| 1 |
2 |
howe.r.j.8 |
-- FILE: uart.vhd
|
| 2 |
|
|
-- BRIEF: UART TX/RX module
|
| 3 |
|
|
-- LICENSE: MIT
|
| 4 |
|
|
-- COPYRIGHT: Richard James Howe (2019, 2020)
|
| 5 |
|
|
--
|
| 6 |
|
|
-- The UART (Universal Asynchronous Receiver/Transmitter) is one of the simplest
|
| 7 |
|
|
-- serial communication methods available. It is often used for debugging, for
|
| 8 |
|
|
-- issuing commands to embedded devices and sometimes even for uploading firmware
|
| 9 |
|
|
-- to devices. The data format and speed are configurable but there is no method
|
| 10 |
|
|
-- for automatically configuring a UART, both sides must have agreed on the
|
| 11 |
|
|
-- settings before hand. Configurable options include; baud, use of an
|
| 12 |
|
|
-- even of odd parity bit, number of data bits and number of stop bits.
|
| 13 |
|
|
--
|
| 14 |
|
|
-- The clock is not transmitted as part of the signal (which is why baud
|
| 15 |
|
|
-- must be agreed upon before hand), a single packet starts with a 'start bit',
|
| 16 |
|
|
-- where the line goes low. The receiver must synchronize to this start bit (it
|
| 17 |
|
|
-- resets the clock that generates pulse at the sample rate and baud when it
|
| 18 |
|
|
-- encounters a start bit).
|
| 19 |
|
|
--
|
| 20 |
|
|
-- A transmission with 8 data bits, 1 parity bit and 1 stop bit looks like
|
| 21 |
|
|
-- this:
|
| 22 |
|
|
-- ____ ______________________________ ________________
|
| 23 |
|
|
-- \_/|0|1|2|3|4|5|6|7|P|S| \_/
|
| 24 |
|
|
-- Start Data Parity Stop |--- More data --->
|
| 25 |
|
|
--
|
| 26 |
|
|
-- Start bits are always low, stop bits high. The most common format is
|
| 27 |
|
|
-- 8 data bits, no parity bit, and 1 stop bit at either 9600 or 115200 baud.
|
| 28 |
|
|
--
|
| 29 |
|
|
-- For the receiver a clock that is a multiple of the baud is used so the
|
| 30 |
|
|
-- bits can be sampled with a higher frequency than the bit rate.
|
| 31 |
|
|
--
|
| 32 |
|
|
-- Some notes:
|
| 33 |
|
|
-- * We can transmit from an 8-bit UART to a less than 8-bit UART fine, so
|
| 34 |
|
|
-- long as parity is not used, as
|
| 35 |
|
|
-- * Certain UARTs have the ability to transmit a BREAK signal by holding
|
| 36 |
|
|
-- the line low for a period greater than the packet length. We can transmit
|
| 37 |
|
|
-- that by lowering the baud rate and transmitting all zeroes. Receiving a
|
| 38 |
|
|
-- break (correctly) would require changing the receiver.
|
| 39 |
|
|
--
|
| 40 |
|
|
--
|
| 41 |
|
|
-- See:
|
| 42 |
|
|
-- * <https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter>
|
| 43 |
|
|
--
|
| 44 |
|
|
-- NOTE: We could replace this entire package with an entirely software driven
|
| 45 |
|
|
-- solution. The only hardware we would need two timers driven at the sample
|
| 46 |
|
|
-- rate (one for RX, one for TX) and a deglitched RX signal. An interrupt
|
| 47 |
|
|
-- would be generated on the timers expiry.
|
| 48 |
|
|
--
|
| 49 |
|
|
library ieee, work;
|
| 50 |
|
|
use ieee.std_logic_1164.all;
|
| 51 |
|
|
use ieee.numeric_std.all;
|
| 52 |
|
|
|
| 53 |
|
|
package uart_pkg is
|
| 54 |
|
|
constant uart_8N1: std_ulogic_vector(7 downto 0) := "10000100";
|
| 55 |
|
|
|
| 56 |
|
|
type uart_generics is record
|
| 57 |
|
|
clock_frequency: positive; -- clock frequency of module clock
|
| 58 |
|
|
delay: time; -- gate delay for simulation purposes
|
| 59 |
|
|
asynchronous_reset: boolean; -- use asynchronous reset if true
|
| 60 |
|
|
end record;
|
| 61 |
|
|
|
| 62 |
|
|
component uart_tx is
|
| 63 |
|
|
generic (
|
| 64 |
|
|
g: uart_generics;
|
| 65 |
|
|
N: positive;
|
| 66 |
|
|
format: std_ulogic_vector(7 downto 0) := uart_8N1;
|
| 67 |
|
|
use_cfg: boolean);
|
| 68 |
|
|
port (
|
| 69 |
|
|
clk: in std_ulogic;
|
| 70 |
|
|
rst: in std_ulogic;
|
| 71 |
|
|
cr: out std_ulogic;
|
| 72 |
|
|
baud: in std_ulogic; -- Pulse at baud
|
| 73 |
|
|
tx: out std_ulogic;
|
| 74 |
|
|
ok: out std_ulogic;
|
| 75 |
|
|
ctr: in std_ulogic_vector(format'range);
|
| 76 |
|
|
ctr_we: in std_ulogic;
|
| 77 |
|
|
we: in std_ulogic; -- di write enable
|
| 78 |
|
|
di: in std_ulogic_vector(N - 1 downto 0));
|
| 79 |
|
|
end component;
|
| 80 |
|
|
|
| 81 |
|
|
component uart_rx is
|
| 82 |
|
|
generic (
|
| 83 |
|
|
g: uart_generics;
|
| 84 |
|
|
N: positive;
|
| 85 |
|
|
D: positive;
|
| 86 |
|
|
format: std_ulogic_vector(7 downto 0) := uart_8N1;
|
| 87 |
|
|
use_cfg: boolean);
|
| 88 |
|
|
port (
|
| 89 |
|
|
clk: in std_ulogic;
|
| 90 |
|
|
rst: in std_ulogic;
|
| 91 |
|
|
cr: out std_ulogic;
|
| 92 |
|
|
baud: in std_ulogic;
|
| 93 |
|
|
sample: in std_ulogic;
|
| 94 |
|
|
failed: out std_ulogic_vector(1 downto 0);
|
| 95 |
|
|
ctr: in std_ulogic_vector(7 downto 0);
|
| 96 |
|
|
ctr_we: in std_ulogic;
|
| 97 |
|
|
rx: in std_ulogic;
|
| 98 |
|
|
we: out std_ulogic;
|
| 99 |
|
|
do: out std_ulogic_vector(N - 1 downto 0));
|
| 100 |
|
|
end component;
|
| 101 |
|
|
|
| 102 |
|
|
component uart_fifo is
|
| 103 |
|
|
generic (
|
| 104 |
|
|
g: uart_generics;
|
| 105 |
|
|
data_width: positive;
|
| 106 |
|
|
fifo_depth: positive;
|
| 107 |
|
|
read_first: boolean := true);
|
| 108 |
|
|
port (
|
| 109 |
|
|
clk: in std_ulogic;
|
| 110 |
|
|
rst: in std_ulogic;
|
| 111 |
|
|
di: in std_ulogic_vector(data_width - 1 downto 0);
|
| 112 |
|
|
we: in std_ulogic;
|
| 113 |
|
|
re: in std_ulogic;
|
| 114 |
|
|
do: out std_ulogic_vector(data_width - 1 downto 0);
|
| 115 |
|
|
|
| 116 |
|
|
-- optional
|
| 117 |
|
|
full: out std_ulogic := '0';
|
| 118 |
|
|
empty: out std_ulogic := '1');
|
| 119 |
|
|
end component;
|
| 120 |
|
|
|
| 121 |
|
|
component uart_baud is -- Generates a pulse at the sample rate and baud
|
| 122 |
|
|
generic (
|
| 123 |
|
|
g: uart_generics;
|
| 124 |
|
|
init: integer;
|
| 125 |
|
|
N: positive := 16;
|
| 126 |
|
|
D: positive := 3);
|
| 127 |
|
|
port (
|
| 128 |
|
|
clk: in std_ulogic;
|
| 129 |
|
|
rst: in std_ulogic;
|
| 130 |
|
|
we: in std_ulogic;
|
| 131 |
|
|
cnt: in std_ulogic_vector(N - 1 downto 0);
|
| 132 |
|
|
cr: in std_ulogic := '0';
|
| 133 |
|
|
sample: out std_ulogic;
|
| 134 |
|
|
baud: out std_ulogic);
|
| 135 |
|
|
end component;
|
| 136 |
|
|
|
| 137 |
|
|
component uart_top is
|
| 138 |
|
|
generic (
|
| 139 |
|
|
clock_frequency: positive; -- clock frequency of module clock
|
| 140 |
|
|
delay: time; -- gate delay for simulation purposes
|
| 141 |
|
|
asynchronous_reset: boolean; -- use asynchronous reset if true
|
| 142 |
|
|
baud: positive := 115200;
|
| 143 |
|
|
format: std_ulogic_vector(7 downto 0) := uart_8N1;
|
| 144 |
|
|
fifo_depth: natural := 0;
|
| 145 |
|
|
use_cfg: boolean := false;
|
| 146 |
|
|
use_tx: boolean := true;
|
| 147 |
|
|
use_rx: boolean := true
|
| 148 |
|
|
); -- Use FIFO to buffer results?
|
| 149 |
|
|
port (
|
| 150 |
|
|
clk: in std_ulogic;
|
| 151 |
|
|
rst: in std_ulogic;
|
| 152 |
|
|
|
| 153 |
|
|
tx: out std_ulogic;
|
| 154 |
|
|
tx_fifo_full: out std_ulogic;
|
| 155 |
|
|
tx_fifo_empty: out std_ulogic;
|
| 156 |
|
|
tx_fifo_we: in std_ulogic;
|
| 157 |
|
|
tx_fifo_data: in std_ulogic_vector(7 downto 0);
|
| 158 |
|
|
|
| 159 |
|
|
rx: in std_ulogic;
|
| 160 |
|
|
rx_fifo_full: out std_ulogic;
|
| 161 |
|
|
rx_fifo_empty: out std_ulogic;
|
| 162 |
|
|
rx_fifo_re: in std_ulogic;
|
| 163 |
|
|
rx_fifo_data: out std_ulogic_vector(7 downto 0);
|
| 164 |
|
|
|
| 165 |
|
|
reg: in std_ulogic_vector(15 downto 0);
|
| 166 |
|
|
clock_reg_tx_we: in std_ulogic;
|
| 167 |
|
|
clock_reg_rx_we: in std_ulogic;
|
| 168 |
|
|
control_reg_we: in std_ulogic);
|
| 169 |
|
|
end component;
|
| 170 |
|
|
|
| 171 |
|
|
component uart_tb is
|
| 172 |
|
|
generic(g: uart_generics);
|
| 173 |
|
|
end component;
|
| 174 |
|
|
|
| 175 |
|
|
function parity(slv:std_ulogic_vector; even: boolean) return std_ulogic;
|
| 176 |
|
|
function parity(slv:std_ulogic_vector; even: std_ulogic) return std_ulogic;
|
| 177 |
|
|
constant ctr_use_parity: integer := 0;
|
| 178 |
|
|
constant ctr_even_parity: integer := 1;
|
| 179 |
|
|
function ctr_stop_bits(ctr: std_ulogic_vector(7 downto 0)) return integer;
|
| 180 |
|
|
function ctr_data_bits(ctr: std_ulogic_vector(7 downto 0)) return integer;
|
| 181 |
|
|
end package;
|
| 182 |
|
|
|
| 183 |
|
|
package body uart_pkg is
|
| 184 |
|
|
function parity(slv: std_ulogic_vector; even: boolean) return std_ulogic is
|
| 185 |
|
|
variable z: std_ulogic := '0';
|
| 186 |
|
|
begin
|
| 187 |
|
|
if not even then
|
| 188 |
|
|
z := '1';
|
| 189 |
|
|
end if;
|
| 190 |
|
|
for i in slv'range loop
|
| 191 |
|
|
z := z xor slv(i);
|
| 192 |
|
|
end loop;
|
| 193 |
|
|
return z;
|
| 194 |
|
|
end;
|
| 195 |
|
|
|
| 196 |
|
|
function parity(slv:std_ulogic_vector; even: std_ulogic) return std_ulogic is
|
| 197 |
|
|
variable z: boolean := false;
|
| 198 |
|
|
begin
|
| 199 |
|
|
if even = '1' then
|
| 200 |
|
|
z := true;
|
| 201 |
|
|
end if;
|
| 202 |
|
|
return parity(slv, z);
|
| 203 |
|
|
end;
|
| 204 |
|
|
|
| 205 |
|
|
function ctr_stop_bits(ctr: std_ulogic_vector(7 downto 0)) return integer is
|
| 206 |
|
|
variable ii: std_ulogic_vector(1 downto 0);
|
| 207 |
|
|
begin
|
| 208 |
|
|
ii := ctr(3 downto 2);
|
| 209 |
|
|
return to_integer(unsigned(ii));
|
| 210 |
|
|
end function;
|
| 211 |
|
|
|
| 212 |
|
|
function ctr_data_bits(ctr: std_ulogic_vector(7 downto 0)) return integer is
|
| 213 |
|
|
variable ii: std_ulogic_vector(3 downto 0);
|
| 214 |
|
|
begin
|
| 215 |
|
|
ii := ctr(7 downto 4);
|
| 216 |
|
|
return to_integer(unsigned(ii));
|
| 217 |
|
|
end function;
|
| 218 |
|
|
end;
|
| 219 |
|
|
|
| 220 |
|
|
library ieee, work;
|
| 221 |
|
|
use ieee.std_logic_1164.all;
|
| 222 |
|
|
use ieee.numeric_std.all;
|
| 223 |
|
|
use work.uart_pkg.all;
|
| 224 |
|
|
|
| 225 |
|
|
entity uart_top is
|
| 226 |
|
|
generic (
|
| 227 |
|
|
clock_frequency: positive; -- clock frequency of module clock
|
| 228 |
|
|
delay: time; -- gate delay for simulation purposes
|
| 229 |
|
|
asynchronous_reset: boolean; -- use asynchronous reset if true
|
| 230 |
|
|
baud: positive := 115200;
|
| 231 |
|
|
format: std_ulogic_vector(7 downto 0) := uart_8N1;
|
| 232 |
|
|
fifo_depth: natural := 0; -- FIFO depth, 0,1 = no FIFO
|
| 233 |
|
|
use_cfg: boolean := false; -- allow run time configuration of baud rate and format?
|
| 234 |
|
|
use_tx: boolean := true; -- instantiate TX functionality?
|
| 235 |
|
|
use_rx: boolean := true -- instantiate RX functionality?
|
| 236 |
|
|
);
|
| 237 |
|
|
port (
|
| 238 |
|
|
clk: in std_ulogic;
|
| 239 |
|
|
rst: in std_ulogic;
|
| 240 |
|
|
|
| 241 |
|
|
tx: out std_ulogic;
|
| 242 |
|
|
tx_fifo_full: out std_ulogic;
|
| 243 |
|
|
tx_fifo_empty: out std_ulogic;
|
| 244 |
|
|
tx_fifo_we: in std_ulogic;
|
| 245 |
|
|
tx_fifo_data: in std_ulogic_vector(7 downto 0);
|
| 246 |
|
|
|
| 247 |
|
|
rx: in std_ulogic;
|
| 248 |
|
|
rx_fifo_full: out std_ulogic;
|
| 249 |
|
|
rx_fifo_empty: out std_ulogic;
|
| 250 |
|
|
rx_fifo_re: in std_ulogic;
|
| 251 |
|
|
rx_fifo_data: out std_ulogic_vector(7 downto 0);
|
| 252 |
|
|
|
| 253 |
|
|
reg: in std_ulogic_vector(15 downto 0);
|
| 254 |
|
|
clock_reg_tx_we: in std_ulogic;
|
| 255 |
|
|
clock_reg_rx_we: in std_ulogic;
|
| 256 |
|
|
control_reg_we: in std_ulogic);
|
| 257 |
|
|
end entity;
|
| 258 |
|
|
|
| 259 |
|
|
architecture structural of uart_top is
|
| 260 |
|
|
constant g: uart_generics := (
|
| 261 |
|
|
clock_frequency => clock_frequency,
|
| 262 |
|
|
delay => delay,
|
| 263 |
|
|
asynchronous_reset => asynchronous_reset
|
| 264 |
|
|
);
|
| 265 |
|
|
constant tx_init: integer := g.clock_frequency / (baud * 16); -- 54 = 115200 @ 100 MHz
|
| 266 |
|
|
constant rx_init: positive := tx_init - 1; -- 50 = 115200 @ 100 MHz + Fudge Factor
|
| 267 |
|
|
constant N: positive := 8;
|
| 268 |
|
|
|
| 269 |
|
|
signal rx_ok, rx_nd, rx_push, rx_re: std_ulogic := '0';
|
| 270 |
|
|
signal rx_pushed: std_ulogic_vector(rx_fifo_data'range) := (others => '0');
|
| 271 |
|
|
signal tx_pop, tx_ok: std_ulogic := '0';
|
| 272 |
|
|
signal tx_popped: std_ulogic_vector(tx_fifo_data'range) := (others => '0');
|
| 273 |
|
|
signal tx_fifo_empty_b, rx_fifo_full_b: std_ulogic := '0';
|
| 274 |
|
|
|
| 275 |
|
|
signal tx_sample, tx_baud, tx_cr: std_ulogic := '0';
|
| 276 |
|
|
signal rx_sample, rx_baud, rx_cr, rx_we: std_ulogic := '0';
|
| 277 |
|
|
signal rx_fail: std_ulogic_vector(1 downto 0) := (others => '0');
|
| 278 |
|
|
signal rx_ok_buf: std_ulogic := '0';
|
| 279 |
|
|
signal do, do_c, do_n: std_ulogic_vector(rx_fifo_data'range) := (others => '0');
|
| 280 |
|
|
signal fail_c, fail_n: std_ulogic_vector(1 downto 0) := (others => '0');
|
| 281 |
|
|
signal nd_c, nd_n: std_ulogic := '0'; -- new data
|
| 282 |
|
|
|
| 283 |
|
|
begin
|
| 284 |
|
|
rx_ok_buf <= not (fail_c(0) or fail_c(1)) after g.delay;
|
| 285 |
|
|
rx_ok <= rx_ok_buf;
|
| 286 |
|
|
rx_pushed <= do after g.delay;
|
| 287 |
|
|
rx_nd <= nd_c and rx_ok_buf after g.delay; -- no new data if there are errors
|
| 288 |
|
|
rx_re <= rx_push;
|
| 289 |
|
|
|
| 290 |
|
|
process (clk, rst)
|
| 291 |
|
|
begin
|
| 292 |
|
|
if use_rx then
|
| 293 |
|
|
if rst = '1' and g.asynchronous_reset then
|
| 294 |
|
|
do_c <= (others => '0') after g.delay;
|
| 295 |
|
|
fail_c <= (others => '0') after g.delay;
|
| 296 |
|
|
nd_c <= '0' after g.delay;
|
| 297 |
|
|
elsif rising_edge(clk) then
|
| 298 |
|
|
if rst = '1' and not g.asynchronous_reset then
|
| 299 |
|
|
do_c <= (others => '0') after g.delay;
|
| 300 |
|
|
fail_c <= (others => '0') after g.delay;
|
| 301 |
|
|
nd_c <= '0' after g.delay;
|
| 302 |
|
|
else
|
| 303 |
|
|
do_c <= do_n after g.delay;
|
| 304 |
|
|
nd_c <= nd_n after g.delay;
|
| 305 |
|
|
fail_c <= fail_n after g.delay;
|
| 306 |
|
|
end if;
|
| 307 |
|
|
end if;
|
| 308 |
|
|
end if;
|
| 309 |
|
|
end process;
|
| 310 |
|
|
|
| 311 |
|
|
process (do_c, do, nd_c, rx_we, rx_re, fail_c, rx_fail)
|
| 312 |
|
|
begin
|
| 313 |
|
|
if use_tx then
|
| 314 |
|
|
do_n <= do_c after g.delay;
|
| 315 |
|
|
nd_n <= nd_c after g.delay;
|
| 316 |
|
|
fail_n <= fail_c after g.delay;
|
| 317 |
|
|
if rx_we = '1' then
|
| 318 |
|
|
nd_n <= '1' after g.delay;
|
| 319 |
|
|
do_n <= do after g.delay;
|
| 320 |
|
|
fail_n <= rx_fail after g.delay;
|
| 321 |
|
|
elsif rx_re = '1' then
|
| 322 |
|
|
nd_n <= '0' after g.delay;
|
| 323 |
|
|
end if;
|
| 324 |
|
|
end if;
|
| 325 |
|
|
end process;
|
| 326 |
|
|
|
| 327 |
|
|
ugen0: if fifo_depth <= 1 generate
|
| 328 |
|
|
tx_pop <= tx_fifo_we;
|
| 329 |
|
|
tx_popped <= tx_fifo_data;
|
| 330 |
|
|
tx_fifo_full <= not tx_ok;
|
| 331 |
|
|
tx_fifo_empty <= tx_ok;
|
| 332 |
|
|
|
| 333 |
|
|
rx_push <= rx_fifo_re;
|
| 334 |
|
|
rx_fifo_data <= rx_pushed;
|
| 335 |
|
|
rx_fifo_full <= rx_nd;
|
| 336 |
|
|
rx_fifo_empty <= not rx_nd;
|
| 337 |
|
|
end generate;
|
| 338 |
|
|
|
| 339 |
|
|
ugen1: if fifo_depth > 1 generate
|
| 340 |
|
|
tx_fifo_empty <= tx_fifo_empty_b;
|
| 341 |
|
|
tx_pop <= tx_ok and not tx_fifo_empty_b;
|
| 342 |
|
|
|
| 343 |
|
|
ugen1_fifo_tx: if use_tx generate
|
| 344 |
|
|
uart_fifo_tx_0: work.uart_pkg.uart_fifo
|
| 345 |
|
|
generic map(g => g,
|
| 346 |
|
|
data_width => tx_fifo_data'length,
|
| 347 |
|
|
fifo_depth => fifo_depth)
|
| 348 |
|
|
port map (clk => clk, rst => rst,
|
| 349 |
|
|
di => tx_fifo_data,
|
| 350 |
|
|
we => tx_fifo_we,
|
| 351 |
|
|
re => tx_pop,
|
| 352 |
|
|
do => tx_popped,
|
| 353 |
|
|
full => tx_fifo_full,
|
| 354 |
|
|
empty => tx_fifo_empty_b);
|
| 355 |
|
|
end generate;
|
| 356 |
|
|
|
| 357 |
|
|
rx_fifo_full <= rx_fifo_full_b;
|
| 358 |
|
|
rx_push <= rx_nd and rx_ok and not rx_fifo_full_b;
|
| 359 |
|
|
ugen1_fifo_rx: if use_rx generate
|
| 360 |
|
|
uart_fifo_rx_0: work.uart_pkg.uart_fifo
|
| 361 |
|
|
generic map(g => g,
|
| 362 |
|
|
data_width => rx_fifo_data'length,
|
| 363 |
|
|
fifo_depth => fifo_depth,
|
| 364 |
|
|
read_first => false)
|
| 365 |
|
|
port map (clk => clk, rst => rst,
|
| 366 |
|
|
di => rx_pushed,
|
| 367 |
|
|
we => rx_push,
|
| 368 |
|
|
re => rx_fifo_re,
|
| 369 |
|
|
do => rx_fifo_data,
|
| 370 |
|
|
full => rx_fifo_full_b, empty => rx_fifo_empty);
|
| 371 |
|
|
end generate;
|
| 372 |
|
|
end generate;
|
| 373 |
|
|
|
| 374 |
|
|
uart_tx_gen: if use_tx generate
|
| 375 |
|
|
baud_tx: work.uart_pkg.uart_baud
|
| 376 |
|
|
generic map(g => g, init => tx_init, N => reg'length, D => 3)
|
| 377 |
|
|
port map(
|
| 378 |
|
|
clk => clk,
|
| 379 |
|
|
rst => rst,
|
| 380 |
|
|
we => clock_reg_tx_we,
|
| 381 |
|
|
cnt => reg, -- 0x32/50 is 1152000 @ 100MHz clk
|
| 382 |
|
|
cr => tx_cr,
|
| 383 |
|
|
sample => tx_sample,
|
| 384 |
|
|
baud => tx_baud);
|
| 385 |
|
|
|
| 386 |
|
|
tx_0: work.uart_pkg.uart_tx
|
| 387 |
|
|
generic map(g => g, N => N, format => format, use_cfg => use_cfg)
|
| 388 |
|
|
port map(
|
| 389 |
|
|
clk => clk,
|
| 390 |
|
|
rst => rst,
|
| 391 |
|
|
|
| 392 |
|
|
cr => tx_cr,
|
| 393 |
|
|
baud => tx_baud,
|
| 394 |
|
|
ok => tx_ok,
|
| 395 |
|
|
we => tx_pop,
|
| 396 |
|
|
ctr => reg(reg'high downto reg'high - 7),
|
| 397 |
|
|
ctr_we => control_reg_we,
|
| 398 |
|
|
di => tx_popped,
|
| 399 |
|
|
tx => tx);
|
| 400 |
|
|
end generate;
|
| 401 |
|
|
|
| 402 |
|
|
uart_rx_gen: if use_rx generate
|
| 403 |
|
|
baud_rx: work.uart_pkg.uart_baud
|
| 404 |
|
|
generic map(g => g, init => rx_init, N => reg'length, D => 3)
|
| 405 |
|
|
port map(
|
| 406 |
|
|
clk => clk,
|
| 407 |
|
|
rst => rst,
|
| 408 |
|
|
we => clock_reg_rx_we,
|
| 409 |
|
|
cnt => reg,
|
| 410 |
|
|
cr => rx_cr,
|
| 411 |
|
|
sample => rx_sample,
|
| 412 |
|
|
baud => rx_baud);
|
| 413 |
|
|
|
| 414 |
|
|
rx_0: work.uart_pkg.uart_rx
|
| 415 |
|
|
generic map(g => g, N => N, D => 3, format => format, use_cfg => use_cfg)
|
| 416 |
|
|
port map(
|
| 417 |
|
|
clk => clk,
|
| 418 |
|
|
rst => rst,
|
| 419 |
|
|
|
| 420 |
|
|
baud => rx_baud,
|
| 421 |
|
|
sample => rx_sample,
|
| 422 |
|
|
cr => rx_cr,
|
| 423 |
|
|
failed => rx_fail,
|
| 424 |
|
|
ctr => reg(reg'low + 7 downto reg'low),
|
| 425 |
|
|
ctr_we => control_reg_we,
|
| 426 |
|
|
we => rx_we,
|
| 427 |
|
|
do => do,
|
| 428 |
|
|
rx => rx);
|
| 429 |
|
|
end generate;
|
| 430 |
|
|
end architecture;
|
| 431 |
|
|
|
| 432 |
|
|
library ieee, work;
|
| 433 |
|
|
use ieee.std_logic_1164.all;
|
| 434 |
|
|
use ieee.numeric_std.all;
|
| 435 |
|
|
use work.uart_pkg.all;
|
| 436 |
|
|
|
| 437 |
|
|
entity uart_fifo is
|
| 438 |
|
|
generic (g: uart_generics;
|
| 439 |
|
|
data_width: positive;
|
| 440 |
|
|
fifo_depth: positive;
|
| 441 |
|
|
read_first: boolean := true);
|
| 442 |
|
|
port (
|
| 443 |
|
|
clk: in std_ulogic;
|
| 444 |
|
|
rst: in std_ulogic;
|
| 445 |
|
|
di: in std_ulogic_vector(data_width - 1 downto 0);
|
| 446 |
|
|
we: in std_ulogic;
|
| 447 |
|
|
re: in std_ulogic;
|
| 448 |
|
|
do: out std_ulogic_vector(data_width - 1 downto 0);
|
| 449 |
|
|
|
| 450 |
|
|
-- optional
|
| 451 |
|
|
full: out std_ulogic := '0';
|
| 452 |
|
|
empty: out std_ulogic := '1');
|
| 453 |
|
|
end uart_fifo;
|
| 454 |
|
|
|
| 455 |
|
|
architecture behavior of uart_fifo is
|
| 456 |
|
|
type fifo_data_t is array (0 to fifo_depth - 1) of std_ulogic_vector(di'range);
|
| 457 |
|
|
signal data: fifo_data_t := (others => (others => '0'));
|
| 458 |
|
|
function rindex_init return integer is
|
| 459 |
|
|
begin
|
| 460 |
|
|
if read_first then
|
| 461 |
|
|
return 0;
|
| 462 |
|
|
end if;
|
| 463 |
|
|
return fifo_depth - 1;
|
| 464 |
|
|
end function;
|
| 465 |
|
|
|
| 466 |
|
|
signal count: integer range 0 to fifo_depth := 0;
|
| 467 |
|
|
signal windex: integer range 0 to fifo_depth - 1 := 0;
|
| 468 |
|
|
signal rindex: integer range 0 to fifo_depth - 1 := rindex_init;
|
| 469 |
|
|
|
| 470 |
|
|
signal is_full: std_ulogic := '0';
|
| 471 |
|
|
signal is_empty: std_ulogic := '1';
|
| 472 |
|
|
begin
|
| 473 |
|
|
do <= data(rindex) after g.delay;
|
| 474 |
|
|
full <= is_full after g.delay; -- buffer these bad boys
|
| 475 |
|
|
empty <= is_empty after g.delay;
|
| 476 |
|
|
is_full <= '1' when count = fifo_depth else '0' after g.delay;
|
| 477 |
|
|
is_empty <= '1' when count = 0 else '0' after g.delay;
|
| 478 |
|
|
|
| 479 |
|
|
process (rst, clk) is
|
| 480 |
|
|
begin
|
| 481 |
|
|
if rst = '1' and g.asynchronous_reset then
|
| 482 |
|
|
windex <= 0 after g.delay;
|
| 483 |
|
|
count <= 0 after g.delay;
|
| 484 |
|
|
rindex <= rindex_init after g.delay;
|
| 485 |
|
|
elsif rising_edge(clk) then
|
| 486 |
|
|
if rst = '1' and not g.asynchronous_reset then
|
| 487 |
|
|
windex <= 0 after g.delay;
|
| 488 |
|
|
count <= 0 after g.delay;
|
| 489 |
|
|
rindex <= rindex_init after g.delay;
|
| 490 |
|
|
else
|
| 491 |
|
|
if we = '1' and re = '0' then
|
| 492 |
|
|
if is_full = '0' then
|
| 493 |
|
|
count <= count + 1 after g.delay;
|
| 494 |
|
|
end if;
|
| 495 |
|
|
elsif we = '0' and re = '1' then
|
| 496 |
|
|
if is_empty = '0' then
|
| 497 |
|
|
count <= count - 1 after g.delay;
|
| 498 |
|
|
end if;
|
| 499 |
|
|
end if;
|
| 500 |
|
|
|
| 501 |
|
|
if re = '1' and is_empty = '0' then
|
| 502 |
|
|
if rindex = (fifo_depth - 1) then
|
| 503 |
|
|
rindex <= 0 after g.delay;
|
| 504 |
|
|
else
|
| 505 |
|
|
rindex <= rindex + 1 after g.delay;
|
| 506 |
|
|
end if;
|
| 507 |
|
|
end if;
|
| 508 |
|
|
|
| 509 |
|
|
if we = '1' and is_full = '0' then
|
| 510 |
|
|
if windex = (fifo_depth - 1) then
|
| 511 |
|
|
windex <= 0 after g.delay;
|
| 512 |
|
|
else
|
| 513 |
|
|
windex <= windex + 1 after g.delay;
|
| 514 |
|
|
end if;
|
| 515 |
|
|
data(windex) <= di after g.delay;
|
| 516 |
|
|
end if;
|
| 517 |
|
|
end if;
|
| 518 |
|
|
end if;
|
| 519 |
|
|
end process;
|
| 520 |
|
|
end behavior;
|
| 521 |
|
|
|
| 522 |
|
|
-- This module generates a sample pulse and a baud pulse. The sample rate
|
| 523 |
|
|
-- can be controlled by setting 'cnt'. This sample rate is then divided by
|
| 524 |
|
|
-- 2^(D+1) to get the baud.
|
| 525 |
|
|
library ieee, work;
|
| 526 |
|
|
use ieee.std_logic_1164.all;
|
| 527 |
|
|
use ieee.numeric_std.all;
|
| 528 |
|
|
use work.uart_pkg.all;
|
| 529 |
|
|
|
| 530 |
|
|
entity uart_baud is
|
| 531 |
|
|
generic (g: uart_generics; init: integer; N: positive := 16; D: positive := 3);
|
| 532 |
|
|
port (
|
| 533 |
|
|
clk: in std_ulogic;
|
| 534 |
|
|
rst: in std_ulogic;
|
| 535 |
|
|
|
| 536 |
|
|
we: in std_ulogic;
|
| 537 |
|
|
cnt: in std_ulogic_vector(N - 1 downto 0);
|
| 538 |
|
|
cr: in std_ulogic := '0';
|
| 539 |
|
|
|
| 540 |
|
|
sample: out std_ulogic; -- sample pulse
|
| 541 |
|
|
baud: out std_ulogic); -- baud (sample rate / 2^(D+1))
|
| 542 |
|
|
end entity;
|
| 543 |
|
|
|
| 544 |
|
|
architecture behaviour of uart_baud is
|
| 545 |
|
|
constant cmp_init: std_ulogic_vector := std_ulogic_vector(to_unsigned(init, cnt'length));
|
| 546 |
|
|
signal cmp_c, cmp_n: std_ulogic_vector(cnt'range) := cmp_init;
|
| 547 |
|
|
signal cnt_c, cnt_n: std_ulogic_vector(cnt'range) := (others => '0');
|
| 548 |
|
|
signal div_c, div_n: std_ulogic_vector(D downto 0) := (others => '0');
|
| 549 |
|
|
signal pul_c, pul_n: std_ulogic := '0';
|
| 550 |
|
|
signal pulse: std_ulogic := '0';
|
| 551 |
|
|
begin
|
| 552 |
|
|
pulse <= (not cr) and pul_n and (pul_c xor pul_n) after g.delay; -- rising edge detector
|
| 553 |
|
|
baud <= (not cr) and div_n(div_n'high) and (div_c(div_c'high) xor div_n(div_n'high)) after g.delay;
|
| 554 |
|
|
sample <= pulse;
|
| 555 |
|
|
|
| 556 |
|
|
process (clk, rst)
|
| 557 |
|
|
begin
|
| 558 |
|
|
if rst = '1' and g.asynchronous_reset then
|
| 559 |
|
|
cmp_c <= cmp_init after g.delay;
|
| 560 |
|
|
cnt_c <= (others => '0') after g.delay;
|
| 561 |
|
|
div_c <= (others => '0') after g.delay;
|
| 562 |
|
|
pul_c <= '0' after g.delay;
|
| 563 |
|
|
elsif rising_edge(clk) then
|
| 564 |
|
|
if rst = '1' and not g.asynchronous_reset then
|
| 565 |
|
|
cmp_c <= cmp_init after g.delay;
|
| 566 |
|
|
cnt_c <= (others => '0') after g.delay;
|
| 567 |
|
|
div_c <= (others => '0') after g.delay;
|
| 568 |
|
|
pul_c <= '0' after g.delay;
|
| 569 |
|
|
else
|
| 570 |
|
|
cmp_c <= cmp_n after g.delay;
|
| 571 |
|
|
cnt_c <= cnt_n after g.delay;
|
| 572 |
|
|
div_c <= div_n after g.delay;
|
| 573 |
|
|
pul_c <= pul_n after g.delay;
|
| 574 |
|
|
end if;
|
| 575 |
|
|
end if;
|
| 576 |
|
|
end process;
|
| 577 |
|
|
|
| 578 |
|
|
process (pulse, div_c, cr, we)
|
| 579 |
|
|
begin
|
| 580 |
|
|
div_n <= div_c after g.delay;
|
| 581 |
|
|
if cr = '1' or we = '1' then
|
| 582 |
|
|
div_n <= (others => '0') after g.delay;
|
| 583 |
|
|
div_n(div_n'high) <= '1' after g.delay;
|
| 584 |
|
|
elsif pulse = '1' then
|
| 585 |
|
|
div_n <= std_ulogic_vector(unsigned(div_c) + 1) after g.delay;
|
| 586 |
|
|
end if;
|
| 587 |
|
|
end process;
|
| 588 |
|
|
|
| 589 |
|
|
process (cmp_c, cnt_c, we, cnt, cr)
|
| 590 |
|
|
begin
|
| 591 |
|
|
cmp_n <= cmp_c after g.delay;
|
| 592 |
|
|
cnt_n <= cnt_c after g.delay;
|
| 593 |
|
|
|
| 594 |
|
|
if we = '1' then
|
| 595 |
|
|
cmp_n <= cnt after g.delay;
|
| 596 |
|
|
cnt_n <= (others => '0') after g.delay;
|
| 597 |
|
|
pul_n <= '0' after g.delay;
|
| 598 |
|
|
elsif cr = '1' then
|
| 599 |
|
|
cnt_n <= (others => '0') after g.delay;
|
| 600 |
|
|
pul_n <= '0' after g.delay;
|
| 601 |
|
|
elsif cnt_c = cmp_c then
|
| 602 |
|
|
cnt_n <= (others => '0') after g.delay;
|
| 603 |
|
|
pul_n <= '1' after g.delay;
|
| 604 |
|
|
else
|
| 605 |
|
|
cnt_n <= std_ulogic_vector(unsigned(cnt_c) + 1) after g.delay;
|
| 606 |
|
|
pul_n <= '0' after g.delay;
|
| 607 |
|
|
end if;
|
| 608 |
|
|
end process;
|
| 609 |
|
|
end architecture;
|
| 610 |
|
|
|
| 611 |
|
|
library ieee, work;
|
| 612 |
|
|
use ieee.std_logic_1164.all;
|
| 613 |
|
|
use work.uart_pkg.all;
|
| 614 |
|
|
|
| 615 |
|
|
entity uart_rx is
|
| 616 |
|
|
generic (
|
| 617 |
|
|
g: uart_generics;
|
| 618 |
|
|
N: positive;
|
| 619 |
|
|
D: positive;
|
| 620 |
|
|
format: std_ulogic_vector(7 downto 0) := uart_8N1;
|
| 621 |
|
|
use_cfg: boolean);
|
| 622 |
|
|
port (
|
| 623 |
|
|
clk: in std_ulogic;
|
| 624 |
|
|
rst: in std_ulogic;
|
| 625 |
|
|
cr: out std_ulogic; -- reset sample/baud clock when start bit detected
|
| 626 |
|
|
baud: in std_ulogic;
|
| 627 |
|
|
sample: in std_ulogic; -- pulses at baud and sample rate
|
| 628 |
|
|
failed: out std_ulogic_vector(1 downto 0);
|
| 629 |
|
|
ctr: in std_ulogic_vector(7 downto 0);
|
| 630 |
|
|
ctr_we: in std_ulogic;
|
| 631 |
|
|
rx: in std_ulogic; -- physical RX signal
|
| 632 |
|
|
we: out std_ulogic; -- write 'do' to output register
|
| 633 |
|
|
do: out std_ulogic_vector(N - 1 downto 0));
|
| 634 |
|
|
end entity;
|
| 635 |
|
|
|
| 636 |
|
|
architecture behaviour of uart_rx is
|
| 637 |
|
|
type state is (reset, idle, start, data, parity, stop, done);
|
| 638 |
|
|
signal state_c, state_n: state;
|
| 639 |
|
|
signal ctr_c, ctr_n: std_ulogic_vector(ctr'range);
|
| 640 |
|
|
signal rx_c, rx_n: std_ulogic_vector(do'range);
|
| 641 |
|
|
signal sr_c, sr_n: std_ulogic_vector(D - 1 downto 0);
|
| 642 |
|
|
signal rx_sync: std_ulogic;
|
| 643 |
|
|
signal count_c, count_n: integer range 0 to N - 1;
|
| 644 |
|
|
signal majority: std_ulogic;
|
| 645 |
|
|
signal fail_c, fail_n: std_ulogic_vector(1 downto 0);
|
| 646 |
|
|
begin
|
| 647 |
|
|
do <= rx_c after g.delay;
|
| 648 |
|
|
failed <= fail_c after g.delay;
|
| 649 |
|
|
|
| 650 |
|
|
assert D < 4 severity failure;
|
| 651 |
|
|
|
| 652 |
|
|
majority_1: if D = 1 generate
|
| 653 |
|
|
majority <= sr_c(0) after g.delay;
|
| 654 |
|
|
end generate;
|
| 655 |
|
|
|
| 656 |
|
|
majority_2: if D = 2 generate
|
| 657 |
|
|
majority <= sr_c(0) and sr_c(1) after g.delay; -- even wins is 'sr_c(0) or sr_c(1)'
|
| 658 |
|
|
end generate;
|
| 659 |
|
|
|
| 660 |
|
|
majority_3: if D = 3 generate
|
| 661 |
|
|
majority <= (sr_c(0) and sr_c(1)) or (sr_c(1) and sr_c(2)) or (sr_c(0) and sr_c(2)) after g.delay;
|
| 662 |
|
|
end generate;
|
| 663 |
|
|
|
| 664 |
|
|
process (clk, rst)
|
| 665 |
|
|
procedure reset is
|
| 666 |
|
|
begin
|
| 667 |
|
|
rx_c <= (others => '0') after g.delay;
|
| 668 |
|
|
sr_c <= (others => '0') after g.delay;
|
| 669 |
|
|
fail_c <= (others => '0') after g.delay;
|
| 670 |
|
|
state_c <= reset after g.delay;
|
| 671 |
|
|
count_c <= 0 after g.delay;
|
| 672 |
|
|
rx_sync <= '0' after g.delay;
|
| 673 |
|
|
if use_cfg then ctr_c <= (others => '0') after g.delay; end if;
|
| 674 |
|
|
end procedure;
|
| 675 |
|
|
begin
|
| 676 |
|
|
if rst = '1' and g.asynchronous_reset then
|
| 677 |
|
|
reset;
|
| 678 |
|
|
elsif rising_edge(clk) then
|
| 679 |
|
|
if rst = '1' and not g.asynchronous_reset then
|
| 680 |
|
|
reset;
|
| 681 |
|
|
else
|
| 682 |
|
|
rx_c <= rx_n after g.delay;
|
| 683 |
|
|
sr_c <= sr_n after g.delay;
|
| 684 |
|
|
state_c <= state_n after g.delay;
|
| 685 |
|
|
count_c <= count_n after g.delay;
|
| 686 |
|
|
fail_c <= fail_n after g.delay;
|
| 687 |
|
|
rx_sync <= rx after g.delay;
|
| 688 |
|
|
if use_cfg then ctr_c <= ctr_n after g.delay; end if;
|
| 689 |
|
|
end if;
|
| 690 |
|
|
end if;
|
| 691 |
|
|
if not use_cfg then ctr_c <= format after g.delay; end if;
|
| 692 |
|
|
end process;
|
| 693 |
|
|
|
| 694 |
|
|
process (rx_c, sr_c, ctr_c, ctr_we, ctr, state_c, rx_sync, baud, sample, count_c, fail_c, majority)
|
| 695 |
|
|
begin
|
| 696 |
|
|
fail_n <= fail_c after g.delay;
|
| 697 |
|
|
rx_n <= rx_c after g.delay;
|
| 698 |
|
|
sr_n <= sr_c after g.delay;
|
| 699 |
|
|
state_n <= state_c after g.delay;
|
| 700 |
|
|
we <= '0' after g.delay;
|
| 701 |
|
|
cr <= '0' after g.delay;
|
| 702 |
|
|
count_n <= count_c after g.delay;
|
| 703 |
|
|
if use_cfg then ctr_n <= ctr_c after g.delay; end if;
|
| 704 |
|
|
|
| 705 |
|
|
if sample = '1' then
|
| 706 |
|
|
sr_n <= sr_c(sr_c'high - 1 downto sr_c'low) & rx_sync after g.delay;
|
| 707 |
|
|
end if;
|
| 708 |
|
|
|
| 709 |
|
|
case state_c is
|
| 710 |
|
|
when reset =>
|
| 711 |
|
|
rx_n <= (others => '0') after g.delay;
|
| 712 |
|
|
sr_n <= (others => '0') after g.delay;
|
| 713 |
|
|
fail_n <= (others => '0') after g.delay;
|
| 714 |
|
|
if use_cfg then
|
| 715 |
|
|
ctr_n <= format after g.delay; -- 8 bits, 1 stop bit, parity off
|
| 716 |
|
|
end if;
|
| 717 |
|
|
state_n <= idle after g.delay;
|
| 718 |
|
|
when idle =>
|
| 719 |
|
|
count_n <= 0 after g.delay;
|
| 720 |
|
|
if rx_sync = '0' then -- and majority = '1' then
|
| 721 |
|
|
state_n <= start after g.delay;
|
| 722 |
|
|
cr <= '1' after g.delay;
|
| 723 |
|
|
sr_n <= (others => '0') after g.delay;
|
| 724 |
|
|
fail_n <= (others => '0') after g.delay;
|
| 725 |
|
|
end if;
|
| 726 |
|
|
when start =>
|
| 727 |
|
|
if baud = '1' then
|
| 728 |
|
|
if majority /= '0' then
|
| 729 |
|
|
state_n <= done after g.delay; -- frame error
|
| 730 |
|
|
fail_n(0) <= '1' after g.delay;
|
| 731 |
|
|
else
|
| 732 |
|
|
state_n <= data after g.delay;
|
| 733 |
|
|
end if;
|
| 734 |
|
|
sr_n <= (others => '0') after g.delay;
|
| 735 |
|
|
end if;
|
| 736 |
|
|
when data =>
|
| 737 |
|
|
rx_n(count_c) <= majority after g.delay;
|
| 738 |
|
|
if baud = '1' then
|
| 739 |
|
|
if count_c = (ctr_data_bits(ctr_c) - 1) then
|
| 740 |
|
|
count_n <= 0 after g.delay;
|
| 741 |
|
|
if ctr_c(ctr_use_parity) = '1' then
|
| 742 |
|
|
state_n <= parity after g.delay;
|
| 743 |
|
|
else
|
| 744 |
|
|
state_n <= stop after g.delay;
|
| 745 |
|
|
end if;
|
| 746 |
|
|
else
|
| 747 |
|
|
count_n <= count_c + 1 after g.delay;
|
| 748 |
|
|
end if;
|
| 749 |
|
|
sr_n <= (others => '0') after g.delay;
|
| 750 |
|
|
end if;
|
| 751 |
|
|
when parity =>
|
| 752 |
|
|
if baud = '1' then
|
| 753 |
|
|
if (ctr_c(ctr_use_parity) = '1') and (majority /= parity(rx_c, ctr_c(ctr_even_parity))) then
|
| 754 |
|
|
fail_n(1) <= '1' after g.delay; -- parity error, still process stop bits
|
| 755 |
|
|
end if;
|
| 756 |
|
|
state_n <= stop after g.delay;
|
| 757 |
|
|
sr_n <= (others => '0') after g.delay;
|
| 758 |
|
|
end if;
|
| 759 |
|
|
when stop =>
|
| 760 |
|
|
if baud = '1' then
|
| 761 |
|
|
if majority /= '1' then
|
| 762 |
|
|
state_n <= done after g.delay; -- frame error
|
| 763 |
|
|
fail_n(0) <= '1' after g.delay;
|
| 764 |
|
|
elsif count_c = ctr_stop_bits(ctr_c) then
|
| 765 |
|
|
state_n <= done after g.delay;
|
| 766 |
|
|
else
|
| 767 |
|
|
count_n <= count_c + 1 after g.delay;
|
| 768 |
|
|
end if;
|
| 769 |
|
|
end if;
|
| 770 |
|
|
when done => -- The consuming module needs to store rx_c/fail_c immediately
|
| 771 |
|
|
we <= '1' after g.delay;
|
| 772 |
|
|
state_n <= idle after g.delay;
|
| 773 |
|
|
end case;
|
| 774 |
|
|
|
| 775 |
|
|
if ctr_we = '1' then
|
| 776 |
|
|
if not (state_c = idle or state_c = done or state_c = reset) then
|
| 777 |
|
|
rx_n <= (others => '0') after g.delay;
|
| 778 |
|
|
state_n <= idle after g.delay;
|
| 779 |
|
|
we <= '1' after g.delay;
|
| 780 |
|
|
fail_n(0) <= '1' after g.delay; -- frame error!
|
| 781 |
|
|
end if;
|
| 782 |
|
|
ctr_n <= ctr after g.delay;
|
| 783 |
|
|
end if;
|
| 784 |
|
|
end process;
|
| 785 |
|
|
end architecture;
|
| 786 |
|
|
|
| 787 |
|
|
library ieee, work;
|
| 788 |
|
|
use ieee.std_logic_1164.all;
|
| 789 |
|
|
use work.uart_pkg.all;
|
| 790 |
|
|
|
| 791 |
|
|
entity uart_tx is
|
| 792 |
|
|
generic (
|
| 793 |
|
|
g: uart_generics;
|
| 794 |
|
|
N: positive;
|
| 795 |
|
|
format: std_ulogic_vector(7 downto 0) := uart_8N1;
|
| 796 |
|
|
use_cfg: boolean);
|
| 797 |
|
|
port (
|
| 798 |
|
|
clk: in std_ulogic;
|
| 799 |
|
|
rst: in std_ulogic;
|
| 800 |
|
|
cr: out std_ulogic;
|
| 801 |
|
|
baud: in std_ulogic; -- Pulse at baud
|
| 802 |
|
|
tx: out std_ulogic;
|
| 803 |
|
|
ok: out std_ulogic;
|
| 804 |
|
|
ctr: in std_ulogic_vector(format'range);
|
| 805 |
|
|
ctr_we: in std_ulogic;
|
| 806 |
|
|
we: in std_ulogic; -- di write enable
|
| 807 |
|
|
di: in std_ulogic_vector(N - 1 downto 0));
|
| 808 |
|
|
end entity;
|
| 809 |
|
|
|
| 810 |
|
|
architecture behaviour of uart_tx is
|
| 811 |
|
|
type state is (reset, idle, start, data, parity, stop);
|
| 812 |
|
|
signal state_c, state_n: state;
|
| 813 |
|
|
signal di_c, di_n: std_ulogic_vector(di'range);
|
| 814 |
|
|
signal ctr_c, ctr_n: std_ulogic_vector(ctr'range);
|
| 815 |
|
|
signal busy: std_ulogic;
|
| 816 |
|
|
signal parity_c, parity_n: std_ulogic;
|
| 817 |
|
|
signal count_c, count_n: integer range 0 to 15;
|
| 818 |
|
|
begin
|
| 819 |
|
|
busy <= '0' when state_c = idle else '1' after g.delay;
|
| 820 |
|
|
ok <= not busy after g.delay;
|
| 821 |
|
|
|
| 822 |
|
|
process (clk, rst)
|
| 823 |
|
|
procedure reset is
|
| 824 |
|
|
begin
|
| 825 |
|
|
di_c <= (others => '0') after g.delay;
|
| 826 |
|
|
state_c <= reset after g.delay;
|
| 827 |
|
|
parity_c <= '0' after g.delay;
|
| 828 |
|
|
count_c <= 0 after g.delay;
|
| 829 |
|
|
if use_cfg then ctr_c <= (others => '0') after g.delay; end if;
|
| 830 |
|
|
end procedure;
|
| 831 |
|
|
begin
|
| 832 |
|
|
if rst = '1' and g.asynchronous_reset then
|
| 833 |
|
|
reset;
|
| 834 |
|
|
elsif rising_edge(clk) then
|
| 835 |
|
|
if rst = '1' and not g.asynchronous_reset then
|
| 836 |
|
|
reset;
|
| 837 |
|
|
else
|
| 838 |
|
|
di_c <= di_n after g.delay;
|
| 839 |
|
|
state_c <= state_n after g.delay;
|
| 840 |
|
|
parity_c <= parity_n after g.delay;
|
| 841 |
|
|
count_c <= count_n after g.delay;
|
| 842 |
|
|
if use_cfg then ctr_c <= ctr_n after g.delay; end if;
|
| 843 |
|
|
end if;
|
| 844 |
|
|
end if;
|
| 845 |
|
|
if not use_cfg then ctr_c <= format after g.delay; end if;
|
| 846 |
|
|
end process;
|
| 847 |
|
|
|
| 848 |
|
|
process (di_c, di, ctr_c, ctr_we, ctr, state_c, we, baud, parity_c, count_c)
|
| 849 |
|
|
begin
|
| 850 |
|
|
count_n <= count_c after g.delay;
|
| 851 |
|
|
state_n <= state_c after g.delay;
|
| 852 |
|
|
di_n <= di_c after g.delay;
|
| 853 |
|
|
if use_cfg then ctr_n <= ctr_c after g.delay; end if;
|
| 854 |
|
|
tx <= '1' after g.delay;
|
| 855 |
|
|
cr <= '0';
|
| 856 |
|
|
|
| 857 |
|
|
if ctr_c(ctr_use_parity) = '1' then
|
| 858 |
|
|
parity_n <= parity(di_c, ctr_c(ctr_even_parity)) after g.delay;
|
| 859 |
|
|
else
|
| 860 |
|
|
parity_n <= '0' after g.delay;
|
| 861 |
|
|
end if;
|
| 862 |
|
|
|
| 863 |
|
|
case state_c is
|
| 864 |
|
|
when reset =>
|
| 865 |
|
|
state_n <= idle after g.delay;
|
| 866 |
|
|
ctr_n <= format after g.delay; -- 8 bits, 1 stop bit, parity off
|
| 867 |
|
|
count_n <= 0 after g.delay;
|
| 868 |
|
|
parity_n <= '0' after g.delay;
|
| 869 |
|
|
di_n <= (others => '0') after g.delay;
|
| 870 |
|
|
when idle =>
|
| 871 |
|
|
count_n <= 0 after g.delay;
|
| 872 |
|
|
if use_cfg and ctr_we = '1' then -- NB. We can either lose data, or control writes
|
| 873 |
|
|
ctr_n <= ctr after g.delay;
|
| 874 |
|
|
elsif we = '1' then
|
| 875 |
|
|
di_n <= di after g.delay;
|
| 876 |
|
|
cr <= '1';
|
| 877 |
|
|
state_n <= start after g.delay;
|
| 878 |
|
|
end if;
|
| 879 |
|
|
when start =>
|
| 880 |
|
|
tx <= '0' after g.delay;
|
| 881 |
|
|
if baud = '1' then
|
| 882 |
|
|
state_n <= data after g.delay;
|
| 883 |
|
|
end if;
|
| 884 |
|
|
when data =>
|
| 885 |
|
|
tx <= di_c(count_c) after g.delay;
|
| 886 |
|
|
if baud = '1' then
|
| 887 |
|
|
if count_c = (ctr_data_bits(ctr_c) - 1) then
|
| 888 |
|
|
count_n <= 0 after g.delay;
|
| 889 |
|
|
if ctr_c(ctr_use_parity) = '1' then
|
| 890 |
|
|
state_n <= parity after g.delay;
|
| 891 |
|
|
else
|
| 892 |
|
|
state_n <= stop after g.delay;
|
| 893 |
|
|
end if;
|
| 894 |
|
|
else
|
| 895 |
|
|
count_n <= count_c + 1 after g.delay;
|
| 896 |
|
|
end if;
|
| 897 |
|
|
end if;
|
| 898 |
|
|
when parity =>
|
| 899 |
|
|
tx <= parity_c after g.delay;
|
| 900 |
|
|
if baud = '1' then
|
| 901 |
|
|
state_n <= stop after g.delay;
|
| 902 |
|
|
end if;
|
| 903 |
|
|
when stop =>
|
| 904 |
|
|
tx <= '1' after g.delay;
|
| 905 |
|
|
if baud = '1' then
|
| 906 |
|
|
if count_c = ctr_stop_bits(ctr_c) then
|
| 907 |
|
|
count_n <= 0 after g.delay;
|
| 908 |
|
|
state_n <= idle after g.delay;
|
| 909 |
|
|
else
|
| 910 |
|
|
count_n <= count_c + 1 after g.delay;
|
| 911 |
|
|
end if;
|
| 912 |
|
|
end if;
|
| 913 |
|
|
end case;
|
| 914 |
|
|
end process;
|
| 915 |
|
|
end architecture;
|
| 916 |
|
|
|
| 917 |
|
|
library ieee, work;
|
| 918 |
|
|
use ieee.std_logic_1164.all;
|
| 919 |
|
|
use ieee.numeric_std.all;
|
| 920 |
|
|
use work.uart_pkg.all;
|
| 921 |
|
|
|
| 922 |
|
|
entity uart_tb is
|
| 923 |
|
|
generic(g: uart_generics);
|
| 924 |
|
|
end entity;
|
| 925 |
|
|
|
| 926 |
|
|
architecture testing of uart_tb is
|
| 927 |
|
|
constant clock_period: time := 1000 ms / g.clock_frequency;
|
| 928 |
|
|
constant fifo_depth: natural := 8;
|
| 929 |
|
|
signal rst, clk: std_ulogic := '1';
|
| 930 |
|
|
signal stop: boolean := false;
|
| 931 |
|
|
signal loopback: boolean := true;
|
| 932 |
|
|
signal tx, rx: std_ulogic;
|
| 933 |
|
|
signal di, do: std_ulogic_vector(7 downto 0);
|
| 934 |
|
|
signal reg: std_ulogic_vector(15 downto 0);
|
| 935 |
|
|
signal clock_reg_tx_we: std_ulogic;
|
| 936 |
|
|
signal clock_reg_rx_we: std_ulogic;
|
| 937 |
|
|
signal control_reg_we: std_ulogic;
|
| 938 |
|
|
|
| 939 |
|
|
signal tx_fifo_full: std_ulogic;
|
| 940 |
|
|
signal tx_fifo_empty: std_ulogic;
|
| 941 |
|
|
signal tx_fifo_we: std_ulogic := '0';
|
| 942 |
|
|
signal rx_fifo_full: std_ulogic;
|
| 943 |
|
|
signal rx_fifo_empty: std_ulogic;
|
| 944 |
|
|
signal rx_fifo_re: std_ulogic := '0';
|
| 945 |
|
|
begin
|
| 946 |
|
|
-- duration: process begin wait for 20000 us; stop <= true; wait; end process;
|
| 947 |
|
|
clk_process: process
|
| 948 |
|
|
begin
|
| 949 |
|
|
rst <= '1';
|
| 950 |
|
|
wait for clock_period * 5;
|
| 951 |
|
|
rst <= '0';
|
| 952 |
|
|
while not stop loop
|
| 953 |
|
|
clk <= '1';
|
| 954 |
|
|
wait for clock_period / 2;
|
| 955 |
|
|
clk <= '0';
|
| 956 |
|
|
wait for clock_period / 2;
|
| 957 |
|
|
end loop;
|
| 958 |
|
|
wait;
|
| 959 |
|
|
end process;
|
| 960 |
|
|
|
| 961 |
|
|
stimulus: process
|
| 962 |
|
|
procedure write(data: std_ulogic_vector(di'range)) is
|
| 963 |
|
|
begin
|
| 964 |
|
|
wait for clock_period * 1;
|
| 965 |
|
|
while tx_fifo_full = '1' loop
|
| 966 |
|
|
wait for clock_period;
|
| 967 |
|
|
end loop;
|
| 968 |
|
|
di <= data;
|
| 969 |
|
|
tx_fifo_we <= '1';
|
| 970 |
|
|
wait for clock_period;
|
| 971 |
|
|
tx_fifo_we <= '0';
|
| 972 |
|
|
end procedure;
|
| 973 |
|
|
begin
|
| 974 |
|
|
di <= x"00";
|
| 975 |
|
|
wait until rst = '0';
|
| 976 |
|
|
wait for clock_period;
|
| 977 |
|
|
reg <= x"8080";
|
| 978 |
|
|
control_reg_we <= '1';
|
| 979 |
|
|
wait for clock_period;
|
| 980 |
|
|
control_reg_we <= '0';
|
| 981 |
|
|
reg <= x"0036";
|
| 982 |
|
|
clock_reg_tx_we <= '1';
|
| 983 |
|
|
wait for clock_period;
|
| 984 |
|
|
clock_reg_tx_we <= '0';
|
| 985 |
|
|
clock_reg_rx_we <= '1';
|
| 986 |
|
|
reg <= x"0035";
|
| 987 |
|
|
wait for clock_period;
|
| 988 |
|
|
clock_reg_rx_we <= '0';
|
| 989 |
|
|
wait for clock_period;
|
| 990 |
|
|
|
| 991 |
|
|
write(x"AA");
|
| 992 |
|
|
write(x"BB");
|
| 993 |
|
|
write(x"CC");
|
| 994 |
|
|
write(x"DD");
|
| 995 |
|
|
write(x"EE");
|
| 996 |
|
|
write(x"FF");
|
| 997 |
|
|
wait for clock_period;
|
| 998 |
|
|
while tx_fifo_empty = '0' loop
|
| 999 |
|
|
wait for clock_period;
|
| 1000 |
|
|
end loop;
|
| 1001 |
|
|
loopback <= false;
|
| 1002 |
|
|
wait for clock_period * 50000;
|
| 1003 |
|
|
stop <= true;
|
| 1004 |
|
|
wait;
|
| 1005 |
|
|
end process;
|
| 1006 |
|
|
|
| 1007 |
|
|
ack: process
|
| 1008 |
|
|
begin
|
| 1009 |
|
|
while not stop loop
|
| 1010 |
|
|
if rx_fifo_empty = '0' then
|
| 1011 |
|
|
rx_fifo_re <= '1';
|
| 1012 |
|
|
else
|
| 1013 |
|
|
rx_fifo_re <= '0';
|
| 1014 |
|
|
end if;
|
| 1015 |
|
|
wait for clock_period;
|
| 1016 |
|
|
end loop;
|
| 1017 |
|
|
wait;
|
| 1018 |
|
|
end process;
|
| 1019 |
|
|
rx <= tx when loopback else '0'; -- loop back test
|
| 1020 |
|
|
uut: work.uart_pkg.uart_top
|
| 1021 |
|
|
generic map (
|
| 1022 |
|
|
clock_frequency => g.clock_frequency,
|
| 1023 |
|
|
delay => g.delay,
|
| 1024 |
|
|
asynchronous_reset => g.asynchronous_reset,
|
| 1025 |
|
|
baud => 115200,
|
| 1026 |
|
|
format => uart_8N1,
|
| 1027 |
|
|
fifo_depth => fifo_depth)
|
| 1028 |
|
|
port map (
|
| 1029 |
|
|
clk => clk,
|
| 1030 |
|
|
rst => rst,
|
| 1031 |
|
|
|
| 1032 |
|
|
tx => tx,
|
| 1033 |
|
|
tx_fifo_full => tx_fifo_full,
|
| 1034 |
|
|
tx_fifo_empty => tx_fifo_empty,
|
| 1035 |
|
|
tx_fifo_we => tx_fifo_we,
|
| 1036 |
|
|
tx_fifo_data => di,
|
| 1037 |
|
|
|
| 1038 |
|
|
rx => rx,
|
| 1039 |
|
|
rx_fifo_full => rx_fifo_full,
|
| 1040 |
|
|
rx_fifo_empty => rx_fifo_empty,
|
| 1041 |
|
|
rx_fifo_re => rx_fifo_re,
|
| 1042 |
|
|
rx_fifo_data => do,
|
| 1043 |
|
|
|
| 1044 |
|
|
reg => reg,
|
| 1045 |
|
|
clock_reg_tx_we => clock_reg_tx_we,
|
| 1046 |
|
|
clock_reg_rx_we => clock_reg_rx_we,
|
| 1047 |
|
|
control_reg_we => control_reg_we);
|
| 1048 |
|
|
|
| 1049 |
|
|
end architecture;
|
| 1050 |
|
|
|