT__pf_illegal)
#define	pf_vmask	VVAR(_thecpu__DOT__pf__DOT__valid_mask)
#define	pf_r_v		VVAR(_thecpu__DOT__pf__DOT__r_v)
// #define	pf_illegal	VVAR(_thecpu__DOT__pf__DOT__pf_illegal)
#define	pf_tagsrc	VVAR(_thecpu__DOT__pf__DOT__rvsrc)
#define	pf_tagipc	VVAR(_thecpu__DOT__pf__DOT__tagvalipc)
#define	pf_tagvallst	VVAR(_thecpu__DOT__pf__DOT__tagvallst)
#define	pf_lastpc	VVAR(_thecpu__DOT__pf__DOT__lastpc)
#define	pf_instruction		VVAR(_thecpu__DOT__pf_instruction)
 
// Decode
#ifdef	OPT_PIPELINED
#define	dcd_ce		VVAR(_thecpu__DOT__dcd_ce)
#else
#define	dcd_ce		VVAR(_thecpu__DOT__dcd_stalled)^1
#endif
#define	dcd_stalled	VVAR(_thecpu__DOT__dcd_stalled)
#define	dcd_gie		VVAR(_thecpu__DOT__SET_GIE__DOT__r_gie)
#define	dcd_illegal	VVAR(_thecpu__DOT__dcd_illegal)
#define	dcd_valid	VVAR(_thecpu__DOT__instruction_decoder__DOT__r_valid)
#define	dcd_opn		VVAR(_thecpu__DOT__dcd_opn)
#define	dcd_rA		VVAR(_thecpu__DOT__dcd_rA)
#define	dcd_rB		VVAR(_thecpu__DOT__dcd_rB)
#define	dcdR		VVAR(_thecpu__DOT__instruction_decoder__DOT__w_dcdR)
#define	dcdRpc		VVAR(_thecpu__DOT__instruction_decoder__DOT__w_dcdR_pc)
#define	dcdRcc		VVAR(_thecpu__DOT__instruction_decoder__DOT__w_dcdR_cc)
#define	dcd_wR		VVAR(_thecpu__DOT__dcd_wR)
#define	dcd_pc		VVAR(_thecpu__DOT__dcd_pc)
#define	dcd_wF		VVAR(_thecpu__DOT__dcd_wF)
#define	dcd_M		VVAR(_thecpu__DOT__dcd_M)
 
// Op
#define	op_ce		VVAR(_thecpu__DOT__op_ce)
#define	op_illegal	VVAR(_thecpu__DOT__op_illegal)
#define	op_valid	VVAR(_thecpu__DOT__op_valid)
#define	op_valid_mem	VVAR(_thecpu__DOT__op_valid_mem)
#define	op_valid_alu	VVAR(_thecpu__DOT__op_valid_alu)
#ifdef	OPT_PIPELINED
#define	op_R		VVAR(_thecpu__DOT__op_R)
#define	op_stall	VVAR(_thecpu__DOT__op_stall)
#else
#define	op_R		dcdR
#endif
#define	op_wR		VVAR(_thecpu__DOT__op_wR)
#define	op_wF		VVAR(_thecpu__DOT__op_wF)
 
#define	master_stall	VVAR(_thecpu__DOT__master_stall)
// ALU
#define	alu_ce		VVAR(_thecpu__DOT__alu_ce)
#define	alu_valid	VVAR(_thecpu__DOT__alu_valid)
// #define	alu_stall	VVAR(_thecpu__DOT__alu_stall)
#define	alu_wF		VVAR(_thecpu__DOT__alu_wF)
#define	alu_pc_valid	VVAR(_thecpu__DOT__alu_pc_valid)
#define	alu_flags	VVAR(_thecpu__DOT__alu_flags)
#define	alu_wR		VVAR(_thecpu__DOT__alu_wR)
#ifdef	OPT_PIPELINED
#define	alu_illegal	VVAR(_thecpu__DOT__SET_ALU_ILLEGAL__DOT__r_alu_illegal)
#else
#define	alu_illegal	op_illegal
#endif
#define	set_cond	VVAR(_thecpu__DOT__set_cond)
 
// MEM
#define	mem_valid	CPUVAR(_mem_valid)
#define	mem_pc_valid	CPUVAR(_mem_pc_valid)
#define	mem_ce		CPUVAR(_mem_ce)
#define	mem_cyc		MEMVAR(_cyc)
#define	mem_rdbusy	CPUVAR(_mem_rdbusy)
#define	mem_wreg	CPUVAR(_mem_wreg)
 
// DIV
#ifdef OPT_DIVIDE
  #define	div_valid	CPUVAR(_div_valid)
  #define	div_ce		CPUVAR(_div_ce)
  #define	div_busy	CPUVAR(_div_busy)
#endif
 
//
#define	wr_reg_id	CPUVAR(_wr_reg_id)
#define	wr_reg_ce	CPUVAR(_wr_reg_ce)
#define	wr_gpreg_vl	CPUVAR(_wr_gpreg_vl)
#ifdef	OPT_DIVIDE
#define	wr_spreg_vl	CPUVAR(_wr_spreg_vl)
#else
#define	wr_spreg_vl	wr_gpreg_vl
#endif
#define	wr_reg_ce	CPUVAR(_wr_reg_ce)
#define	wr_flags_ce	CPUVAR(_wr_flags_ce)
#define	w_iflags	CPUVAR(_w_iflags)
#define	w_uflags	CPUVAR(_w_uflags)
 
// Op-Sim instructions
#define	cpu_sim		VVAR(_thecpu__DOT__op_sim)
#define	cpu_sim_immv	VVAR(_thecpu__DOT__op_sim_immv)
 
//
#define	r_sleep		VVAR(_thecpu__DOT__sleep)
 
#define	master_ce	VVAR(_thecpu__DOT__master_ce)
#define	op_break	VVAR(_thecpu__DOT__r_op_break)
#define	op_F		VVAR(_thecpu__DOT__op_F)
//
#define	regset		VVAR(_thecpu__DOT__regset)
#define	cpu_regs	regset
 
 
#ifdef	OPT_CIS
#define	dcd_phase	VVAR(_thecpu__DOT__dcd_phase)
#define	op_phase	VVAR(_thecpu__DOT__OPT_CIS_OP_PHASE__DOT__r_op_phase)
#define	alu_phase	VVAR(_thecpu__DOT__GEN_ALU_PHASE__DOT__r_alu_phase)
#endif
 
#ifdef	OPT_SINGLE_FETCH
#define	pf_instruction_pc	VVAR(_thecpu__DOT__pf_addr)<<2
#else
#define	pf_instruction_pc	VVAR(_thecpu__DOT__pf_instruction_pc)
#endif
 
 
#ifdef	OPT_PIPELINED
#define	op_Av	VVAR(_thecpu__DOT__op_Av)
#define	op_Bv	VVAR(_thecpu__DOT__op_Bv)
#define	alu_gie	dcd_gie
#define	alu_pc	VVAR(_thecpu__DOT__GEN_ALU_PC__DOT__r_alu_pc)
#define	op_Aid	VVAR(_thecpu__DOT__op_Aid)
#define	op_Bid	VVAR(_thecpu__DOT__op_Bid)
#else
#define	op_Av	VVAR(_thecpu__DOT__r_op_Av)
#define	op_Bv	VVAR(_thecpu__DOT__r_op_Bv)
#define	alu_gie	dcd_gie
#define	alu_pc	VVAR(_thecpu__DOT__op_pc)
#endif
#define	op_gie	dcd_gie
 
#define	r_op_pc	VVAR(_thecpu__DOT__op_pc)
 
#ifdef	ZIPSYSTEM
#define	dbg_cyc		VVAR(_dbg_cyc)
#define	dbg_stb		VVAR(_dbg_stb)
#define	dbg_we		VVAR(_dbg_we)
#define	dbg_idata	VVAR(_dbg_idata)
#define	cpu_stall	VVAR(_cpu_stall)
#define	cpu_interrupt	VVAR(_MAIN_PIC__DOT__pic__DOT__r_interrupt)
#define	cpu_idata	VVAR(_cpu_idata)
#define	tick_counter	m_core->VVAR(_jiffies__DOT__r_counter)
#define	dbg_addr	VVAR(_dbg_addr)
#else
#define	dbg_cyc		i_dbg_cyc
#define	dbg_stb		i_dbg_stb
#define	dbg_we		i_dbg_we
#define	dbg_idata	i_dbg_data
#define	cpu_stall	i_wb_stall
#define	cpu_interrupt	i_ext_int
#define	cpu_idata	i_wb_data
#define	tick_counter	tickcount()
#define	dbg_addr	i_dbg_addr
#endif
 
#define	r_gie		VVAR(_thecpu__DOT__SET_GIE__DOT__r_gie)
#define	pic_data	VVAR(_pic_data)
#define	r_value		VVAR(_r_value)
#define	watchbus	VVAR(_watchbus__DOT__r_value)
#define	watchdog	VVAR(_watchdog__DOT__r_value)
#define	wdbus_data	VVAR(_r_wdbus_data)
#define	int_state	VVAR(_MAIN_PIC__DOT__pic__DOT__r_int_state)
#define	alt_int_state	VVAR(_ALT_PIC__DOT__ctri__DOT__r_int_state)
#define	timer_a		VVAR(_timer_a__DOT__r_value)
#define	timer_b		VVAR(_timer_b__DOT__r_value)
#define	timer_c		VVAR(_timer_c__DOT__r_value)
#define	jiffies		VVAR(_jiffies__DOT__r_counter)
#define	utc_data	VVAR(_utc_data)
#define	uoc_data	VVAR(_uoc_data)
#define	upc_data	VVAR(_upc_data)
#define	uic_data	VVAR(_uic_data)
#define	mtc_data	VVAR(_mtc_data)
#define	moc_data	VVAR(_moc_data)
#define	mpc_data	VVAR(_mpc_data)
#define	mic_data	VVAR(_mic_data)
 
#define	r_wb_cyc_gbl	MEMVAR(_r_wb_cyc_gbl)
#define	r_wb_cyc_lcl	MEMVAR(_r_wb_cyc_lcl)
#define	r_wb_stb_gbl	VVAR(_thecpu__DOT__mem_stb_gbl)
#define	r_wb_stb_lcl	VVAR(_thecpu__DOT__mem_stb_lcl)
#define	mem_stb_gbl	VVAR(_thecpu__DOT__mem_stb_gbl)
#define	mem_stb_lcl	VVAR(_thecpu__DOT__mem_stb_lcl)
#define	mem_we		VVAR(_thecpu__DOT__mem_we)
#define	mem_ack		VVAR(_thecpu__DOT__mem_ack)
#define	mem_stall	VVAR(_thecpu__DOT__mem_stall)
#define	mem_data	VVAR(_thecpu__DOT__mem_data)
#define	mem_addr	VVAR(_thecpu__DOT__mem_addr)
#define	mem_result	VVAR(_thecpu__DOT__mem_result)
#define	op_pipe		VVAR(_thecpu__DOT__GEN_OP_PIPE__DOT__r_op_pipe)
#define	dcd_pipe	VVAR(_thecpu__DOT__instruction_decoder__DOT__GEN_OPIPE__DOT__r_pipe)
#define	op_A_alu	VVAR(_thecpu__DOT__op_A_alu)
#define	op_B_alu	VVAR(_thecpu__DOT__op_B_alu)
#define	op_A_mem	VVAR(_thecpu__DOT__op_A_mem)
#define	op_B_mem	VVAR(_thecpu__DOT__op_B_mem)
#ifdef	OPT_PIPELINED
#define	op_opn		VVAR(_thecpu__DOT__r_op_opn)
#else
#define	op_opn		dcd_opn
#endif
#define	alu_result	VVAR(_thecpu__DOT__alu_result)
#define	alu_busy	VVAR(_thecpu__DOT__doalu__DOT__r_busy)
#define	alu_reg		VVAR(_thecpu__DOT__alu_reg)
#define	switch_to_interrupt	VVAR(_thecpu__DOT__w_switch_to_interrupt)
#define	release_from_interrupt	VVAR(_thecpu__DOT__w_release_from_interrupt)
#define	break_en	VVAR(_thecpu__DOT__break_en)
#define	dcd_break	VVAR(_thecpu__DOT__dcd_break)
 
/*
// We are just a raw CPU with memory.  There is no flash.
#define	LGFLASHLEN	24
#define	FLASHBASE	0x01000000
#define	FLASHWORDS	(1<<LGFLASHLEN)
*/
 
#define	LGRAMLEN	28
#define	RAMBASE		(1<<(LGRAMLEN))
#define	RAMLEN		(1<<(LGRAMLEN))
#define	RAMWORDS	((RAMLEN)>>2)
 
class	SPARSEMEM {
public:
	bool	m_valid;
	unsigned int	m_a, m_d;
};
 
class	ZIPSTATE {
public:
	bool		m_valid, m_gie, m_last_pc_valid;
	unsigned int	m_sR[16], m_uR[16];
#ifdef	ZIPSYSTEM
	unsigned int	m_p[20];
#endif
	unsigned int	m_last_pc, m_pc, m_sp;
	SPARSEMEM	m_smem[5]; // Nearby stack memory
	SPARSEMEM	m_imem[5]; // Nearby instruction memory
	ZIPSTATE(void) : m_valid(false), m_last_pc_valid(false) {}
 
	void	step(void) {
		m_last_pc_valid = true;
		m_last_pc = m_pc;
	}
};
 
extern	FILE	*gbl_dbgfp;
FILE	*gbl_dbgfp = NULL;
 
// No particular "parameters" need definition or redefinition here.
class	ZIPCPU_TB : public TESTB<SIMCLASS> {
public:
	unsigned long	m_mem_size;
	MEMSIM		m_mem;
	// QSPIFLASHSIM	m_flash;
	FILE		*m_dbgfp, *m_profile_fp;
	bool		dbg_flag, m_bomb, m_show_user_timers, m_console, m_exit;
	int		m_cursor, m_rcode;
	unsigned long	m_last_instruction_tickcount;
	ZIPSTATE	m_state;
 
	ZIPCPU_TB(void) : m_mem_size(RAMWORDS), m_mem(m_mem_size) {
		m_rcode = 0;
		m_exit  = false;
		if (true) {
			m_dbgfp = fopen("debug.txt", "w");
			dbg_flag = true;
			gbl_dbgfp = m_dbgfp;
		} else {
			m_dbgfp = NULL;
			dbg_flag = false;
			gbl_dbgfp = NULL;
		}
 
		if(true) {
			opentrace("trace.vcd");
		} else {
			m_trace = NULL;
		}
 
		m_bomb = false;
		m_cursor = 0;
		m_show_user_timers = false;
 
		m_last_instruction_tickcount = 0l;
		if (true) {
			m_profile_fp = fopen("pfile.bin","wb");
		} else {
			m_profile_fp = NULL;
		}
	}
 
	~ZIPCPU_TB(void) {
		if (m_dbgfp)
			fclose(m_dbgfp);
		if (m_profile_fp)
			fclose(m_profile_fp);
		if (m_trace)
			m_trace->close();
	}
 
	void	reset(void) {
		// m_flash.debug(false);
		TESTB<SIMCLASS>::reset();
	}
 
	void	step(void) {
		wb_write(CMD_REG, CMD_STEP);
		m_state.step();
	}
 
	void	read_raw_state(void) {
		m_state.m_valid = false;
		for(int i=0; i<16; i++)
			m_state.m_sR[i] = cmd_read(i);
		for(int i=0; i<16; i++)
			m_state.m_uR[i] = cmd_read(i+16);
#ifdef	ZIPSYSTEM
		for(int i=0; i<20; i++)
			m_state.m_p[i]  = cmd_read(i+32);
#endif
 
		m_state.m_gie = wb_read(CMD_REG) & CMD_GIE;
		m_state.m_pc  = (m_state.m_gie) ? (m_state.m_uR[15]):(m_state.m_sR[15]);
		m_state.m_sp  = (m_state.m_gie) ? (m_state.m_uR[13]):(m_state.m_sR[13]);
 
		if (m_state.m_last_pc_valid)
			m_state.m_imem[0].m_a = m_state.m_last_pc;
		else
			m_state.m_imem[0].m_a = m_state.m_pc - 1;
		m_state.m_imem[0].m_d = m_mem[m_state.m_imem[0].m_a & 0x0fffff];
		m_state.m_imem[0].m_valid = ((m_state.m_imem[0].m_a & 0xfff00000)==0x00100000);
		m_state.m_imem[1].m_a = m_state.m_pc;
		m_state.m_imem[1].m_valid = ((m_state.m_imem[1].m_a & 0xfff00000)==0x00100000);
		m_state.m_imem[1].m_d = m_mem[m_state.m_imem[1].m_a & 0x0fffff];
 
		for(int i=1; i<4; i++) {
			if (!m_state.m_imem[i].m_valid) {
				m_state.m_imem[i+1].m_valid = false;
				m_state.m_imem[i+1].m_a = m_state.m_imem[i].m_a+1;
				continue;
			}
			m_state.m_imem[i+1].m_a = zop_early_branch(
					m_state.m_imem[i].m_a,
					m_state.m_imem[i].m_d);
			m_state.m_imem[i+1].m_d = m_mem[m_state.m_imem[i].m_a & 0x0fffff];
			m_state.m_imem[i+1].m_valid = ((m_state.m_imem[i].m_a&0xfff00000)==0x00100000);
		}
 
		m_state.m_smem[0].m_a = m_state.m_sp;
		for(int i=1; i<5; i++)
			m_state.m_smem[i].m_a = m_state.m_smem[i-1].m_a+1;
		for(int i=0; i<5; i++) {
			m_state.m_smem[i].m_valid =
				(m_state.m_imem[i].m_a > 0x10000);
			m_state.m_smem[i].m_d = m_mem[m_state.m_imem[i].m_a & 0x0fffff];
		}
		m_state.m_valid = true;
	}
 
	void	read_raw_state_cheating(void) {
		m_state.m_valid = false;
		for(int i=0; i<16; i++)
			m_state.m_sR[i] = m_core->regset[i];
		m_state.m_sR[14] = (m_state.m_sR[14]&0xffffe000)|m_core->w_iflags;
		m_state.m_sR[15] = m_core->cpu_ipc;
		for(int i=0; i<16; i++)
			m_state.m_uR[i] = m_core->regset[i+16];
		m_state.m_uR[14] = (m_state.m_uR[14]&0xffffe000)|m_core->w_uflags;
		m_state.m_uR[15] = m_core->cpu_upc;
 
		m_state.m_gie = m_core->r_gie;
		m_state.m_pc  = (m_state.m_gie) ? (m_state.m_uR[15]):(m_state.m_sR[15]);
		m_state.m_sp  = (m_state.m_gie) ? (m_state.m_uR[13]):(m_state.m_sR[13]);
 
#ifdef	ZIPSYSTEM
		m_state.m_p[0] = m_core->pic_data;
		m_state.m_p[1] = m_core->watchdog;
		if (!m_show_user_timers) {
			m_state.m_p[2] = m_core->watchbus;
		} else {
			// The last bus error address
			m_state.m_p[2] = m_core->wdbus_data;
		}
 
		m_state.m_p[3] = m_core->alt_int_state;
		m_state.m_p[4] = m_core->timer_a;
		m_state.m_p[5] = m_core->timer_b;
		m_state.m_p[6] = m_core->timer_c;
		m_state.m_p[7] = m_core->jiffies;
 
		m_state.m_p[ 8] = m_core->utc_data;
		m_state.m_p[ 9] = m_core->uoc_data;
		m_state.m_p[10] = m_core->upc_data;
		m_state.m_p[11] = m_core->uic_data;
 
		m_state.m_p[12] = m_core->mtc_data;
		m_state.m_p[13] = m_core->moc_data;
		m_state.m_p[14] = m_core->mpc_data;
		m_state.m_p[15] = m_core->mic_data;
#endif
	}
 
	void	showval(int y, int x, const char *lbl, unsigned int v, bool c) {
		if (c)
			mvprintw(y,x, ">%s> 0x%08x<", lbl, v);
		else
			mvprintw(y,x, " %s: 0x%08x ", lbl, v);
	}
 
	void	dispreg(int y, int x, const char *n, unsigned int v, bool c) {
		// 4,4,8,1 = 17 of 20, +3 = 19
		if (c)
			mvprintw(y, x, ">%s> 0x%08x<", n, v);
		else
			mvprintw(y, x, " %s: 0x%08x ", n, v);
	}
 
	void	dbgreg(FILE *fp, int id, const char *n, unsigned int v) {
		/*
		if ((id == 14)||(id == 14+16)) {
			//char	buf[64];
			//fprintf(fp, " %s:",
			fprintf(fp, " %s: 0x%08x ", n, v);
		} else
		*/
			fprintf(fp, " %s: 0x%08x ", n, v);
	}
 
	void	showreg(int y, int x, const char *n, int r, bool c) {
		if (r < 16)
			dispreg(y, x, n, m_state.m_sR[r], c);
		else
			dispreg(y, x, n, m_state.m_uR[r-16], c);
		move(y,x+17);
 
#ifdef	OPT_PIPELINED
		addch( ((r == (int)(dcd_Aid()&0x01f))&&(m_core->dcd_valid)
				&&(m_core->dcd_rA))
			?'a':((c)?'<':' '));
		addch( ((r == (int)(dcd_Bid()&0x01f))&&(m_core->dcd_valid)
				&&(m_core->dcd_rB))
			?'b':' ');
		addch( ((r == m_core->wr_reg_id)
				&&(m_core->wr_reg_ce))
			?'W':' ');
#else
		addch( ((r == m_core->wr_reg_id)
				&&(m_core->wr_reg_ce))
			?'W':((c)?'<':' '));
#endif
	}
 
	void	showins(int y, const char *lbl, const int ce, const int valid,
			const int gie, const int stall, const unsigned int pc,
			const bool phase) {
		char	la[80], lb[80];
		unsigned iv = m_mem[pc >> 2];
		bool	cisw = (iv & 0x80000000)?true:false;
 
		if (ce)
			mvprintw(y, 0, "Ck ");
		else
			mvprintw(y, 0, "   ");
		if (stall)
			printw("Stl ");
		else
			printw("    ");
		printw("%s%c 0x%08x", lbl, ((cisw)&&(phase))?'/':':', pc);
 
		if (valid) {
			if (gie) attroff(A_BOLD);
			else	attron(A_BOLD);
			zipi_to_double_string(pc, iv, la, lb);
			if ((!cisw)||(phase))
				printw("  %-24s", la);
			else
				printw("  %-24s", lb);
		} else {
			attroff(A_BOLD);
			printw("  (0x%08x)%28s", iv,"");
		}
		attroff(A_BOLD);
	}
 
	void	dbgins(const char *lbl, const int ce, const int valid,
			const int gie, const int stall, const unsigned int pc,
			const bool phase, const bool illegal) {
		char	la[80], lb[80];
 
		if (!m_dbgfp)
			return;
 
		if (ce)
			fprintf(m_dbgfp, "%s Ck ", lbl);
		else
			fprintf(m_dbgfp, "%s    ", lbl);
		if (stall)
			fprintf(m_dbgfp, "Stl ");
		else
			fprintf(m_dbgfp, "    ");
		fprintf(m_dbgfp, "0x%08x%s:  ", pc, (phase)?"/P":"  ");
 
		if (valid) {
			zipi_to_double_string(pc, m_mem[pc>>2], la, lb);
			if ((phase)||((m_mem[pc>>2]&0x80000000)==0))
				fprintf(m_dbgfp, "  %-24s", la);
			else
				fprintf(m_dbgfp, "  %-24s", lb);
		} else {
			fprintf(m_dbgfp, "  (0x%08x)", m_mem[pc]);
		} if (illegal)
			fprintf(m_dbgfp, " (Illegal)");
		fprintf(m_dbgfp, "\n");
	}
 
	void	show_state(void) {
		int	ln= 0;
 
		read_raw_state_cheating();
 
		mvprintw(ln,0, "Peripherals-SS"); ln++;
		printw(" %s",
			// (m_core->pf_illegal)?"PI":"  ",
			(m_core->dcd_illegal)?"DI":"  "
			);
 
#ifdef	OPT_EARLY_BRANCHING
		printw(" %s",
			(m_core->early_branch)?"EB":"  ");
		if (m_core->early_branch)
			printw(" 0x%08x", m_core->early_branch_pc);
		else	printw(" %10s", "");
		// printw(" %s", (m_core->v__DOT__thecpu__DOT____Vcellinp__pf____pinNumber3)?"-> P3":"     ");
#endif
 
#ifdef	ZIPSYSTEM
		showval(ln, 0, "PIC ", m_state.m_p[0], (m_cursor==0));
		showval(ln,20, "WDT ", m_state.m_p[1], (m_cursor==1));
		// showval(ln,40, "CACH", m_core->v__DOT__manualcache__DOT__cache_base, (m_cursor==2));
 
		if (!m_show_user_timers) {
		showval(ln,40, "WBUS", m_core->watchbus, false);
		} else {
		// showval(ln,40, "UBUS", m_core->v__DOT__r_wdbus_data, false);
		showval(ln,40, "UBUS", m_core->watchbus, false);
		}
 
		showval(ln,60, "PIC2", m_state.m_p[3], (m_cursor==3));
 
		ln++;
		showval(ln, 0, "TMRA", m_state.m_p[4], (m_cursor==4));
		showval(ln,20, "TMRB", m_state.m_p[5], (m_cursor==5));
		showval(ln,40, "TMRC", m_state.m_p[6], (m_cursor==6));
		showval(ln,60, "JIF ", m_state.m_p[7], (m_cursor==7));
 
 
		if (!m_show_user_timers) {
			ln++;
			showval(ln, 0, "MTSK", m_state.m_p[12], (m_cursor==8));
			showval(ln,20, "MOST", m_state.m_p[13], (m_cursor==9));
			showval(ln,40, "MPST", m_state.m_p[14], (m_cursor==10));
			showval(ln,60, "MICT", m_state.m_p[15], (m_cursor==11));
		} else {
			ln++;
			showval(ln, 0, "UTSK", m_state.m_p[ 8], (m_cursor==8));
			showval(ln,20, "UOST", m_state.m_p[ 9], (m_cursor==9));
			showval(ln,40, "UPST", m_state.m_p[10], (m_cursor==10));
			showval(ln,60, "UICT", m_state.m_p[11], (m_cursor==11));
		}
#else
		ln += 2;
#endif
 
		ln++;
		mvprintw(ln, 40, "%s %s",
			(m_core->cpu_halt)? "CPU-HALT": "        ",
			(m_core->cmd_reset)?"CPU-RESET":"         "); ln++;
		mvprintw(ln, 40, "%s %s %s 0x%02x %s %s",
			(m_core->cpu_halt)? "HALT": "    ",
			(m_core->cmd_reset)?"RESET":"     ",
			(m_core->cmd_step)? "STEP" :"    ",
			(m_core->cmd_addr)&0x3f,
			(m_core->master_ce)? "*CE*" :"(ce)",
			(m_core->cmd_reset)? "*RST*" :"(rst)");
		if (m_core->r_gie)
			attroff(A_BOLD);
		else
			attron(A_BOLD);
		mvprintw(ln, 0, "Supervisor Registers");
		ln++;
 
		showreg(ln, 0, "sR0 ", 0, (m_cursor==12));
		showreg(ln,20, "sR1 ", 1, (m_cursor==13));
		showreg(ln,40, "sR2 ", 2, (m_cursor==14));
		showreg(ln,60, "sR3 ", 3, (m_cursor==15)); ln++;
 
		showreg(ln, 0, "sR4 ", 4, (m_cursor==16));
		showreg(ln,20, "sR5 ", 5, (m_cursor==17));
		showreg(ln,40, "sR6 ", 6, (m_cursor==18));
		showreg(ln,60, "sR7 ", 7, (m_cursor==19)); ln++;
 
		showreg(ln, 0, "sR8 ",  8, (m_cursor==20));
		showreg(ln,20, "sR9 ",  9, (m_cursor==21));
		showreg(ln,40, "sR10", 10, (m_cursor==22));
		showreg(ln,60, "sR11", 11, (m_cursor==23)); ln++;
 
		showreg(ln, 0, "sR12", 12, (m_cursor==24));
		showreg(ln,20, "sSP ", 13, (m_cursor==25));
 
		unsigned int cc = m_state.m_sR[14];
		if (false) {
			mvprintw(ln,40, "%ssCC : 0x%08x",
				(m_cursor==26)?">":" ", cc);
		} else {
			char	cbuf[32];
 
			sprintf(cbuf, "%ssCC :%s%s%s%s%s%s%s",
				(m_cursor==26)?">":" ",
				(cc&0x01000)?"FE":"",
				(cc&0x00800)?"DE":"",
				(cc&0x00400)?"BE":"",
				(cc&0x00200)?"TP":"",
				(cc&0x00100)?"IL":"",
				(cc&0x00080)?"BK":"",
				((m_state.m_gie==0)&&(cc&0x010))?"HLT":"");
			mvprintw(ln,40, "%-14s",cbuf);
			mvprintw(ln, 54, "%s%s%s%s",
				(cc&8)?"V":" ",
				(cc&4)?"N":" ",
				(cc&2)?"C":" ",
				(cc&1)?"Z":" ");
		}
		showval(ln,60, "sPC ", m_state.m_sR[15], (m_cursor==27));
		mvprintw(ln,60,"%s",
			(m_core->wr_reg_id == 0x0e)
				&&(m_core->wr_reg_ce)
				?"V"
			:(((m_core->wr_flags_ce)
				&&(!m_core->alu_gie))?"+"
			:" "));
		ln++;
 
		if (m_core->r_gie)
			attron(A_BOLD);
		else
			attroff(A_BOLD);
		mvprintw(ln, 0, "User Registers");
		mvprintw(ln, 42, "DCDR=%02x %s%s",
			m_core->dcdR,
			(m_core->dcd_wR)?"W":" ",
			(m_core->dcd_wF)?"F":" ");
		mvprintw(ln, 62, "OPR =%02x %s%s",
			m_core->op_R,
			(m_core->op_wR)?"W":" ",
			(m_core->op_wF)?"F":" ");
		ln++;
		showreg(ln, 0, "uR0 ", 16, (m_cursor==28));
		showreg(ln,20, "uR1 ", 17, (m_cursor==29));
		showreg(ln,40, "uR2 ", 18, (m_cursor==30));
		showreg(ln,60, "uR3 ", 19, (m_cursor==31)); ln++;
 
		showreg(ln, 0, "uR4 ", 20, (m_cursor==32));
		showreg(ln,20, "uR5 ", 21, (m_cursor==33));
		showreg(ln,40, "uR6 ", 22, (m_cursor==34));
		showreg(ln,60, "uR7 ", 23, (m_cursor==35)); ln++;
 
		showreg(ln, 0, "uR8 ", 24, (m_cursor==36));
		showreg(ln,20, "uR9 ", 25, (m_cursor==37));
		showreg(ln,40, "uR10", 26, (m_cursor==38));
		showreg(ln,60, "uR11", 27, (m_cursor==39)); ln++;
 
		showreg(ln, 0, "uR12", 28, (m_cursor==40));
		showreg(ln,20, "uSP ", 29, (m_cursor==41));
		cc = m_state.m_uR[14];
		if (false) {
			mvprintw(ln,40, "%cuCC : 0x%08x",
				(m_cursor == 42)?'>':' ', cc);
		} else {
			char	cbuf[32];
			sprintf(cbuf, "%cuCC :%s%s%s%s%s%s%s",
				(m_cursor == 42)?'>':' ',
				(cc & 0x1000)?"FE":"",
				(cc & 0x0800)?"DE":"",
				(cc & 0x0400)?"BE":"",
				(cc & 0x0200)?"TP":"",
				(cc & 0x0100)?"IL":"",
				(cc & 0x0040)?"ST":"",
				((m_state.m_gie)&&(cc & 0x010))?"SL":"");
			mvprintw(ln,40, "%-14s",cbuf);
			mvprintw(ln, 54, "%s%s%s%s",
				(cc&8)?"V":" ",
				(cc&4)?"N":" ",
				(cc&2)?"C":" ",
				(cc&1)?"Z":" ");
		}
		showval(ln,60, "uPC ", m_state.m_uR[15], (m_cursor==43));
		mvprintw(ln,60,"%s",
			(m_core->wr_reg_id == 0x1e)
				&&(m_core->wr_reg_ce)
				?"V"
			:(((m_core->wr_flags_ce)
				&&(m_core->alu_gie))?"+"
			:" "));
 
		attroff(A_BOLD);
		ln+=1;
 
#ifdef	OPT_SINGLE_FETCH
		ln++;
		mvprintw(ln, 0, "PF BUS: %3s %3s %s @0x%08x[0x%08x] -> %s %s %08x",
			(m_core->pf_cyc)?"CYC":"   ",
			(m_core->pf_stb)?"STB":"   ",
			"  ", // (m_core->pf_we )?"WE":"  ",
			(m_core->pf_addr<<2),
			0, // (m_core->v__DOT__thecpu__DOT__pf_data),
			(m_core->pf_ack)?"ACK":"   ",
			"   ",//(m_core->v__DOT__thecpu__DOT__pf_stall)?"STL":"   ",
			(m_core->cpu_idata)); ln++;
#else
#ifdef	OPT_DOUBLE_FETCH
#else
 
		mvprintw(ln, 0, "PFCACH: v=%08x, %s%s, tag=%08x, pf_pc=%08x, lastpc=%08x",
			m_core->pf_vmask,
			(m_core->pf_r_v)?"V":" ",
			(m_core->pf_illegal)?"I":" ",
			(m_core->pf_tagsrc)
			?(m_core->pf_tagipc)
			:(m_core->pf_tagvallst),
			m_core->pf_pc,
			m_core->pf_lastpc);
 
#endif
		ln++;
		mvprintw(ln, 0, "PF BUS: %3s %3s %s @0x%08x[0x%08x] -> %s %s %08x",
			(m_core->pf_cyc)?"CYC":"   ",
			(m_core->pf_stb)?"STB":"   ",
			"  ", // (m_core->v__DOT__thecpu__DOT__pf_we )?"WE":"  ",
			(m_core->pf_addr<<2),
			0, // (m_core->v__DOT__thecpu__DOT__pf_data),
			(m_core->pf_ack)?"ACK":"   ",
			(pfstall())?"STL":"   ",
			(m_core->cpu_idata)); ln++;
#endif
 
		mvprintw(ln, 0, "MEMBUS: %3s %3s %s @0x%08x[0x%08x] -> %s %s %08x",
			(m_core->r_wb_cyc_gbl)?"GCY"
				:((m_core->r_wb_cyc_lcl)?"LCY":"   "),
			(m_core->mem_stb_gbl)?"GSB"
				:((m_core->mem_stb_lcl)?"LSB":"   "),
			(m_core->mem_we )?"WE":"  ",
			(m_core->mem_addr<<2),
			(m_core->mem_data),
			(m_core->mem_ack)?"ACK":"   ",
			(m_core->mem_stall)?"STL":"   ",
			(m_core->mem_result));
// #define	OPT_PIPELINED_BUS_ACCESS
#ifdef	OPT_PIPELINED_BUS_ACCESS
#ifndef	OPT_DCACHE
		printw(" %x%x%c%c",
			(m_core->mem_wraddr),
			(m_core->mem_rdaddr),
			(m_core->op_pipe)?'P':'-',
			(mem_pipe_stalled())?'S':'-'); ln++;
#else
		ln++;
#endif
#else
		ln++;
#endif
 
#define	pformem_owner	VVAR(_thecpu__DOT__pformem__DOT__r_a_owner)
		mvprintw(ln, 0, "SYSBS%c: %3s %3s %s @0x%08x[0x%08x] -> %s %s %08x %s",
			(m_core->pformem_owner)?'M':'P',
			(m_core->o_wb_cyc)?"CYC":"   ",
			(m_core->o_wb_stb)?"STB":"   ",
			(m_core->o_wb_we )?"WE":"  ",
			(m_core->o_wb_addr<<2),
			(m_core->o_wb_data),
			(m_core->i_wb_ack)?"ACK":"   ",
			(m_core->i_wb_stall)?"STL":"   ",
			(m_core->i_wb_data),
			(m_core->i_wb_err)?"(ER!)":"     "); ln+=2;
#ifdef	OPT_PIPELINED_BUS_ACCESS
		mvprintw(ln-1, 0, "Mem CE: %d = %d%d%d%d%d, stall: %d = %d%d(%d|%d%d|..)",
			(m_core->mem_ce),
			(m_core->master_ce),	//1
			(m_core->op_valid_mem),	//0
			(!m_core->new_pc),	//1
			// (!m_core->clear_pipeline),	//1
			(m_core->set_cond),	//1
			(!mem_stalled()),	//1
 
			(mem_stalled()),
			(m_core->op_valid_mem),
			(m_core->master_ce),
			(mem_pipe_stalled()),
			(!m_core->op_pipe),
			(m_core->mem_cyc)
			);
		printw(" op_pipe = %d", m_core->dcd_pipe);
		// mvprintw(4,4,"r_dcdI = 0x%06x",
			// (m_core->v__DOT__thecpu__DOT__dcdI)&0x0ffffff);
#endif
		mvprintw(4,42,"0x%08x", m_core->pf_instruction);
#ifdef	OPT_SINGLE_CYCLE
		printw(" A:%c%c B:%c%c",
			(m_core->op_A_alu)?'A':'-',
			(m_core->op_A_mem)?'M':'-',
			(m_core->op_B_alu)?'A':'-',
			(m_core->op_B_mem)?'M':'-');
#else
		printw(" A:xx B:xx");
#endif
		printw(" PFPC=%08x", m_core->pf_pc);
 
 
		showins(ln, "I ",
#ifdef	OPT_PIPELINED
			!m_core->dcd_stalled,
#else
			1,
#endif
			m_core->pf_valid,
			//m_core->v__DOT__thecpu__DOT__instruction_gie,
			m_core->r_gie,
			0,
			(m_core->pf_instruction_pc),
			true); ln++;
			// m_core->pf_pc); ln++;
 
		showins(ln, "Dc",
			m_core->dcd_ce, m_core->dcd_valid,
			m_core->dcd_gie,
#ifdef	OPT_PIPELINED
			m_core->dcd_stalled,
#else
			0,
#endif
#ifdef	OPT_CIS
			((m_core->dcd_phase) ?
				(m_core->dcd_pc+2):m_core->dcd_pc) -4,
			m_core->dcd_phase
#else
			m_core->dcd_pc - 4,
			false
#endif
			); ln++;
		if (m_core->dcd_illegal)
			mvprintw(ln-1,10,"I");
		else if (m_core->dcd_M)
			mvprintw(ln-1,10,"M");
 
		showins(ln, "Op",
			m_core->op_ce,
			m_core->op_valid,
			m_core->op_gie,
#ifdef	op_stall
			m_core->op_stall,
#else
			0,
#endif
#ifdef	OPT_CIS
			op_pc()+((m_core->op_phase)?4:0),
			m_core->op_phase
#else
			op_pc(), false
#endif
			); ln++;
		if (m_core->op_illegal)
			mvprintw(ln-1,10,"I");
		else if (m_core->op_valid_mem)
			mvprintw(ln-1,10,"M");
		else if (m_core->op_valid_alu)
			mvprintw(ln-1,10,"A");
 
		if (m_core->op_valid_mem) {
			showins(ln, "Mm",
				m_core->mem_ce,
				m_core->mem_pc_valid,
				m_core->alu_gie,
#ifdef	OPT_PIPELINED
				m_core->mem_stall,
#else
				0,
#endif
				alu_pc(),
#ifdef	OPT_CIS
				m_core->alu_phase
#else
				false
#endif
			);
		} else {
			showins(ln, "Al",
				m_core->alu_ce,
				m_core->alu_pc_valid,
				m_core->alu_gie,
#ifdef	OPT_PIPELINED
				alu_stall(),
#else
				0,
#endif
				alu_pc(),
#ifdef	OPT_CIS
				m_core->alu_phase
#else
				false
#endif
			);
		} ln++;
		if (m_core->wr_reg_ce)
			mvprintw(ln-1,10,"W");
		else if (m_core->alu_valid)
			mvprintw(ln-1,10,(m_core->alu_wR)?"w":"V");
		else if (m_core->mem_valid)
			mvprintw(ln-1,10,"v");
		else if (m_core->alu_illegal)
			mvprintw(ln-1,10,"I");
		// else if (m_core->v__DOT__thecpu__DOT__alu_illegal_op)
			// mvprintw(ln-1,10,"i");
 
		mvprintw(ln-5, 65,"%s %s",
			(m_core->op_break)?"OB":"  ",
			(m_core->new_pc)?"CLRP":"    ");
		mvprintw(ln-4, 48,
			(m_core->new_pc)?"new-pc":"      ");
		printw("(%s:%02x,%x)",
			(m_core->set_cond)?"SET":"   ",
			(m_core->op_F&0x0ff),
			(m_core->op_gie)
				?  (m_core->w_uflags)
				: (m_core->w_iflags));
 
		printw("(%s%s%s:%02x)",
			(m_core->op_wF)?"OF":"  ",
			(m_core->alu_wF)?"FL":"  ",
			(m_core->wr_flags_ce)?"W":" ",
			(m_core->alu_flags));
#ifdef	OPT_PIPELINED
		mvprintw(ln-3, 48, "Op(%x)%8x,%8x->",
			m_core->op_opn,
			m_core->op_Aid, m_core->op_Bid);
#else
		mvprintw(ln-3, 48, "");
#endif
		if (m_core->alu_valid)
			printw("%08x", m_core->alu_result);
		else
			printw("%8s","");
		mvprintw(ln-1, 48, "%s%s%s ",
			(m_core->alu_valid)?"A"
			  :((m_core->alu_busy)?"a":" "),
#ifdef	OPT_DIVIDE
			(m_core->div_valid)?"D"
			  :((m_core->div_busy)?"d":" "),
			(m_core->div_valid)?"F"
			  :((m_core->div_busy)?"f":" ")
#else
			  " ", " "
#endif
			  );
		if ((m_core->mem_ce)||(m_core->mem_valid)) {
			printw("MEM: %s%s %s%s %s %-5s",
				(m_core->op_valid_mem)?"M":" ",
				(m_core->mem_ce)?"CE":"  ",
				(m_core->mem_we)?"Wr ":"Rd ",
				(mem_stalled())?"PIPE":"    ",
				(m_core->mem_valid)?"V":" ",
				zip_regstr[(m_core->mem_wreg&0x1f)^0x10]);
		} else {
			printw("%18s", "");
		}
	}
 
	void	show_user_timers(bool v) {
		m_show_user_timers = v;
	}
 
	unsigned int	cmd_read(unsigned int a) {
		int	errcount = 0;
		if (m_dbgfp) {
			dbg_flag= true;
			fprintf(m_dbgfp, "CMD-READ(%d)\n", a);
		}
		wb_write(CMD_REG, CMD_HALT|(a&0x3f));
		while(((wb_read(CMD_REG) & CMD_STALL) == 0)&&(errcount<MAXERR))
			errcount++;
		if (errcount >= MAXERR) {
			endwin();
 
			printf("ERR: errcount >= MAXERR on wb_read(a=%x)\n", a);
			// printf("Clear-Pipeline = %d\n", m_core->v__DOT__thecpu__DOT__clear_pipeline);
#define	r_halted	VVAR(_thecpu__DOT__r_halted)
			printf("cpu-dbg-stall  = %d\n", m_core->r_halted);
			printf("pf_cyc         = %d\n", m_core->pf_cyc);
			printf("mem_cyc_gbl    = %d\n", (m_core->r_wb_cyc_gbl));
			printf("mem_cyc_lcl    = %d\n", m_core->r_wb_cyc_lcl);
			printf("op_valid       = %d\n", m_core->op_valid);
			printf("dcd_valid      = %d\n", m_core->dcd_valid);
			printf("dcd_ce         = %d\n", m_core->dcd_ce);
#ifdef	OPT_PIPELINED
			printf("dcd_stalled    = %d\n", m_core->dcd_stalled);
#endif
			printf("pf_valid       = %d\n", m_core->pf_valid);
// #ifdef	OPT_EARLY_BRANCHING
			// printf("dcd_early_branch=%d\n", m_core->v__DOT__thecpu__DOT__instruction_decoder__DOT__genblk1__DOT__r_early_branch);
// #endif
 
			exit(-2);
		}
 
		assert(errcount < MAXERR);
		unsigned int v = wb_read(CMD_DATA);
 
		if (dbg_flag)
			fprintf(m_dbgfp, "CMD-READ(%d) = 0x%08x\n", a, v);
		dbg_flag = false;
		return v;
	}
 
	void	cmd_write(unsigned int a, int v) {
		int	errcount = 0;
		if ((a&0x0f)==0x0f)
			dbg_flag = true;
		wb_write(CMD_REG, CMD_HALT|(a&0x3f));
		while(((wb_read(CMD_REG) & CMD_STALL) == 0)&&(errcount < MAXERR))
			errcount++;
		assert(errcount < MAXERR);
		if (dbg_flag)
			fprintf(m_dbgfp, "CMD-WRITE(%d) <= 0x%08x\n", a, v);
		wb_write(CMD_DATA, v);
	}
 
	bool	halted(void) {
		return (m_core->cpu_halt != 0);
	}
 
	void	read_state(void) {
		int	ln= 0;
		bool	gie;
 
		read_raw_state();
		if (m_cursor < 0)
			m_cursor = 0;
#ifdef	ZIPBONES
		else if (m_cursor >= 32)
			m_cursor = 31;
#else
		else if (m_cursor >= 44)
			m_cursor = 43;
#endif
 
		mvprintw(ln,0, "Peripherals-RS");
		mvprintw(ln,40,"%-40s", "CPU State: ");
		{
			unsigned int v = wb_read(CMD_REG);
			mvprintw(ln,51, "");
			if (v & 0x010000)
				printw("EXT-INT ");
			if ((v & 0x003000) == 0x03000)
				printw("Halted ");
			else if (v & 0x001000)
				printw("Sleeping ");
			else if (v & 0x002000)
				printw("User Mod ");
			if (v & 0x008000)
				printw("Break-Enabled ");
			if (v & 0x000080)
				printw("PIC Enabled ");
		} ln++;
#ifdef	ZIPSYSTEM
		showval(ln, 0, "PIC ", m_state.m_p[0], (m_cursor==0));
		showval(ln,20, "WDT ", m_state.m_p[1], (m_cursor==1));
		showval(ln,40, "WBUS", m_state.m_p[2], false);
		showval(ln,60, "PIC2", m_state.m_p[3], (m_cursor==3));
		ln++;
		showval(ln, 0, "TMRA", m_state.m_p[4], (m_cursor==4));
		showval(ln,20, "TMRB", m_state.m_p[5], (m_cursor==5));
		showval(ln,40, "TMRC", m_state.m_p[6], (m_cursor==6));
		showval(ln,60, "JIF ", m_state.m_p[7], (m_cursor==7));
 
		ln++;
		if (!m_show_user_timers) {
			showval(ln, 0, "MTSK", m_state.m_p[12], (m_cursor==8));
			showval(ln,20, "MMST", m_state.m_p[13], (m_cursor==9));
			showval(ln,40, "MPST", m_state.m_p[14], (m_cursor==10));
			showval(ln,60, "MICT", m_state.m_p[15], (m_cursor==11));
		} else {
			showval(ln, 0, "UTSK", m_state.m_p[ 8], (m_cursor==8));
			showval(ln,20, "UMST", m_state.m_p[ 9], (m_cursor==9));
			showval(ln,40, "UPST", m_state.m_p[10], (m_cursor==10));
			showval(ln,60, "UICT", m_state.m_p[11], (m_cursor==11));
		}
#else
		ln += 2;
#endif
 
		ln++;
		ln++;
		unsigned int cc = m_state.m_sR[14];
		if (m_dbgfp) fprintf(m_dbgfp, "CC = %08x, gie = %d\n", cc,
			m_core->r_gie);
		gie = (cc & 0x020);
		if (gie)
			attroff(A_BOLD);
		else
			attron(A_BOLD);
		mvprintw(ln, 0, "Supervisor Registers");
		ln++;
 
		dispreg(ln, 0, "sR0 ", m_state.m_sR[ 0], (m_cursor==12));
		dispreg(ln,20, "sR1 ", m_state.m_sR[ 1], (m_cursor==13));
		dispreg(ln,40, "sR2 ", m_state.m_sR[ 2], (m_cursor==14));
		dispreg(ln,60, "sR3 ", m_state.m_sR[ 3], (m_cursor==15)); ln++;
 
		dispreg(ln, 0, "sR4 ", m_state.m_sR[ 4], (m_cursor==16));
		dispreg(ln,20, "sR5 ", m_state.m_sR[ 5], (m_cursor==17));
		dispreg(ln,40, "sR6 ", m_state.m_sR[ 6], (m_cursor==18));
		dispreg(ln,60, "sR7 ", m_state.m_sR[ 7], (m_cursor==19)); ln++;
 
		dispreg(ln, 0, "sR8 ", m_state.m_sR[ 8], (m_cursor==20));
		dispreg(ln,20, "sR9 ", m_state.m_sR[ 9], (m_cursor==21));
		dispreg(ln,40, "sR10", m_state.m_sR[10], (m_cursor==22));
		dispreg(ln,60, "sR11", m_state.m_sR[11], (m_cursor==23)); ln++;
 
		dispreg(ln, 0, "sR12", m_state.m_sR[12], (m_cursor==24));
		dispreg(ln,20, "sSP ", m_state.m_sR[13], (m_cursor==25));
 
		if (true) {
			mvprintw(ln,40, "%ssCC : 0x%08x",
				(m_cursor==26)?">":" ", cc);
		} else {
			char	cbuf[32];
			sprintf(cbuf, "%ssCC :%s%s%s%s%s%s%s",
				(m_cursor==26)?">":" ",
				(cc&0x01000)?"FE":"",
				(cc&0x00800)?"DE":"",
				(cc&0x00400)?"BE":"",
				(cc&0x00200)?"TP":"",
				(cc&0x00100)?"IL":"",
				(cc&0x00080)?"BK":"",
				((m_state.m_gie==0)&&(cc&0x010))?"HLT":"");
			mvprintw(ln,40, "%-14s",cbuf);
			mvprintw(ln, 54, "%s%s%s%s",
				(cc&8)?"V":" ",
				(cc&4)?"N":" ",
				(cc&2)?"C":" ",
				(cc&1)?"Z":" ");
		}
		dispreg(ln,60, "sPC ", cmd_read(15), (m_cursor==27));
		ln++;
 
		if (gie)
			attron(A_BOLD);
		else
			attroff(A_BOLD);
		mvprintw(ln, 0, "User Registers");
		mvprintw(ln, 42, "DCDR=%02x %s",
			m_core->dcdR, (m_core->dcd_wR)?"W":" ");
		mvprintw(ln, 62, "OPR =%02x %s%s",
			m_core->op_R,
			(m_core->op_wR)?"W":" ",
			(m_core->op_wF)?"F":" ");
		ln++;
		dispreg(ln, 0, "uR0 ", m_state.m_uR[ 0], (m_cursor==28));
		dispreg(ln,20, "uR1 ", m_state.m_uR[ 1], (m_cursor==29));
		dispreg(ln,40, "uR2 ", m_state.m_uR[ 2], (m_cursor==30));
		dispreg(ln,60, "uR3 ", m_state.m_uR[ 3], (m_cursor==31)); ln++;
 
		dispreg(ln, 0, "uR4 ", m_state.m_uR[ 4], (m_cursor==32));
		dispreg(ln,20, "uR5 ", m_state.m_uR[ 5], (m_cursor==33));
		dispreg(ln,40, "uR6 ", m_state.m_uR[ 6], (m_cursor==34));
		dispreg(ln,60, "uR7 ", m_state.m_uR[ 7], (m_cursor==35)); ln++;
 
		dispreg(ln, 0, "uR8 ", m_state.m_uR[ 8], (m_cursor==36));
		dispreg(ln,20, "uR9 ", m_state.m_uR[ 9], (m_cursor==37));
		dispreg(ln,40, "uR10", m_state.m_uR[10], (m_cursor==38));
		dispreg(ln,60, "uR11", m_state.m_uR[11], (m_cursor==39)); ln++;
 
		dispreg(ln, 0, "uR12", m_state.m_uR[12], (m_cursor==40));
		dispreg(ln,20, "uSP ", m_state.m_uR[13], (m_cursor==41));
		cc = m_state.m_uR[14];
		if (false) {
			mvprintw(ln,40, "%cuCC : 0x%08x",
				(m_cursor == 42)?'>':' ', cc);
		} else {
			char	cbuf[32];
			sprintf(cbuf, "%cuCC :%s%s%s%s%s%s%s",
				(m_cursor == 42)?'>':' ',
				(cc & 0x1000)?"FE":"",
				(cc & 0x0800)?"DE":"",
				(cc & 0x0400)?"BE":"",
				(cc & 0x0200)?"TP":"",
				(cc & 0x0100)?"IL":"",
				(cc & 0x0040)?"ST":"",
				((m_state.m_gie)&&(cc & 0x010))?"SL":"");
			mvprintw(ln,40, "%-14s", cbuf);
			mvprintw(ln, 54, "%s%s%s%s",
				(cc&8)?"V":" ",
				(cc&4)?"N":" ",
				(cc&2)?"C":" ",
				(cc&1)?"Z":" ");
		}
		dispreg(ln,60, "uPC ", m_state.m_uR[15], (m_cursor==43));
 
		attroff(A_BOLD);
		ln+=2;
 
		ln+=3;
 
		showins(ln, "I ",
#ifdef	OPT_PIPELINED
			!m_core->dcd_stalled,
#else
			1,
#endif
			m_core->pf_valid,
			m_core->r_gie,
			0,
			m_core->pf_instruction_pc,
			true); ln++;
			// m_core->pf_pc); ln++;
 
		showins(ln, "Dc",
			m_core->dcd_ce, m_core->dcd_valid,
			m_core->dcd_gie,
#ifdef	OPT_PIPELINED
			m_core->dcd_stalled,
#else
			0,
#endif
#ifdef	OPT_CIS
			((m_core->dcd_phase) ?
				(m_core->dcd_pc+2):m_core->dcd_pc) -4,
			m_core->dcd_phase
#else
			m_core->dcd_pc-4,
			false
#endif
			); ln++;
 
		showins(ln, "Op",
			m_core->op_ce,
			m_core->op_valid,
			m_core->op_gie,
#ifdef	OPT_PIPELINED
			m_core->op_stall,
#else
			0,
#endif
#ifdef	OPT_CIS
			op_pc()+((m_core->op_phase)?4:0),
			m_core->op_phase
#else
			op_pc(),
			false
#endif
			); ln++;
 
		if (m_core->op_valid_mem) {
			showins(ln, "Mm",
				m_core->mem_ce,
				m_core->mem_pc_valid,
				m_core->alu_gie,
#ifdef	OPT_PIPELINED
				m_core->mem_stall,
#else
				0,
#endif
				alu_pc(),
#ifdef	OPT_CIS
				m_core->alu_phase
#else
				false
#endif
			);
		} else {
			showins(ln, "Al",
				m_core->alu_ce,
				m_core->alu_pc_valid,
				m_core->alu_gie,
#ifdef	OPT_PIPELINED
				alu_stall(),
#else
				0,
#endif
				alu_pc(),
#ifdef	OPT_CIS
				m_core->alu_phase
#else
				false
#endif
			);
		} ln++;
	}
 
	void	tick(void) {
		int gie = m_core->r_gie;
		/*
		m_core->i_qspi_dat = m_flash(m_core->o_qspi_cs_n,
						m_core->o_qspi_sck,
						m_core->o_qspi_dat);
		*/
 
		int stb = m_core->o_wb_stb, maskb = (RAMBASE-1);
		unsigned addr = m_core->o_wb_addr<<2;
 
		m_core->i_wb_err = 0;
		if ((addr & (~maskb))!=RAMBASE)
			stb = 0;
		if ((m_core->o_wb_cyc)&&(m_core->o_wb_stb)&&(!stb)) {
			m_core->i_wb_ack = 1;
			m_core->i_wb_err = 1;
			m_bomb = (m_tickcount > 20);
			if (m_dbgfp) fprintf(m_dbgfp,
				"BOMB!! (Attempting to access %08x/%08x->%08x)\n",
				addr, RAMBASE, ((addr)&(~maskb)));
		} else if ((!m_core->o_wb_cyc)&&(m_core->o_wb_stb)) {
			if (m_dbgfp) fprintf(m_dbgfp,
				"BOMB!! (Strobe high, CYC low)\n");
			m_bomb = true;
		}
 
		if ((dbg_flag)&&(m_dbgfp)) {
			fprintf(m_dbgfp, "BUS  %s %s %s @0x%08x/[0x%08x 0x%08x] %s %s\n",
				(m_core->o_wb_cyc)?"CYC":"   ",
				(m_core->o_wb_stb)?"STB":"   ",
				(m_core->o_wb_we)?"WE":"  ",
				(m_core->o_wb_addr<<2),
				(m_core->o_wb_data),
				(m_core->i_wb_data),
				(m_core->i_wb_stall)?"STALL":"     ",
				(m_core->i_wb_ack)?"ACK":"   ");
			fprintf(m_dbgfp, "DBG  %s %s %s @0x%08x/%d[0x%08x] %s %s [0x%08x] %s %s %s%s%s%s%s%s%s%s%s\n",
				(m_core->i_dbg_cyc)?"CYC":"   ",
				(m_core->i_dbg_stb)?"STB":
					((m_core->dbg_stb)?"DBG":"   "),
				((m_core->i_dbg_we)?"WE":"  "),
				(m_core->i_dbg_addr),0,
				m_core->i_dbg_data,
				(m_core->o_dbg_ack)?"ACK":"   ",
				(m_core->o_dbg_stall)?"STALL":"     ",
				(m_core->o_dbg_data),
				(m_core->cpu_halt)?"CPU-HALT ":"",
				(m_core->r_halted)?"CPU-DBG_STALL":"",
				(m_core->dcd_valid)?"DCDV ":"",
				(m_core->op_valid)?"OPV ":"",
				(m_core->pf_cyc)?"PCYC ":"",
				(m_core->r_wb_cyc_gbl)?"GC":"  ",
				(m_core->r_wb_cyc_lcl)?"LC":"  ",
				(m_core->alu_wR)?"ALUW ":"",
				(m_core->alu_ce)?"ALCE ":"",
				(m_core->alu_valid)?"ALUV ":"",
				(m_core->mem_valid)?"MEMV ":"");
#ifdef	ZIPSYSTEM
			fprintf(m_dbgfp, " SYS %s %s %s @0x%08x/%d[0x%08x] %s [0x%08x]\n",
#define	sys_cyc		VVAR(_sys_cyc)
#define	sys_stb		VVAR(_sys_stb)
#define	sys_we		VVAR(_sys_we)
#define	sys_addr	VVAR(_sys_addr)
#define	sys_data	VVAR(_sys_data)
#define	dbg_ack		VVAR(_dbg_ack)
#define	dbg_addr	VVAR(_dbg_addr)
				(m_core->sys_cyc)?"CYC":"   ",
				(m_core->sys_stb)?"STB":"   ",
				(m_core->sys_we)?"WE":"  ",
				(m_core->sys_addr<<2),
				(m_core->dbg_addr<<2),
				(m_core->sys_data),
				(m_core->dbg_ack)?"ACK":"   ",
				(m_core->cpu_idata));
#endif
		}
 
		if (m_dbgfp)
			fprintf(m_dbgfp, "CEs %d/0x%08x,%d/0x%08x DCD: ->%02x, OP: ->%02x, ALU: halt=%d ce=%d, valid=%d, wr=%d  Reg=%02x, IPC=%08x, UPC=%08x\n",
				m_core->dcd_ce,
				m_core->dcd_pc,
				m_core->op_ce,
				op_pc(),
				dcd_Aid()&0x01f,
				m_core->op_R,
				m_core->cpu_halt,
				m_core->alu_ce,
				m_core->alu_valid,
				m_core->alu_wR,
				m_core->alu_reg,
				m_core->cpu_ipc,
				m_core->cpu_upc);
 
		if ((m_dbgfp)&&(!gie)&&(m_core->release_from_interrupt)) {
			fprintf(m_dbgfp, "RELEASE: int=%d, %d/%02x[%08x] ?/%02x[0x%08x], ce=%d %d,%d,%d\n",
				m_core->cpu_interrupt,
				m_core->wr_reg_ce,
				m_core->wr_reg_id,
				m_core->wr_spreg_vl,
				m_core->cmd_addr<<2,
				m_core->dbg_idata,
				m_core->master_ce,
				m_core->alu_wR,
				m_core->alu_valid,
				m_core->mem_valid);
		} else if ((m_dbgfp)&&(gie)&&(m_core->switch_to_interrupt)) {
			fprintf(m_dbgfp, "SWITCH: %d/%02x[%08x] ?/%02x[0x%08x], ce=%d %d,%d,%d, F%02x,%02x\n",
				m_core->wr_reg_ce,
				m_core->wr_reg_id,
				m_core->wr_spreg_vl,
				m_core->cmd_addr<<2,
				m_core->dbg_idata,
				m_core->master_ce,
				m_core->alu_wR,
				m_core->alu_valid,
				m_core->mem_valid,
				m_core->w_iflags,
				m_core->w_uflags);
			fprintf(m_dbgfp, "\tbrk=%s %d,%d\n",
				(m_core->master_ce)?"CE":"  ",
				m_core->break_en,
				m_core->op_break);
		} else if ((m_dbgfp)&&
				((m_core->op_break)
				||(m_core->alu_illegal)
				||(m_core->dcd_break))) {
			fprintf(m_dbgfp, "NOT SWITCHING TO GIE (gie = %d)\n", gie);
			fprintf(m_dbgfp, "\tbrk=%s breaken=%d,dcdbreak=%d,opbreak=%d,alu_illegal=%d\n",
				(m_core->master_ce)?"CE":"  ",
				m_core->break_en,
				m_core->dcd_break,
				m_core->op_break,
				m_core->alu_illegal);
		}
 
		if (m_dbgfp) {
			// if(m_core->v__DOT__thecpu__DOT__clear_pipeline)
				// fprintf(m_dbgfp, "\tClear Pipeline\n");
			if(m_core->new_pc)
				fprintf(m_dbgfp, "\tNew PC\n");
		}
 
		if (m_dbgfp) {
			unsigned long	v = m_tickcount;
			fprintf(m_dbgfp, "-----------  TICK (%08lx) ----------%s\n",
				v, (m_bomb)?" BOMBED!!":"");
		}
		m_mem(m_core->o_wb_cyc, m_core->o_wb_stb, m_core->o_wb_we,
			m_core->o_wb_addr & (maskb>>2), m_core->o_wb_data, m_core->o_wb_sel & 0x0f,
			m_core->i_wb_ack, m_core->i_wb_stall,m_core->i_wb_data);
 
		TESTB<SIMCLASS>::tick();
 
		if ((m_core->cpu_sim)
			&&(m_core->op_valid)
			&&(m_core->alu_ce)
			&&(!m_core->new_pc)) {
			execsim(m_core->cpu_sim_immv);
		}
 
		if ((m_dbgfp)&&(gie != m_core->r_gie)) {
			fprintf(m_dbgfp, "SWITCH FROM %s to %s: sPC = 0x%08x uPC = 0x%08x pf_pc = 0x%08x\n",
				(gie)?"User":"Supervisor",
				(gie)?"Supervisor":"User",
				m_core->cpu_ipc,
				m_core->cpu_upc,
				m_core->pf_pc);
		} if (m_dbgfp) {
#ifdef	OPT_TRADITIONAL_PFCACHE
			fprintf(m_dbgfp, "PFCACHE %s(%08x,%08x%s),%08x - %08x %s%s%s\n",
				(m_core->new_pc)?"N":" ",
				m_core->pf_pc,
				m_core->early_branch_pc,
				((m_core->early_branch)
				&&(m_core->dcd_valid)
				&&(!m_core->new_pc))?"V":"-",
				m_core->pf_lastpc,
				m_core->pf_instruction_pc,
				(m_core->pf_r_v)?"R":" ",
				(m_core->pf_valid)?"V":" ",
				(m_core->pf_illegal)?"I":" ");
#endif
			dbgins("Dc - ",
				m_core->dcd_ce, m_core->dcd_valid,
				m_core->dcd_gie,
#ifdef	OPT_PIPELINED
				m_core->dcd_stalled,
#else
				0,
#endif
#ifdef	OPT_CIS
				(m_core->dcd_phase)?(m_core->dcd_pc-2)
					:(m_core->dcd_pc-4),
				m_core->dcd_phase,
#else
				m_core->dcd_pc-4, false,
#endif
				m_core->dcd_illegal);
			if (m_dbgfp) {
				fprintf(m_dbgfp, "\t\t\tR[%2d] = (*Dc=%d%s)[ A[%2d], B[%2d] + %08x], dcd_pc = %08x\n",
					m_core->dcdR,
					m_core->dcd_opn,
					(m_core->dcd_M)?"M":" ",
#define	dcd_I	VVAR(_thecpu__DOT__dcd_I)
					m_core->dcdB &0x0f,
					m_core->dcdA &0x0f,
					m_core->dcd_I,
					m_core->dcd_pc);
			}
			dbgins("Op - ",
				m_core->op_ce,
				m_core->op_valid,
				m_core->op_gie,
#ifdef	OPT_PIPELINED
				m_core->op_stall,
#else
				0,
#endif
				op_pc(),
#ifdef	OPT_CIS
				m_core->op_phase,
#else
				false,
#endif
				m_core->op_illegal);
			if (m_dbgfp) {
				fprintf(m_dbgfp, "\t\t\t(*OP=%d)[ A = 0x%08x , B = 0x%08x ], op_pc= %08x\n",
					m_core->op_opn,
					m_core->op_Av,
					m_core->op_Bv,
					m_core->r_op_pc);
			}
			dbgins("Al - ",
				m_core->alu_ce,
				m_core->alu_pc_valid,
				m_core->alu_gie,
#ifdef	OPT_PIPELINED
				alu_stall(),
#else
				0,
#endif
				alu_pc(),
#ifdef	OPT_CIS
				m_core->alu_phase,
#else
				false,
#endif
				m_core->alu_illegal);
			if (m_core->wr_reg_ce)
				fprintf(m_dbgfp, "WB::Reg[%2x] <= %08x\n",
					m_core->wr_reg_id,
					m_core->wr_gpreg_vl);
			if (m_core->wr_flags_ce)
				fprintf(m_dbgfp, "WB::Flags <= %02x\n",
					m_core->alu_flags);
 
		}
 
#ifdef	OPT_DIVIDE
		if ((m_dbgfp)&&((m_core->div_valid)
			||(m_core->div_ce)
			||(m_core->div_busy)
			)) {
			fprintf(m_dbgfp, "DIV: %s %s %s %s[%2x] GP:%08x/SP:%08x %s:0x%08x\n",
				(m_core->div_ce)?"CE":"  ",
				(m_core->div_busy)?"BUSY":"    ",
				(m_core->div_valid)?"VALID":"     ",
				(m_core->wr_reg_ce)?"REG-CE":"      ",
				m_core->wr_reg_id,
				m_core->wr_gpreg_vl,
				m_core->wr_spreg_vl,
				(m_core->alu_pc_valid)?"PCV":"   ",
				alu_pc());
 
			fprintf(m_dbgfp, "ALU-PC: %08x %s %s\n",
				alu_pc(),
				(m_core->alu_pc_valid)?"VALID":"",
				(m_core->alu_gie)?"ALU-GIE":"");
		}
#endif
 
#ifdef	ZIPSYSTEM
#define	dma_state	VVAR(_dma_controller__DOT__dma_state)
#define	dc_cyc		VVAR(_dc_cyc)
#define	dc_stb		VVAR(_dc_stb)
#define	dc_ack		VVAR(_dc_ack)
#define	dc_err		VVAR(_dc_err)
#define	dc_addr		VVAR(_dc_addr)
#define	dc_data		VVAR(_dc_data)
#define	dma_last_read_req	VVAR(_dma_controller__DOT__last_read_request)
#define	dma_last_read_ack	VVAR(_dma_controller__DOT__last_read_ack)
#define	dma_nracks		VVAR(_dma_controller__DOT__nracks)
#define	dma_nread		VVAR(_dma_controller__DOT__nread)
#define	dma_last_write_req	VVAR(_dma_controller__DOT__last_write_request)
#define	dma_last_write_ack	VVAR(_dma_controller__DOT__last_write_ack)
#define	dma_nwacks		VVAR(_dma_controller__DOT__nwacks)
#define	dma_nwritten		VVAR(_dma_controller__DOT__nwritten)
		if (m_core->dma_state) {
			fprintf(m_dbgfp, "DMA[%d]%s%s%s%s@%08x,%08x [%d%d/%4d/%4d] -> [%d%d/%04d/%04d]\n",
				m_core->dma_state,
				(m_core->dc_cyc)?"C":" ",
				(m_core->dc_stb)?"S":" ",
				(m_core->dc_ack)?"A":" ",
				(m_core->dc_err)?"E":" ",
				m_core->dc_addr<<2,
				(m_core->dc_data),
				m_core->dma_last_read_req,
				m_core->dma_last_read_ack,
				m_core->dma_nracks,
				m_core->dma_nread,
				m_core->dma_last_write_req,
				m_core->dma_last_write_ack,
				m_core->dma_nwacks,
				m_core->dma_nwritten);
		}
#endif
		if (((m_core->alu_pc_valid)
			||(m_core->mem_pc_valid))
			&&(!m_core->new_pc)) {
			unsigned long iticks = m_tickcount - m_last_instruction_tickcount;
			if (m_profile_fp) {
				unsigned buf[2];
				buf[0] = alu_pc();
				buf[1] = iticks;
				fwrite(buf, sizeof(unsigned), 2, m_profile_fp);
			}
			m_last_instruction_tickcount = m_tickcount;
		}
	}
 
	bool	test_success(void) {
		if ((m_exit)&&(m_rcode == 0))
			return true;
		return ((!m_core->r_gie)
			&&(m_core->r_sleep));
	}
 
	unsigned	op_pc(void) {
		return m_core->r_op_pc-4;
	}
 
	bool	pfstall(void) {
		return((!(m_core->pformem_owner))
			||(m_core->cpu_stall));
	}
	unsigned	dcd_Aid(void) {
		return (m_core->dcdA);
	}
	unsigned	dcd_Bid(void) {
		return (m_core->dcdB);
	}
 
	bool	op_valid(void) {
		return (m_core->op_valid !=0);
	}
 
	bool	mem_busy(void) {
		// return m_core->v__DOT__thecpu__DOT__mem_busy;
#ifdef	OPT_PIPELINED
		return m_core->mem_cyc;
#else
		return 0;
#endif
	}
 
	bool	mem_stalled(void) {
		bool	a, b, c, d, wr_write_cc, wr_write_pc, op_gie;
 
		wr_write_cc=((m_core->wr_reg_id&0x0f)==0x0e);
		wr_write_pc=((m_core->wr_reg_id&0x0f)==0x0f);
		op_gie = m_core->op_gie;
 
#ifdef	OPT_PIPELINED_BUS_ACCESS
		//a = m_core->v__DOT__thecpu__DOT__mem_pipe_stalled;
		a = mem_pipe_stalled();
		b = (!m_core->op_pipe)&&(mem_busy());
#else
		a = false;
		b = false;
#endif
		d = ((wr_write_pc)||(wr_write_cc));
		c = ((m_core->wr_reg_ce)
			&&(((m_core->wr_reg_id&0x010)?true:false)==op_gie)
			&&d);
		d =(m_core->op_valid_mem)&&((a)||(b)||(c));
		return ((!m_core->master_ce)||(d));
	}
 
	unsigned	alu_pc(void) {
		/*
		unsigned	r = op_pc();
		if (m_core->op_valid)
			r--;
		return r;
		*/
		return m_core->alu_pc-4;
	}
 
	int	alu_stall(void) {
		bool	stall;
#ifdef	OP_PIPELINED
		stall = (m_core->master_stall)||(m_core->mem_rdbusy);
		stall = (stall)&& m_core->op_valid_alu;
		stall = (stall)|| ((m_core->wr_reg_ce)&&(m_core->wr_write_cc));
#else
		stall = (m_core->master_stall)&&(m_core->op_valid_alu);
#endif
		/*
		unsigned	r = op_pc();
		if (m_core->op_valid)
			r--;
		return r;
		*/
		return (stall)?1:0;
	}
 
#ifdef	OPT_PIPELINED_BUS_ACCESS
	bool	mem_pipe_stalled(void) {
		int	r = 0;
		r = ((m_core->r_wb_cyc_gbl)
		 ||(m_core->r_wb_cyc_lcl));
		r = r && ((m_core->mem_stall)
			||(
				((!m_core->mem_stb_gbl)
				&&(!m_core->mem_stb_lcl))));
		return r;
		// return m_core->v__DOT__thecpu__DOT__mem_pipe_stalled;
	}
#endif
 
	bool	test_failure(void) {
		if ((m_exit)&&(m_rcode != 0))
			return true;
		if (m_core->r_sleep)
			return false;
		return false;
	}
 
	void	wb_write(unsigned a, unsigned int v) {
		int	errcount = 0;
		mvprintw(0,35, "%40s", "");
		mvprintw(0,40, "wb_write(%d,%x)", a, v);
		m_core->i_dbg_cyc = 1;
		m_core->i_dbg_stb = 1;
		m_core->i_dbg_we  = 1;
		m_core->i_dbg_addr = (a>>2) & 1;
		m_core->i_dbg_data = v;
 
		while((errcount++ < 100)&&(m_core->o_dbg_stall))
			tick();
		tick();
 
		m_core->i_dbg_stb = 0;
		while((errcount++ < 100)&&(!m_core->o_dbg_ack))
			tick();
 
		// Release the bus
		m_core->i_dbg_cyc = 0;
		m_core->i_dbg_stb = 0;
		tick();
		mvprintw(0,35, "%40s", "");
		mvprintw(0,40, "wb_write -- complete");
 
 
		if (errcount >= 100) {
			if (m_dbgfp) fprintf(m_dbgfp, "WB-WRITE: ERRCount = %d, BOMB!!\n", errcount);
			m_bomb = true;
		}
	}
 
	unsigned long	wb_read(unsigned a) {
		unsigned int	v;
		int	errcount = 0;
		mvprintw(0,35, "%40s", "");
		mvprintw(0,40, "wb_read(0x%08x)", a);
		m_core->i_dbg_cyc = 1;
		m_core->i_dbg_stb = 1;
		m_core->i_dbg_we  = 0;
		m_core->i_dbg_addr = (a>>2) & 1;
 
		while((errcount++<100)&&(m_core->o_dbg_stall))
			tick();
		tick();
 
		m_core->i_dbg_stb = 0;
		while((errcount++<100)&&(!m_core->o_dbg_ack))
			tick();
		v = m_core->o_dbg_data;
 
		// Release the bus
		m_core->i_dbg_cyc = 0;
		m_core->i_dbg_stb = 0;
		tick();
 
		mvprintw(0,35, "%40s", "");
		mvprintw(0,40, "wb_read = 0x%08x", v);
 
		if (errcount >= 100) {
			if (m_dbgfp) fprintf(m_dbgfp, "WB-READ: ERRCount = %d, BOMB!!\n", errcount);
			m_bomb = true;
		}
		return v;
	}
 
	void	cursor_up(void) {
#ifdef	ZIPSYSTEM
		if (m_cursor > 3)
			m_cursor -= 4;
#else
		if (m_cursor > 12+3)
			m_cursor =- 4;
#endif
	} void	cursor_down(void) {
		if (m_cursor < 40)
			m_cursor += 4;
	} void	cursor_left(void) {
#ifdef	ZIPSYSTEM
		if (m_cursor > 0)
			m_cursor--;
#else
		if (m_cursor > 12)
			m_cursor--;
#endif
		else	m_cursor = 43;
	} void	cursor_right(void) {
#ifdef	ZIPSYSTEM
		if (m_cursor < 43)
			m_cursor++;
		else	m_cursor = 0;
#else
		if (m_cursor < 43)
			m_cursor++;
		else	m_cursor = 12;
#endif
	}
 
	int	cursor(void) { return m_cursor; }
 
	void	jump_to(ZIPI address) {
		if (m_dbgfp)
			fprintf(m_dbgfp, "JUMP_TO(%08x) ... Setting PC to %08x\n", address, address & -4);
#ifdef	OPT_SINGLE_FETCH
		m_core->new_pc = 1;
		m_core->pf_pc = address;
#else
		m_core->pf_pc = address & -4;
#define	pf_request_address	VVAR(_thecpu__DOT__pf_request_address)
		m_core->pf_request_address = address;
#endif
		// m_core->v__DOT__thecpu__DOT__clear_pipeline = 1;
		m_core->new_pc = 1;
	}
 
	void	dump_state(void) {
		if (m_dbgfp)
			dump_state(m_dbgfp);
	}
 
	void	dump_state(FILE *fp) {
		if (!fp)
			return;
		fprintf(fp, "FINAL STATE: %s\n",
			(m_state.m_gie)?"GIE(User-Mode)":"Supervisor-mode");
		fprintf(fp, "Supervisor Registers\n");
		for(int i=0; i<16; i++) {
			char str[16];
			if (i==13)
				sprintf(str, "sSP");
			else if (i==14)
				sprintf(str, "sCC");
			else if (i==15)
				sprintf(str, "sPC");
			else // if (i<=12)
				sprintf(str, "s-%2d", i);
			dbgreg(fp, i, str, m_state.m_sR[i]);
			if ((i&3)==3)
				fprintf(fp, "\n");
		}
		fprintf(fp, "User Registers\n");
		for(int i=0; i<16; i++) {
			char str[16];
			if (i==13)
				sprintf(str, "uSP");
			else if (i==14)
				sprintf(str, "uCC");
			else if (i==15)
				sprintf(str, "uPC");
			else // if (i<=12)
				sprintf(str, "u-%2d", i);
			dbgreg(fp, i, str, m_state.m_uR[i]);
			if ((i&3)==3)
				fprintf(fp, "\n");
		}
	}
 
	void dump(const uint32_t *regp) {
		uint32_t	uccv, iccv;
 
		if (!m_console)
			return;
 
		fflush(stderr);
		fflush(stdout);
		printf("ZIPM--DUMP: ");
		if (m_core->r_gie)
			printf("Interrupts-enabled\n");
		else
			printf("Supervisor mode\n");
		printf("\n");
 
		iccv = m_core->w_iflags;
		uccv = m_core->w_uflags;
 
		printf("sR0 : %08x ", regp[0]);
		printf("sR1 : %08x ", regp[1]);
		printf("sR2 : %08x ", regp[2]);
		printf("sR3 : %08x\n",regp[3]);
		printf("sR4 : %08x ", regp[4]);
		printf("sR5 : %08x ", regp[5]);
		printf("sR6 : %08x ", regp[6]);
		printf("sR7 : %08x\n",regp[7]);
		printf("sR8 : %08x ", regp[8]);
		printf("sR9 : %08x ", regp[9]);
		printf("sR10: %08x ", regp[10]);
		printf("sR11: %08x\n",regp[11]);
		printf("sR12: %08x ", regp[12]);
		printf("sSP : %08x ", regp[13]);
		printf("sCC : %08x ", iccv);
		printf("sPC : %08x\n",regp[15]);
 
		printf("\n");
 
		printf("uR0 : %08x ", regp[16]);
		printf("uR1 : %08x ", regp[17]);
		printf("uR2 : %08x ", regp[18]);
		printf("uR3 : %08x\n",regp[19]);
		printf("uR4 : %08x ", regp[20]);
		printf("uR5 : %08x ", regp[21]);
		printf("uR6 : %08x ", regp[22]);
		printf("uR7 : %08x\n",regp[23]);
		printf("uR8 : %08x ", regp[24]);
		printf("uR9 : %08x ", regp[25]);
		printf("uR10: %08x ", regp[26]);
		printf("uR11: %08x\n",regp[27]);
		printf("uR12: %08x ", regp[28]);
		printf("uSP : %08x ", regp[29]);
		printf("uCC : %08x ", uccv);
		printf("uPC : %08x\n",regp[31]);
		printf("\n");
		fflush(stderr);
		fflush(stdout);
	}
 
 
	void	execsim(const uint32_t imm) {
		uint32_t	*regp = m_core->cpu_regs;
		int		rbase;
		rbase = (m_core->r_gie)?16:0;
 
		fflush(stdout);
		if ((imm & 0x03fffff)==0)
			// Ignore a NOOP
			return;
		// fprintf(stderr, "SIM-INSN(0x%08x)\n", imm);
		if ((imm & 0x0fffff)==0x00100) {
			// SIM Exit(0)
			m_rcode = 0;
			m_exit = true;
		} else if ((imm & 0x0ffff0)==0x00310) {
			// SIM Exit(User-Reg)
			int	rcode;
			rcode = regp[(imm&0x0f)+16] & 0x0ff;
			m_rcode = rcode;
			m_exit = true;
		} else if ((imm & 0x0ffff0)==0x00300) {
			// SIM Exit(Reg)
			int	rcode;
			rcode = regp[(imm&0x0f)+rbase] & 0x0ff;
			m_rcode = rcode;
			m_exit = true;
		} else if ((imm & 0x0fff00)==0x00100) {
			// SIM Exit(Imm)
			int	rcode;
			rcode = imm & 0x0ff;
			m_exit = true;
			m_rcode = rcode;
		} else if ((imm & 0x0fffff)==0x002ff) {
			// Full/unconditional dump
			if (m_console) {
				printf("SIM-DUMP\n");
				dump(regp);
			}
		} else if ((imm & 0x0ffff0)==0x00200) {
			// Dump a register
			if (m_console) {
				int rid = (imm&0x0f)+rbase;
				//printf("%8lu @%08x R[%2d] = 0x%08x\n",
				//	m_time_ps/1000,
				//	m_core->cpu_ipc, rid, regp[rid]);
				printf("R[%2d] = 0x%08x\n", rid&0x0f,regp[rid]);
			}
		} else if ((imm & 0x0ffff0)==0x00210) {
			// Dump a user register
			if (m_console) {
				int rid = (imm&0x0f);
				/*
				printf("%8lu @%08x uR[%2d] = 0x%08x\n",
					m_time_ps/1000, m_core->cpu_ipc,
					rid, regp[rid+16]);
				*/
				printf("uR[%2d] = 0x%08x\n",
					rid, regp[rid+16]);
			}
		} else if ((imm & 0x0ffff0)==0x00230) {
			// SOUT[User Reg]
			if (m_console) {
				int rid = (imm&0x0f)+16;
				printf("%c", regp[rid]&0x0ff);
			}
		} else if ((imm & 0x0fffe0)==0x00220) {
			// SOUT[User Reg]
			if (m_console) {
				int rid = (imm&0x0f)+rbase;
				printf("%c", regp[rid]&0x0ff);
			}
		} else if ((imm & 0x0fff00)==0x00400) {
			if (m_console) {
				// SOUT[Imm]
				printf("%c", imm&0x0ff);
			}
		} else { // if ((insn & 0x0f7c00000)==0x77800000)
			if (m_console) {
				uint32_t	immv = imm & 0x03fffff;
				// Simm instruction that we dont recognize
				// if (imm)
				// printf("SIM 0x%08x\n", immv);
				printf("SIM 0x%08x (ipc = %08x, upc = %08x)\n", immv,
					m_core->cpu_ipc,
					m_core->cpu_upc);
			}
		} if (m_console)
			fflush(stdout);
	}
 
 
};
 
void	get_value(ZIPCPU_TB *tb) {
	int	wy, wx, ra;
	int	c = tb->cursor();
 
	wx = (c & 0x03) * 20 + 9;
	wy = (c>>2);
	if (wy >= 3+4)
		wy++;
	if (wy > 3)
		wy += 2;
	wy++;
 
	if (c >= 12)
		ra = c - 12;
	else
		ra = c + 32;
 
	bool	done = false;
	char	str[16];
	int	pos = 0; str[pos] = '\0';
	while(!done) {
		int	chv = getch();
		switch(chv) {
		case KEY_ESCAPE:
			pos = 0; str[pos] = '\0'; done = true;
			break;
		case KEY_RETURN: case KEY_ENTER: case KEY_UP: case KEY_DOWN:
			done = true;
			break;
		case KEY_LEFT: case KEY_BACKSPACE:
			if (pos > 0) pos--;
			break;
		case CTRL('L'): redrawwin(stdscr); break;
		case KEY_CLEAR:
			pos = 0;
			break;
		case '0': case ' ': str[pos++] = '0'; break;
		case '1': str[pos++] = '1'; break;
		case '2': str[pos++] = '2'; break;
		case '3': str[pos++] = '3'; break;
		case '4': str[pos++] = '4'; break;
		case '5': str[pos++] = '5'; break;
		case '6': str[pos++] = '6'; break;
		case '7': str[pos++] = '7'; break;
		case '8': str[pos++] = '8'; break;
		case '9': str[pos++] = '9'; break;
		case 'A': case 'a': str[pos++] = 'A'; break;
		case 'B': case 'b': str[pos++] = 'B'; break;
		case 'C': case 'c': str[pos++] = 'C'; break;
		case 'D': case 'd': str[pos++] = 'D'; break;
		case 'E': case 'e': str[pos++] = 'E'; break;
		case 'F': case 'f': str[pos++] = 'F'; break;
		}
 
		if (pos > 8)
			pos = 8;
		str[pos] = '\0';
 
		attron(A_NORMAL | A_UNDERLINE);
		mvprintw(wy, wx, "%-8s", str);
		if (pos > 0) {
			attron(A_NORMAL | A_UNDERLINE | A_BLINK);
			mvprintw(wy, wx+pos-1, "%c", str[pos-1]);
		}
		attrset(A_NORMAL);
	}
 
	if (pos > 0) {
		int	v;
		v = strtoul(str, NULL, 16);
		if (!tb->halted()) {
			switch(ra) {
			case 15:
				tb->m_core->cpu_ipc = v;
				if (!tb->m_core->r_gie) {
					tb->jump_to(v);
					// tb->m_core->v__DOT__thecpu__DOT__clear_pipeline = 1;
					tb->m_core->alu_pc_valid = 0;
#ifdef	OPT_PIPELINED
					// tb->m_core->v__DOT__thecpu__DOT__dcd_ce = 0;
					tb->m_core->dcd_valid = 0;
#endif
					tb->m_core->op_valid = 0;
				}
				break;
			case 31:
				tb->m_core->cpu_upc = v;
				if (tb->m_core->r_gie) {
					tb->jump_to(v);
					// tb->m_core->v__DOT__thecpu__DOT__clear_pipeline = 1;
					tb->m_core->alu_pc_valid = 0;
#ifdef	OPT_PIPELINED
					tb->m_core->dcd_valid = 0;
#endif
					tb->m_core->op_valid = 0;
				}
				break;
#ifdef	ZIPSYSTEM
			case 32: tb->m_core->pic_data = v; break;
			case 33: tb->m_core->watchdog = v; break;
			// case 34: tb->m_core->v__DOT__manualcache__DOT__cache_base = v; break;
			case 35: tb->m_core->int_state = v; break;
			case 36: tb->m_core->timer_a   = v; break;
			case 37: tb->m_core->timer_b   = v; break;
			case 38: tb->m_core->timer_c   = v; break;
			case 39: tb->m_core->jiffies   = v; break;
			case 44: tb->m_core->utc_data  = v; break;
			case 45: tb->m_core->uoc_data  = v; break;
			case 46: tb->m_core->upc_data  = v; break;
			case 47: tb->m_core->uic_data  = v; break;
#else
			case 32: case 33: case 34: case 35:
			case 36: case 37: case 38: case 39:
			case 40: case 41: case 42: case 43:
			case 44: case 45: case 46: case 47:
				break;
#endif
			default:
				tb->m_core->regset[ra] = v;
				break;
			}
		} else
			tb->cmd_write(ra, v);
	}
}
 
 
 
void	usage(void) {
	printf("USAGE: zippy_tb [-a] <testfile.out>\n");
	printf("\n");
	printf("\tWhere testfile.out is an output file from the assembler.\n");
	printf("\tThis file needs to be in a raw format and not an ELF\n");
	printf("\texecutable.  It will be inserted into memory at a memory\n");
	printf("\taddress of 0x0100000.  The memory device itself, the only\n");
	printf("\tdevice supported by this simulator, occupies addresses from\n");
	printf("\t0x0100000 to 0x01fffff.\n");
	printf("\n");
	printf("\t-a\tSets the testbench to run automatically without any\n");
	printf("\t\tuser interaction.\n");
	printf("\n");
	printf("\tUser Commands:\n");
	printf("\t\tWhen the test bench is run interactively, the following\n");
	printf("\t\tkey strokes are recognized:\n");
	printf("\t\t\'h\'\tHalt the processor using the external interface.\n");
	printf("\t\t\'g\'\tLet the processor run at full throttle with no.\n");
	printf("\t\t\tuser intervention.\n");
	printf("\t\t\'q\'\tQuit the simulation.\n");
	printf("\t\t\'r\'\tReset the processor.\n");
	printf("\t\t\'s\'\tStep the CPU using the external stepping command\n");
	printf("\t\t\tThis may consume more than one tick.\n");
	printf("\t\t\'t\'\tClock a single tick through the system.\n");
}
 
bool	signalled = false;
 
void	sigint(int v) {
	signalled = true;
}
 
int	main(int argc, char **argv) {
	Verilated::commandArgs(argc, argv);
	ZIPCPU_TB	*tb = new ZIPCPU_TB();
	bool		autorun = false, exit_on_done = false, autostep=false;
	ZIPI		entry = RAMBASE;
 
	signal(SIGINT, sigint);
 
	if (argc <= 1) {
		usage();
		exit(-1);
	} else {
		for(int argn=1; argn<argc; argn++) {
			if (argv[argn][0] == '-') {
				switch(argv[argn][1]) {
				case 'a':
					autorun = true;
					break;
				case 'e':
					exit_on_done = true;
					break;
				case 'h':
					usage();
					exit(0);
					break;
				case 's':
					autostep = true;
					break;
				default:
					usage();
					exit(-1);
					break;
				}
			} else if ((access(argv[argn], R_OK)==0)
						&&(iself(argv[argn]))) {
				ELFSECTION **secpp = NULL, *secp;
 
				elfread(argv[argn], entry, secpp);
 
				for(int i=0; secpp[i]->m_len; i++) {
					const char *data;
 
					secp = secpp[i];
					assert(secp->m_start >= RAMBASE);
					assert(secp->m_start+secp->m_len <= RAMBASE+RAMWORDS);
					assert((secp->m_len & 3)==0);
 
					data = &secp->m_data[0];
					tb->m_mem.load((secp->m_start-RAMBASE)>>2, data, secp->m_len);
				}
			} else {
				fprintf(stderr, "No access to %s, or unknown arg\n", argv[argn]);
				exit(-2);
			}
		}
	}
 
 
	if (autorun) {
		bool	done = false;
 
		printf("Running in non-interactive mode\n");
		tb->m_console = true;
		tb->reset();
		tb->m_core->cpu_halt = 1;
		tb->wb_write(CMD_REG, CMD_HALT|CMD_RESET|15);
		tb->wb_write(CMD_DATA, entry);
		tb->wb_write(CMD_REG, 15);
		tb->m_bomb = false;
		while(!done) {
			tb->tick();
 
			/*
			printf("PC = %08x:%08x (%08x)\n",
				tb->m_core->cpu_ipc,
				tb->m_core->cpu_upc,
				tb->m_core->alu_pc);
			*/
 
			done = (tb->test_success())||(tb->test_failure());
			done = done || signalled;
		}
	} else if (autostep) {
		bool	done = false;
 
		printf("Running in non-interactive mode, via step commands\n");
		tb->m_console = true;
		tb->reset();
		tb->wb_write(CMD_REG, CMD_HALT|CMD_RESET|CPU_sPC);
		tb->wb_write(CMD_DATA, entry);
		tb->wb_write(CMD_REG, CPU_sPC);
		tb->m_bomb = false;
		while(!done) {
			tb->wb_write(CMD_REG, CMD_STEP);
			/*
			printf("PC = %08x:%08x (%08x)\n",
				tb->m_core->cpu_ipc, tb->m_core->cpu_upc,
				tb->m_core->alu_pc);
			*/
			done = (tb->test_success())||(tb->test_failure());
			done = done || signalled;
		}
	} else { // Interactive
		initscr();
		raw();
		noecho();
		keypad(stdscr, true);
 
		// tb->reset();
		// for(int i=0; i<2; i++)
			// tb->tick();
		tb->m_core->cmd_reset = 1;
		tb->m_core->cpu_halt = 1;
		tb->tick();
 
		tb->m_core->cmd_reset = 0;
		tb->m_core->cpu_halt = 0;
		tb->tick();
		tb->jump_to(entry);
		tb->tick();
		tb->jump_to(entry);
		tb->tick();
		tb->jump_to(entry);
 
 
		// For debugging purposes: do we wish to skip some number of
		// instructions to fast forward to a time of interest??
		for(int i=0; i<0; i++) {
			tb->m_core->cpu_halt = 0;
			tb->tick();
		}
 
		int	chv = 'q';
 
		bool	done = false, halted = true, manual = true,
			high_speed = false;
 
		halfdelay(1);
		// tb->wb_write(CMD_REG, CMD_HALT | CMD_RESET);
		// while((tb->wb_read(CMD_REG) & (CMD_HALT|CMD_STALL))==(CMD_HALT|CMD_STALL))
			// tb->show_state();
 
		while(!done) {
			if ((high_speed)&&(!manual)&&(!halted)) {
				// chv = getch();
 
				struct	pollfd	fds[1];
				fds[0].fd = STDIN_FILENO;
				fds[0].events = POLLIN;
 
				if (poll(fds, 1, 0) > 0)
					chv = getch();
				else
					chv = ERR;
 
			} else {
				chv = getch();
			}
			switch(chv) {
			case 'h': case 'H':
				tb->wb_write(CMD_REG, CMD_HALT);
				if (!halted)
					erase();
				halted = true;
				break;
			case 'G':
				high_speed = true;
				// cbreak();
			case 'g':
				tb->wb_write(CMD_REG, 0);
				if (halted)
					erase();
				halted = false;
				manual = false;
				break;
			case 'm':
				tb->show_user_timers(false);
				break;
			case 'q': case 'Q':
				done = true;
				break;
			case 'r': case 'R':
				if (manual)
					tb->reset();
				else
					tb->wb_write(CMD_REG, CMD_RESET|CMD_HALT);
				halted = true;
				erase();
				break;
			case 's':
				if (!halted)
					erase();
				tb->step();
				manual = false;
				halted = true;
				// if (high_speed)
					// halfdelay(1);
				high_speed = false;
				break;
			case 'S':
				if ((!manual)||(halted))
					erase();
				manual = true;
				halted = true;
				// if (high_speed)
					// halfdelay(1);
				high_speed = false;
				tb->m_core->cpu_halt = 0;
				tb->m_core->cmd_step = 1;
				tb->eval();
				tb->tick();
				break;
			case 'T': //
				if ((!manual)||(halted))
					erase();
				manual = true;
				halted = true;
				// if (high_speed)
					// halfdelay(1);
				high_speed = false;
				tb->m_core->cpu_halt = 1;
				tb->m_core->cmd_step = 0;
				tb->eval();
				tb->tick();
				break;
			case 't':
				if ((!manual)||(halted))
					erase();
				manual = true;
				halted = false;
				// if (high_speed)
					// halfdelay(1);
				high_speed = false;
				tb->m_core->cpu_halt = 0;
				tb->tick();
				break;
			case 'u':
				tb->show_user_timers(true);
				break;
			case	KEY_IC: case KEY_ENTER: case KEY_RETURN:
				get_value(tb);
				break;
			case	KEY_UP:		tb->cursor_up();	break;
			case	KEY_DOWN:	tb->cursor_down();	break;
			case	KEY_LEFT:	tb->cursor_left();	break;
			case	KEY_RIGHT:	tb->cursor_right();	break;
			case CTRL('L'):	redrawwin(stdscr); break;
			case ERR: case KEY_CLEAR:
			default:
				if (!manual)
					tb->tick();
			}
 
			if (manual) {
				tb->show_state();
			} else if (halted) {
				if (tb->m_dbgfp)
					fprintf(tb->m_dbgfp, "\n\nREAD-STATE ******\n");
				tb->read_state();
			} else
				tb->show_state();
 
			if (tb->m_core->i_reset)
				done =true;
			if ((tb->m_bomb)||(signalled))
				done = true;
 
			if (exit_on_done) {
				if (tb->test_success())
					done = true;
				if (tb->test_failure())
					done = true;
			}
		}
		endwin();
	}
#ifdef	MANUAL_STEPPING_MODE
	 else { // Manual stepping mode
		tb->jump_to(entry);
		tb->show_state();
 
		while('q' != tolower(chv = getch())) {
			tb->tick();
			tb->show_state();
 
			if (tb->test_success())
				break;
			else if (tb->test_failure())
				break;
			else if (signalled)
				break;
		}
	}
#endif
 
	printf("\n");
	if (tb->test_failure()) {
		tb->dump_state();
	}
 
#ifdef	ZIPSYSTEM
	printf("Clocks used         : %08x\n", tb->m_core->mtc_data);
	printf("Instructions Issued : %08x\n", tb->m_core->mic_data);
	printf("Tick Count          : %08lx\n", tb->m_tickcount);
	if (tb->m_core->mtc_data != 0)
		printf("Instructions / Clock: %.2f\n",
			(double)tb->m_core->mic_data
			/ (double)tb->m_core->mtc_data);
#endif
 
	int	rcode = 0;
	if (tb->m_bomb) {
		printf("TEST BOMBED\n");
		rcode = -1;
	} else if (tb->test_success()) {
		printf("SUCCESS!\n");
	} else if (tb->test_failure()) {
		rcode = -2;
		printf("TEST FAILED!\n");
	} else
		printf("User quit\n");
	delete tb;
	exit(rcode);
}
 
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.