| 1 |
2 |
peteralieb |
//-----------------------------------------------------------------------------
|
| 2 |
|
|
// Title : 8-bit Client to Local-link Transmitter FIFO
|
| 3 |
|
|
// Project : Virtex-5 Ethernet MAC Wrappers
|
| 4 |
|
|
//-----------------------------------------------------------------------------
|
| 5 |
|
|
// File : tx_client_fifo_8.v
|
| 6 |
|
|
// Author : Xilinx
|
| 7 |
|
|
//-----------------------------------------------------------------------------
|
| 8 |
|
|
// Copyright (c) 2004-2008 by Xilinx, Inc. All rights reserved.
|
| 9 |
|
|
// This text/file contains proprietary, confidential
|
| 10 |
|
|
// information of Xilinx, Inc., is distributed under license
|
| 11 |
|
|
// from Xilinx, Inc., and may be used, copied and/or
|
| 12 |
|
|
// disclosed only pursuant to the terms of a valid license
|
| 13 |
|
|
// agreement with Xilinx, Inc. Xilinx hereby grants you
|
| 14 |
|
|
// a license to use this text/file solely for design, simulation,
|
| 15 |
|
|
// implementation and creation of design files limited
|
| 16 |
|
|
// to Xilinx devices or technologies. Use with non-Xilinx
|
| 17 |
|
|
// devices or technologies is expressly prohibited and
|
| 18 |
|
|
// immediately terminates your license unless covered by
|
| 19 |
|
|
// a separate agreement.
|
| 20 |
|
|
//
|
| 21 |
|
|
// Xilinx is providing this design, code, or information
|
| 22 |
|
|
// "as is" solely for use in developing programs and
|
| 23 |
|
|
// solutions for Xilinx devices. By providing this design,
|
| 24 |
|
|
// code, or information as one possible implementation of
|
| 25 |
|
|
// this feature, application or standard, Xilinx is making no
|
| 26 |
|
|
// representation that this implementation is free from any
|
| 27 |
|
|
// claims of infringement. You are responsible for
|
| 28 |
|
|
// obtaining any rights you may require for your implementation.
|
| 29 |
|
|
// Xilinx expressly disclaims any warranty whatsoever with
|
| 30 |
|
|
// respect to the adequacy of the implementation, including
|
| 31 |
|
|
// but not limited to any warranties or representations that this
|
| 32 |
|
|
// implementation is free from claims of infringement, implied
|
| 33 |
|
|
// warranties of merchantability or fitness for a particular
|
| 34 |
|
|
// purpose.
|
| 35 |
|
|
//
|
| 36 |
|
|
// Xilinx products are not intended for use in life support
|
| 37 |
|
|
// appliances, devices, or systems. Use in such applications are
|
| 38 |
|
|
// expressly prohibited.
|
| 39 |
|
|
//
|
| 40 |
|
|
// This copyright and support notice must be retained as part
|
| 41 |
|
|
// of this text at all times. (c) Copyright 2004-2008 Xilinx, Inc.
|
| 42 |
|
|
// All rights reserved.
|
| 43 |
|
|
//-----------------------------------------------------------------------------
|
| 44 |
|
|
// Description: This is a transmitter side local link fifo implementation for
|
| 45 |
|
|
// the design example of the Virtex-5 Ethernet MAC Wrapper
|
| 46 |
|
|
// core.
|
| 47 |
|
|
//
|
| 48 |
|
|
// The transmit FIFO is created from 2 Block RAMs of size 2048
|
| 49 |
|
|
// words of 8-bits per word, giving a total frame memory capacity
|
| 50 |
|
|
// of 4096 bytes.
|
| 51 |
|
|
//
|
| 52 |
|
|
// Valid frame data received from local link interface is written
|
| 53 |
|
|
// into the Block RAM on the write clock. The FIFO will store
|
| 54 |
|
|
// frames upto 4kbytes in length. If larger frames are written
|
| 55 |
|
|
// to the FIFO the local-link interface will accept the rest of the
|
| 56 |
|
|
// frame, but that frame will be dropped by the FIFO and
|
| 57 |
|
|
// the overflow signal will be asserted.
|
| 58 |
|
|
//
|
| 59 |
|
|
// The FIFO is designed to work with a minimum frame length of 14 bytes.
|
| 60 |
|
|
//
|
| 61 |
|
|
// When there is at least one complete frame in the FIFO,
|
| 62 |
|
|
// the MAC transmitter client interface will be driven to
|
| 63 |
|
|
// request frame transmission by placing the first byte of
|
| 64 |
|
|
// the frame onto tx_data[7:0] and by asserting
|
| 65 |
|
|
// tx_data_valid. The MAC will later respond by asserting
|
| 66 |
|
|
// tx_ack. At this point the remaining frame data is read
|
| 67 |
|
|
// out of the FIFO in a continuous burst. Data is read out
|
| 68 |
|
|
// of the FIFO on the rd_clk.
|
| 69 |
|
|
//
|
| 70 |
|
|
// If the generic FULL_DUPLEX_ONLY is set to false, the FIFO will
|
| 71 |
|
|
// requeue and retransmit frames as requested by the MAC. Once a
|
| 72 |
|
|
// frame has been transmitted by the FIFO it is stored until the
|
| 73 |
|
|
// possible retransmit window for that frame has expired.
|
| 74 |
|
|
//
|
| 75 |
|
|
// The FIFO has been designed to operate with different clocks
|
| 76 |
|
|
// on the write and read sides. The write clock (locallink clock)
|
| 77 |
|
|
// can be an equal or faster frequency than the read clock (client clock).
|
| 78 |
|
|
// The minimum write clock frequency is the read clock frequency divided
|
| 79 |
|
|
// by 2.5.
|
| 80 |
|
|
//
|
| 81 |
|
|
// The FIFO memory size can be increased by expanding the rd_addr
|
| 82 |
|
|
// and wr_addr signal widths, to address further BRAMs.
|
| 83 |
|
|
//
|
| 84 |
|
|
//-----------------------------------------------------------------------------
|
| 85 |
|
|
|
| 86 |
|
|
`timescale 1ps / 1ps
|
| 87 |
|
|
|
| 88 |
|
|
|
| 89 |
|
|
module tx_client_fifo_8
|
| 90 |
|
|
(
|
| 91 |
|
|
// MAC Interface
|
| 92 |
|
|
rd_clk,
|
| 93 |
|
|
rd_sreset,
|
| 94 |
|
|
rd_enable,
|
| 95 |
|
|
tx_data,
|
| 96 |
|
|
tx_data_valid,
|
| 97 |
|
|
tx_ack,
|
| 98 |
|
|
tx_collision,
|
| 99 |
|
|
tx_retransmit,
|
| 100 |
|
|
overflow,
|
| 101 |
|
|
|
| 102 |
|
|
// Local-link Interface
|
| 103 |
|
|
wr_clk,
|
| 104 |
|
|
wr_sreset,
|
| 105 |
|
|
wr_data,
|
| 106 |
|
|
wr_sof_n,
|
| 107 |
|
|
wr_eof_n,
|
| 108 |
|
|
wr_src_rdy_n,
|
| 109 |
|
|
wr_dst_rdy_n,
|
| 110 |
|
|
wr_fifo_status
|
| 111 |
|
|
);
|
| 112 |
|
|
|
| 113 |
|
|
//---------------------------------------------------------------------------
|
| 114 |
|
|
// Define Interface Signals
|
| 115 |
|
|
//---------------------------------------------------------------------------
|
| 116 |
|
|
|
| 117 |
|
|
// MAC Interface
|
| 118 |
|
|
input rd_clk;
|
| 119 |
|
|
input rd_sreset;
|
| 120 |
|
|
input rd_enable;
|
| 121 |
|
|
output [7:0] tx_data;
|
| 122 |
|
|
output tx_data_valid;
|
| 123 |
|
|
input tx_ack;
|
| 124 |
|
|
input tx_collision;
|
| 125 |
|
|
input tx_retransmit;
|
| 126 |
|
|
output overflow;
|
| 127 |
|
|
|
| 128 |
|
|
// Local-link Interface
|
| 129 |
|
|
input wr_clk;
|
| 130 |
|
|
input wr_sreset;
|
| 131 |
|
|
input [7:0] wr_data;
|
| 132 |
|
|
input wr_sof_n;
|
| 133 |
|
|
input wr_eof_n;
|
| 134 |
|
|
input wr_src_rdy_n;
|
| 135 |
|
|
output wr_dst_rdy_n;
|
| 136 |
|
|
output [3:0] wr_fifo_status;
|
| 137 |
|
|
|
| 138 |
|
|
// If FULL_DUPLEX_ONLY is 1 then all the half duplex logic in the FIFO is removed.
|
| 139 |
|
|
// The default for the fifo is to include the half duplex functionality
|
| 140 |
|
|
parameter FULL_DUPLEX_ONLY = 0;
|
| 141 |
|
|
|
| 142 |
|
|
reg [7:0] tx_data;
|
| 143 |
|
|
reg tx_data_valid;
|
| 144 |
|
|
reg [3:0] wr_fifo_status;
|
| 145 |
|
|
|
| 146 |
|
|
|
| 147 |
|
|
//---------------------------------------------------------------------------
|
| 148 |
|
|
// Define Internal Signals
|
| 149 |
|
|
//---------------------------------------------------------------------------
|
| 150 |
|
|
|
| 151 |
|
|
wire GND;
|
| 152 |
|
|
wire VCC;
|
| 153 |
|
|
wire [7:0] GND_BUS;
|
| 154 |
|
|
|
| 155 |
|
|
// Encode rd_state_machine states
|
| 156 |
|
|
parameter IDLE_s = 4'b0000; parameter QUEUE1_s = 4'b0001;
|
| 157 |
|
|
parameter QUEUE2_s = 4'b0010; parameter QUEUE3_s = 4'b0011;
|
| 158 |
|
|
parameter QUEUE_ACK_s = 4'b0100; parameter WAIT_ACK_s = 4'b0101;
|
| 159 |
|
|
parameter FRAME_s = 4'b0110; parameter DROP_s = 4'b0111;
|
| 160 |
|
|
parameter RETRANSMIT_s = 4'b1000;
|
| 161 |
|
|
|
| 162 |
|
|
reg [3:0] rd_state;
|
| 163 |
|
|
reg [3:0] rd_nxt_state;
|
| 164 |
|
|
|
| 165 |
|
|
// Encode wr_state_machine states
|
| 166 |
|
|
parameter WAIT_s = 2'b00; parameter DATA_s = 2'b01;
|
| 167 |
|
|
parameter EOF_s = 2'b10; parameter OVFLOW_s = 2'b11;
|
| 168 |
|
|
|
| 169 |
|
|
reg [1:0] wr_state;
|
| 170 |
|
|
reg [1:0] wr_nxt_state;
|
| 171 |
|
|
|
| 172 |
|
|
reg [7:0] wr_data_bram;
|
| 173 |
|
|
reg [7:0] wr_data_pipe[0:1];
|
| 174 |
|
|
reg wr_sof_pipe[0:1];
|
| 175 |
|
|
reg wr_eof_pipe[0:1];
|
| 176 |
|
|
reg wr_accept_pipe[0:1];
|
| 177 |
|
|
reg wr_accept_bram;
|
| 178 |
|
|
reg [0:0] wr_eof_bram;
|
| 179 |
|
|
reg [11:0] wr_addr;
|
| 180 |
|
|
wire wr_addr_inc;
|
| 181 |
|
|
wire wr_start_addr_load;
|
| 182 |
|
|
wire wr_addr_reload;
|
| 183 |
|
|
reg [11:0] wr_start_addr;
|
| 184 |
|
|
reg wr_fifo_full;
|
| 185 |
|
|
wire wr_en;
|
| 186 |
|
|
wire wr_en_u;
|
| 187 |
|
|
wire wr_en_l;
|
| 188 |
|
|
reg wr_ovflow_dst_rdy;
|
| 189 |
|
|
wire wr_dst_rdy_int_n;
|
| 190 |
|
|
|
| 191 |
|
|
reg frame_in_fifo;
|
| 192 |
|
|
reg frame_in_fifo_sync;
|
| 193 |
|
|
reg rd_eof;
|
| 194 |
|
|
reg rd_eof_reg;
|
| 195 |
|
|
reg rd_eof_pipe;
|
| 196 |
|
|
reg [11:0] rd_addr;
|
| 197 |
|
|
wire rd_addr_inc;
|
| 198 |
|
|
wire rd_addr_reload;
|
| 199 |
|
|
wire [7:0] rd_data_bram_u;
|
| 200 |
|
|
wire [7:0] rd_data_bram_l;
|
| 201 |
|
|
reg [7:0] rd_data_pipe_u;
|
| 202 |
|
|
reg [7:0] rd_data_pipe_l;
|
| 203 |
|
|
reg [7:0] rd_data_pipe;
|
| 204 |
|
|
wire [0:0] rd_eof_bram_u;
|
| 205 |
|
|
wire [0:0] rd_eof_bram_l;
|
| 206 |
|
|
wire rd_en;
|
| 207 |
|
|
wire rd_en_bram;
|
| 208 |
|
|
reg rd_bram_u;
|
| 209 |
|
|
reg rd_bram_u_reg;
|
| 210 |
|
|
|
| 211 |
|
|
reg rd_tran_frame_tog;
|
| 212 |
|
|
reg wr_tran_frame_tog;
|
| 213 |
|
|
reg wr_tran_frame_sync;
|
| 214 |
|
|
reg wr_tran_frame_delay;
|
| 215 |
|
|
reg rd_retran_frame_tog;
|
| 216 |
|
|
reg wr_retran_frame_tog;
|
| 217 |
|
|
reg wr_retran_frame_sync;
|
| 218 |
|
|
reg wr_retran_frame_delay;
|
| 219 |
|
|
wire wr_store_frame;
|
| 220 |
|
|
wire wr_eof_state;
|
| 221 |
|
|
reg wr_eof_state_reg;
|
| 222 |
|
|
reg wr_transmit_frame;
|
| 223 |
|
|
reg wr_retransmit_frame;
|
| 224 |
|
|
reg [8:0] wr_frames;
|
| 225 |
|
|
reg wr_frame_in_fifo;
|
| 226 |
|
|
|
| 227 |
|
|
reg [3:0] rd_16_count;
|
| 228 |
|
|
wire rd_txfer_en;
|
| 229 |
|
|
reg [11:0] rd_addr_txfer;
|
| 230 |
|
|
reg rd_txfer_tog;
|
| 231 |
|
|
reg wr_txfer_tog;
|
| 232 |
|
|
reg wr_txfer_tog_sync;
|
| 233 |
|
|
reg wr_txfer_tog_delay;
|
| 234 |
|
|
wire wr_txfer_en;
|
| 235 |
|
|
reg [11:0] wr_rd_addr;
|
| 236 |
|
|
reg [11:0] wr_addr_diff;
|
| 237 |
|
|
|
| 238 |
|
|
reg rd_drop_frame;
|
| 239 |
|
|
reg rd_retransmit;
|
| 240 |
|
|
reg [11:0] rd_start_addr;
|
| 241 |
|
|
wire rd_start_addr_load;
|
| 242 |
|
|
wire rd_start_addr_reload;
|
| 243 |
|
|
|
| 244 |
|
|
reg [11:0] rd_dec_addr;
|
| 245 |
|
|
|
| 246 |
|
|
wire rd_transmit_frame;
|
| 247 |
|
|
wire rd_retransmit_frame;
|
| 248 |
|
|
reg rd_col_window_expire;
|
| 249 |
|
|
reg rd_col_window_pipe[0:1];
|
| 250 |
|
|
reg wr_col_window_pipe[0:1];
|
| 251 |
|
|
|
| 252 |
|
|
wire wr_fifo_overflow;
|
| 253 |
|
|
reg [9:0] rd_slot_timer;
|
| 254 |
|
|
reg wr_col_window_expire;
|
| 255 |
|
|
wire rd_idle_state;
|
| 256 |
|
|
|
| 257 |
|
|
reg rd_enable_delay;
|
| 258 |
|
|
reg rd_enable_delay2;
|
| 259 |
|
|
|
| 260 |
|
|
//---------------------------------------------------------------------------
|
| 261 |
|
|
// Attributes for FIFO simulation and synthesis
|
| 262 |
|
|
//---------------------------------------------------------------------------
|
| 263 |
|
|
// ASYNC_REG attributes added to simulate actual behaviour under
|
| 264 |
|
|
// asynchronous operating conditions.
|
| 265 |
|
|
// synthesis attribute ASYNC_REG of wr_tran_frame_tog is "TRUE";
|
| 266 |
|
|
// synthesis attribute ASYNC_REG of wr_retran_frame_tog is "TRUE";
|
| 267 |
|
|
// synthesis attribute ASYNC_REG of frame_in_fifo_sync is "TRUE";
|
| 268 |
|
|
// synthesis attribute ASYNC_REG of wr_rd_addr is "TRUE";
|
| 269 |
|
|
// synthesis attribute ASYNC_REG of wr_txfer_tog is "TRUE";
|
| 270 |
|
|
// synthesis attribute ASYNC_REG of wr_col_window_pipe[0] is "TRUE";
|
| 271 |
|
|
|
| 272 |
|
|
// WRITE_MODE attributes added to Block RAM to mitigate port contention
|
| 273 |
|
|
// synthesis attribute WRITE_MODE_A of ramgen_u is "READ_FIRST";
|
| 274 |
|
|
// synthesis attribute WRITE_MODE_B of ramgen_u is "READ_FIRST";
|
| 275 |
|
|
// synthesis attribute WRITE_MODE_A of ramgen_l is "READ_FIRST";
|
| 276 |
|
|
// synthesis attribute WRITE_MODE_B of ramgen_l is "READ_FIRST";
|
| 277 |
|
|
|
| 278 |
|
|
|
| 279 |
|
|
|
| 280 |
|
|
//---------------------------------------------------------------------------
|
| 281 |
|
|
// Begin FIFO architecture
|
| 282 |
|
|
//---------------------------------------------------------------------------
|
| 283 |
|
|
|
| 284 |
|
|
assign GND = 1'b0;
|
| 285 |
|
|
assign VCC = 1'b1;
|
| 286 |
|
|
assign GND_BUS = 8'b0;
|
| 287 |
|
|
|
| 288 |
|
|
always @(posedge rd_clk)
|
| 289 |
|
|
begin
|
| 290 |
|
|
rd_enable_delay <= rd_enable;
|
| 291 |
|
|
rd_enable_delay2 <= rd_enable_delay;
|
| 292 |
|
|
end
|
| 293 |
|
|
|
| 294 |
|
|
//---------------------------------------------------------------------------
|
| 295 |
|
|
// Write State machine and control
|
| 296 |
|
|
//---------------------------------------------------------------------------
|
| 297 |
|
|
// Write state machine
|
| 298 |
|
|
// states are WAIT, DATA, EOF, OVFLOW
|
| 299 |
|
|
// clock through next state of sm
|
| 300 |
|
|
always @(posedge wr_clk)
|
| 301 |
|
|
begin
|
| 302 |
|
|
if (wr_sreset == 1'b1)
|
| 303 |
|
|
wr_state <= WAIT_s;
|
| 304 |
|
|
else
|
| 305 |
|
|
wr_state <= wr_nxt_state;
|
| 306 |
|
|
end
|
| 307 |
|
|
|
| 308 |
|
|
// decode next state, combinitorial
|
| 309 |
|
|
// should never be able to overflow whilst not in the data state.
|
| 310 |
|
|
always @(wr_state or wr_sof_pipe[1] or wr_eof_pipe[0] or wr_eof_pipe[1] or wr_eof_bram[0] or wr_fifo_overflow)
|
| 311 |
|
|
begin
|
| 312 |
|
|
case (wr_state)
|
| 313 |
|
|
WAIT_s : begin
|
| 314 |
|
|
if (wr_sof_pipe[1] == 1'b1)
|
| 315 |
|
|
wr_nxt_state <= DATA_s;
|
| 316 |
|
|
else
|
| 317 |
|
|
wr_nxt_state <= WAIT_s;
|
| 318 |
|
|
end
|
| 319 |
|
|
DATA_s : begin
|
| 320 |
|
|
// wait for the end of frame to be detected
|
| 321 |
|
|
if (wr_fifo_overflow == 1'b1 && wr_eof_pipe[0] == 1'b0 && wr_eof_pipe[1] == 1'b0)
|
| 322 |
|
|
wr_nxt_state <= OVFLOW_s;
|
| 323 |
|
|
else if (wr_eof_pipe[1] == 1'b1)
|
| 324 |
|
|
wr_nxt_state <= EOF_s;
|
| 325 |
|
|
else
|
| 326 |
|
|
wr_nxt_state <= DATA_s;
|
| 327 |
|
|
end
|
| 328 |
|
|
EOF_s : begin
|
| 329 |
|
|
// if the start of frame is already in the pipe, a back to back frame
|
| 330 |
|
|
// transmission has occured. move straight back to frame state
|
| 331 |
|
|
if (wr_sof_pipe[1] == 1'b1)
|
| 332 |
|
|
|
| 333 |
|
|
|
| 334 |
|
|
wr_nxt_state <= DATA_s;
|
| 335 |
|
|
else if (wr_eof_bram[0] == 1'b1)
|
| 336 |
|
|
wr_nxt_state <= WAIT_s;
|
| 337 |
|
|
else
|
| 338 |
|
|
wr_nxt_state <= EOF_s;
|
| 339 |
|
|
end
|
| 340 |
|
|
OVFLOW_s : begin
|
| 341 |
|
|
// wait until the end of frame is reached before clearing the overflow
|
| 342 |
|
|
if (wr_eof_bram[0] == 1'b1)
|
| 343 |
|
|
wr_nxt_state <= WAIT_s;
|
| 344 |
|
|
else
|
| 345 |
|
|
wr_nxt_state <= OVFLOW_s;
|
| 346 |
|
|
end
|
| 347 |
|
|
default : begin
|
| 348 |
|
|
wr_nxt_state <= WAIT_s;
|
| 349 |
|
|
end
|
| 350 |
|
|
endcase
|
| 351 |
|
|
end
|
| 352 |
|
|
|
| 353 |
|
|
|
| 354 |
|
|
// decode output signals.
|
| 355 |
|
|
assign wr_en = (wr_state == OVFLOW_s) ? 1'b0 : wr_accept_bram;
|
| 356 |
|
|
assign wr_en_l = wr_en & !wr_addr[11];
|
| 357 |
|
|
assign wr_en_u = wr_en & wr_addr[11];
|
| 358 |
|
|
|
| 359 |
|
|
assign wr_addr_inc = wr_en;
|
| 360 |
|
|
|
| 361 |
|
|
assign wr_addr_reload = (wr_state == OVFLOW_s) ? 1'b1 : 1'b0;
|
| 362 |
|
|
assign wr_start_addr_load = (wr_state == EOF_s && wr_nxt_state == WAIT_s) ? 1'b1 :
|
| 363 |
|
|
(wr_state == EOF_s && wr_nxt_state == DATA_s) ? 1'b1 : 1'b0;
|
| 364 |
|
|
|
| 365 |
|
|
|
| 366 |
|
|
// pause the local link flow when the fifo is full.
|
| 367 |
|
|
assign wr_dst_rdy_int_n = (wr_state == OVFLOW_s) ? wr_ovflow_dst_rdy : wr_fifo_full;
|
| 368 |
|
|
assign wr_dst_rdy_n = wr_dst_rdy_int_n;
|
| 369 |
|
|
|
| 370 |
|
|
// when in overflow and have captured ovflow eof send dst rdy high again.
|
| 371 |
|
|
assign overflow = (wr_state == OVFLOW_s) ? 1'b1 : 1'b0;
|
| 372 |
|
|
|
| 373 |
|
|
// when in overflow and have captured ovflow eof send dst rdy high again.
|
| 374 |
|
|
always @(posedge wr_clk)
|
| 375 |
|
|
begin
|
| 376 |
|
|
if (wr_sreset == 1'b1)
|
| 377 |
|
|
wr_ovflow_dst_rdy <= 1'b0;
|
| 378 |
|
|
else
|
| 379 |
|
|
begin
|
| 380 |
|
|
if (wr_fifo_overflow == 1'b1 && wr_state == DATA_s)
|
| 381 |
|
|
wr_ovflow_dst_rdy <= 1'b0;
|
| 382 |
|
|
else if (wr_eof_n == 1'b0 && wr_src_rdy_n == 1'b0)
|
| 383 |
|
|
wr_ovflow_dst_rdy <= 1'b1;
|
| 384 |
|
|
end
|
| 385 |
|
|
end
|
| 386 |
|
|
|
| 387 |
|
|
// eof signals for use in overflow logic
|
| 388 |
|
|
assign wr_eof_state = (wr_state == EOF_s) ? 1'b1 : 1'b0;
|
| 389 |
|
|
|
| 390 |
|
|
always @(posedge wr_clk)
|
| 391 |
|
|
begin
|
| 392 |
|
|
if (wr_sreset == 1'b1)
|
| 393 |
|
|
wr_eof_state_reg <= 1'b0;
|
| 394 |
|
|
else
|
| 395 |
|
|
wr_eof_state_reg <= wr_eof_state;
|
| 396 |
|
|
end
|
| 397 |
|
|
|
| 398 |
|
|
//---------------------------------------------------------------------------
|
| 399 |
|
|
// Read state machine and control
|
| 400 |
|
|
//---------------------------------------------------------------------------
|
| 401 |
|
|
|
| 402 |
|
|
// clock through the read state machine
|
| 403 |
|
|
always @(posedge rd_clk)
|
| 404 |
|
|
begin
|
| 405 |
|
|
if (rd_sreset == 1'b1)
|
| 406 |
|
|
rd_state <= IDLE_s;
|
| 407 |
|
|
else if (rd_enable == 1'b1)
|
| 408 |
|
|
rd_state <= rd_nxt_state;
|
| 409 |
|
|
end
|
| 410 |
|
|
|
| 411 |
|
|
//---------------------------------------------------------------------------
|
| 412 |
|
|
// Full Duplex Only State Machine
|
| 413 |
|
|
generate if (FULL_DUPLEX_ONLY == 1) begin : gen_fd_sm
|
| 414 |
|
|
// decode the next state
|
| 415 |
|
|
always @(rd_state or frame_in_fifo or rd_eof or tx_ack)
|
| 416 |
|
|
begin
|
| 417 |
|
|
case (rd_state)
|
| 418 |
|
|
IDLE_s : begin
|
| 419 |
|
|
// if there is a frame in the fifo start to queue the new frame
|
| 420 |
|
|
// to the output
|
| 421 |
|
|
if (frame_in_fifo == 1'b1)
|
| 422 |
|
|
rd_nxt_state <= QUEUE1_s;
|
| 423 |
|
|
else
|
| 424 |
|
|
rd_nxt_state <= IDLE_s;
|
| 425 |
|
|
end
|
| 426 |
|
|
QUEUE1_s : begin
|
| 427 |
|
|
rd_nxt_state <= QUEUE2_s;
|
| 428 |
|
|
end
|
| 429 |
|
|
QUEUE2_s : begin
|
| 430 |
|
|
rd_nxt_state <= QUEUE3_s;
|
| 431 |
|
|
end
|
| 432 |
|
|
QUEUE3_s : begin
|
| 433 |
|
|
rd_nxt_state <= QUEUE_ACK_s;
|
| 434 |
|
|
end
|
| 435 |
|
|
QUEUE_ACK_s : begin
|
| 436 |
|
|
rd_nxt_state <= WAIT_ACK_s;
|
| 437 |
|
|
end
|
| 438 |
|
|
WAIT_ACK_s : begin
|
| 439 |
|
|
// the output pipe line is fully loaded, so wait for ack from mac
|
| 440 |
|
|
// before moving on
|
| 441 |
|
|
if (tx_ack == 1'b1)
|
| 442 |
|
|
rd_nxt_state <= FRAME_s;
|
| 443 |
|
|
else
|
| 444 |
|
|
rd_nxt_state <= WAIT_ACK_s;
|
| 445 |
|
|
end
|
| 446 |
|
|
FRAME_s : begin
|
| 447 |
|
|
// when the end of frame has been reached wait another frame in
|
| 448 |
|
|
// the fifo
|
| 449 |
|
|
if (rd_eof == 1'b1)
|
| 450 |
|
|
rd_nxt_state <= IDLE_s;
|
| 451 |
|
|
else
|
| 452 |
|
|
rd_nxt_state <= FRAME_s;
|
| 453 |
|
|
end
|
| 454 |
|
|
default : begin
|
| 455 |
|
|
rd_nxt_state <= IDLE_s;
|
| 456 |
|
|
end
|
| 457 |
|
|
endcase
|
| 458 |
|
|
end
|
| 459 |
|
|
// full duplex state machine
|
| 460 |
|
|
|
| 461 |
|
|
end // gen_fd_sm
|
| 462 |
|
|
endgenerate
|
| 463 |
|
|
|
| 464 |
|
|
|
| 465 |
|
|
//---------------------------------------------------------------------------
|
| 466 |
|
|
// Full and Half Duplex State Machine
|
| 467 |
|
|
generate if (FULL_DUPLEX_ONLY != 1) begin : gen_hd_sm
|
| 468 |
|
|
// decode the next state
|
| 469 |
|
|
// should never receive a rd_drop_frame pulse outside of the Frame state
|
| 470 |
|
|
always @(rd_state or frame_in_fifo or rd_eof_reg or tx_ack or rd_drop_frame or rd_retransmit)
|
| 471 |
|
|
begin
|
| 472 |
|
|
case (rd_state)
|
| 473 |
|
|
IDLE_s : begin
|
| 474 |
|
|
// if a retransmit request is detected go to retransmit state
|
| 475 |
|
|
if (rd_retransmit == 1'b1)
|
| 476 |
|
|
rd_nxt_state <= RETRANSMIT_s;
|
| 477 |
|
|
// if there is a frame in the fifo then queue the new frame to
|
| 478 |
|
|
// the output
|
| 479 |
|
|
else if (frame_in_fifo == 1'b1)
|
| 480 |
|
|
rd_nxt_state <= QUEUE1_s;
|
| 481 |
|
|
else
|
| 482 |
|
|
rd_nxt_state <= IDLE_s;
|
| 483 |
|
|
end
|
| 484 |
|
|
QUEUE1_s : begin
|
| 485 |
|
|
if (rd_retransmit == 1'b1)
|
| 486 |
|
|
rd_nxt_state <= RETRANSMIT_s;
|
| 487 |
|
|
else
|
| 488 |
|
|
rd_nxt_state <= QUEUE2_s;
|
| 489 |
|
|
end
|
| 490 |
|
|
QUEUE2_s : begin
|
| 491 |
|
|
if (rd_retransmit == 1'b1)
|
| 492 |
|
|
rd_nxt_state <= RETRANSMIT_s;
|
| 493 |
|
|
else
|
| 494 |
|
|
rd_nxt_state <= QUEUE3_s;
|
| 495 |
|
|
end
|
| 496 |
|
|
QUEUE3_s : begin
|
| 497 |
|
|
if (rd_retransmit == 1'b1)
|
| 498 |
|
|
rd_nxt_state <= RETRANSMIT_s;
|
| 499 |
|
|
else
|
| 500 |
|
|
rd_nxt_state <= QUEUE_ACK_s;
|
| 501 |
|
|
end
|
| 502 |
|
|
QUEUE_ACK_s : begin
|
| 503 |
|
|
if (rd_retransmit == 1'b1)
|
| 504 |
|
|
rd_nxt_state <= RETRANSMIT_s;
|
| 505 |
|
|
else
|
| 506 |
|
|
rd_nxt_state <= WAIT_ACK_s;
|
| 507 |
|
|
end
|
| 508 |
|
|
WAIT_ACK_s : begin
|
| 509 |
|
|
// the output pipeline is now fully loaded so wait for ack from
|
| 510 |
|
|
// mac before moving on.
|
| 511 |
|
|
if (rd_retransmit == 1'b1)
|
| 512 |
|
|
rd_nxt_state <= RETRANSMIT_s;
|
| 513 |
|
|
else if (tx_ack == 1'b1)
|
| 514 |
|
|
rd_nxt_state <= FRAME_s;
|
| 515 |
|
|
else
|
| 516 |
|
|
rd_nxt_state <= WAIT_ACK_s;
|
| 517 |
|
|
end
|
| 518 |
|
|
FRAME_s : begin
|
| 519 |
|
|
// if a collision only request, then must drop the rest of the
|
| 520 |
|
|
// current frame, move to drop state
|
| 521 |
|
|
if (rd_drop_frame == 1'b1)
|
| 522 |
|
|
rd_nxt_state <= DROP_s;
|
| 523 |
|
|
else if (rd_retransmit == 1'b1)
|
| 524 |
|
|
rd_nxt_state <= RETRANSMIT_s;
|
| 525 |
|
|
// continue transmitting frame until the end of the frame is
|
| 526 |
|
|
// detected, then wait for a new frame to be sent.
|
| 527 |
|
|
else if (rd_eof_reg == 1'b1)
|
| 528 |
|
|
rd_nxt_state <= IDLE_s;
|
| 529 |
|
|
else
|
| 530 |
|
|
rd_nxt_state <= FRAME_s;
|
| 531 |
|
|
end
|
| 532 |
|
|
DROP_s : begin
|
| 533 |
|
|
// wait until rest of frame has been cleared.
|
| 534 |
|
|
if (rd_eof_reg == 1'b1)
|
| 535 |
|
|
rd_nxt_state <= IDLE_s;
|
| 536 |
|
|
else
|
| 537 |
|
|
rd_nxt_state <= DROP_s;
|
| 538 |
|
|
end
|
| 539 |
|
|
RETRANSMIT_s : begin
|
| 540 |
|
|
// reload the data pipe from the start of the frame
|
| 541 |
|
|
rd_nxt_state <= QUEUE1_s;
|
| 542 |
|
|
end
|
| 543 |
|
|
default : begin
|
| 544 |
|
|
rd_nxt_state <= IDLE_s;
|
| 545 |
|
|
end
|
| 546 |
|
|
endcase
|
| 547 |
|
|
end
|
| 548 |
|
|
|
| 549 |
|
|
end // gen_hd_sm // half duplex state machine
|
| 550 |
|
|
endgenerate
|
| 551 |
|
|
|
| 552 |
|
|
//---------------------------------------------------------------------------
|
| 553 |
|
|
// decode output signals
|
| 554 |
|
|
// decode output data
|
| 555 |
|
|
always @(posedge rd_clk)
|
| 556 |
|
|
begin
|
| 557 |
|
|
if (rd_enable == 1'b1)
|
| 558 |
|
|
begin
|
| 559 |
|
|
if (rd_nxt_state == FRAME_s)
|
| 560 |
|
|
tx_data <= rd_data_pipe;
|
| 561 |
|
|
else
|
| 562 |
|
|
begin
|
| 563 |
|
|
case (rd_state)
|
| 564 |
|
|
QUEUE_ACK_s :
|
| 565 |
|
|
tx_data <= rd_data_pipe;
|
| 566 |
|
|
WAIT_ACK_s :
|
| 567 |
|
|
tx_data <= tx_data;
|
| 568 |
|
|
FRAME_s :
|
| 569 |
|
|
tx_data <= rd_data_pipe;
|
| 570 |
|
|
default :
|
| 571 |
|
|
tx_data <= 8'b0;
|
| 572 |
|
|
endcase
|
| 573 |
|
|
end
|
| 574 |
|
|
end
|
| 575 |
|
|
end
|
| 576 |
|
|
|
| 577 |
|
|
// decode output data valid
|
| 578 |
|
|
always @(posedge rd_clk)
|
| 579 |
|
|
begin
|
| 580 |
|
|
if (rd_enable == 1'b1)
|
| 581 |
|
|
begin
|
| 582 |
|
|
if (rd_nxt_state == FRAME_s)
|
| 583 |
|
|
tx_data_valid <= ~(tx_collision && ~(tx_retransmit));
|
| 584 |
|
|
else
|
| 585 |
|
|
begin
|
| 586 |
|
|
case (rd_state)
|
| 587 |
|
|
QUEUE_ACK_s :
|
| 588 |
|
|
tx_data_valid <= 1'b1;
|
| 589 |
|
|
WAIT_ACK_s :
|
| 590 |
|
|
tx_data_valid <= 1'b1;
|
| 591 |
|
|
FRAME_s :
|
| 592 |
|
|
tx_data_valid <= ~(rd_nxt_state == DROP_s);
|
| 593 |
|
|
default :
|
| 594 |
|
|
tx_data_valid <= 1'b0;
|
| 595 |
|
|
endcase
|
| 596 |
|
|
end
|
| 597 |
|
|
end
|
| 598 |
|
|
end
|
| 599 |
|
|
|
| 600 |
|
|
//---------------------------------------------------------------------------
|
| 601 |
|
|
// decode full duplex only control signals
|
| 602 |
|
|
generate if (FULL_DUPLEX_ONLY == 1) begin : gen_fd_decode
|
| 603 |
|
|
|
| 604 |
|
|
assign rd_en = (rd_state == IDLE_s) ? 1'b0 :
|
| 605 |
|
|
(rd_nxt_state == FRAME_s) ? 1'b1 :
|
| 606 |
|
|
(rd_state == WAIT_ACK_s) ? 1'b0 : 1'b1;
|
| 607 |
|
|
|
| 608 |
|
|
assign rd_addr_inc = rd_en;
|
| 609 |
|
|
|
| 610 |
|
|
assign rd_addr_reload = (rd_state == FRAME_s && rd_nxt_state == IDLE_s) ? 1'b1 : 1'b0;
|
| 611 |
|
|
|
| 612 |
|
|
// Transmit frame pulse is only 1 clock enabled pulse long.
|
| 613 |
|
|
// Transmit frame pulse must never be more frequent than 64 clocks to allow toggle to cross clock domain
|
| 614 |
|
|
assign rd_transmit_frame = (rd_state == WAIT_ACK_s && rd_nxt_state == FRAME_s) ? 1'b1 : 1'b0;
|
| 615 |
|
|
|
| 616 |
|
|
// unused for full duplex only
|
| 617 |
|
|
assign rd_start_addr_reload = 1'b0;
|
| 618 |
|
|
assign rd_start_addr_load = 1'b0;
|
| 619 |
|
|
assign rd_retransmit_frame = 1'b0;
|
| 620 |
|
|
|
| 621 |
|
|
end // gen_fd_decode // full duplex control signals
|
| 622 |
|
|
endgenerate
|
| 623 |
|
|
|
| 624 |
|
|
//---------------------------------------------------------------------------
|
| 625 |
|
|
// decode half duplex control signals
|
| 626 |
|
|
generate if (FULL_DUPLEX_ONLY != 1) begin : gen_hd_decode
|
| 627 |
|
|
|
| 628 |
|
|
assign rd_en = (rd_state == IDLE_s) ? 1'b0 :
|
| 629 |
|
|
(rd_nxt_state == DROP_s && rd_eof == 1'b1) ? 1'b0 :
|
| 630 |
|
|
(rd_nxt_state == FRAME_s) ? 1'b1 :
|
| 631 |
|
|
(rd_state == RETRANSMIT_s) ? 1'b0 :
|
| 632 |
|
|
(rd_state == WAIT_ACK_s) ? 1'b0 : 1'b1;
|
| 633 |
|
|
|
| 634 |
|
|
assign rd_addr_inc = rd_en;
|
| 635 |
|
|
|
| 636 |
|
|
assign rd_addr_reload = (rd_state == FRAME_s && rd_nxt_state == IDLE_s) ? 1'b1 :
|
| 637 |
|
|
(rd_state == DROP_s && rd_nxt_state == IDLE_s) ? 1'b1 : 1'b0;
|
| 638 |
|
|
|
| 639 |
|
|
assign rd_start_addr_reload = (rd_state == RETRANSMIT_s) ? 1'b1 : 1'b0;
|
| 640 |
|
|
|
| 641 |
|
|
assign rd_start_addr_load = (rd_state == WAIT_ACK_s && rd_nxt_state == FRAME_s) ? 1'b1 :
|
| 642 |
|
|
(rd_col_window_expire == 1'b1) ? 1'b1 : 1'b0;
|
| 643 |
|
|
|
| 644 |
|
|
// Transmit frame pulse must never be more frequent than 64 clocks to allow toggle to cross clock domain
|
| 645 |
|
|
assign rd_transmit_frame = (rd_state == WAIT_ACK_s && rd_nxt_state == FRAME_s) ? 1'b1 : 1'b0;
|
| 646 |
|
|
|
| 647 |
|
|
// Retransmit frame pulse must never be more frequent than 16 clocks to allow toggle to cross clock domain
|
| 648 |
|
|
assign rd_retransmit_frame = (rd_state == RETRANSMIT_s) ? 1'b1 : 1'b0;
|
| 649 |
|
|
|
| 650 |
|
|
end // gen_hd_decode // half duplex control signals
|
| 651 |
|
|
endgenerate
|
| 652 |
|
|
|
| 653 |
|
|
//---------------------------------------------------------------------------
|
| 654 |
|
|
// Frame Count
|
| 655 |
|
|
// We need to maintain a count of frames in the fifo, so that we know when a
|
| 656 |
|
|
// frame is available for transmission. The counter must be held on the
|
| 657 |
|
|
// write clock domain as this is the faster clock.
|
| 658 |
|
|
//---------------------------------------------------------------------------
|
| 659 |
|
|
|
| 660 |
|
|
// A frame has been written to the fifo
|
| 661 |
|
|
assign wr_store_frame = (wr_state == EOF_s && wr_nxt_state != EOF_s) ? 1'b1 : 1'b0;
|
| 662 |
|
|
|
| 663 |
|
|
// generate a toggle to indicate when a frame has been transmitted from the fifo
|
| 664 |
|
|
always @(posedge rd_clk)
|
| 665 |
|
|
begin // process
|
| 666 |
|
|
if (rd_sreset == 1'b1)
|
| 667 |
|
|
rd_tran_frame_tog <= 1'b0;
|
| 668 |
|
|
else if (rd_enable == 1'b1)
|
| 669 |
|
|
if (rd_transmit_frame == 1'b1) // assumes EOF_s is valid for one clock
|
| 670 |
|
|
// cycle only ever! check
|
| 671 |
|
|
rd_tran_frame_tog <= !rd_tran_frame_tog;
|
| 672 |
|
|
end
|
| 673 |
|
|
|
| 674 |
|
|
// move the read transmit frame signal onto the write clock domain
|
| 675 |
|
|
always @(posedge wr_clk)
|
| 676 |
|
|
begin
|
| 677 |
|
|
if (wr_sreset == 1'b1)
|
| 678 |
|
|
begin
|
| 679 |
|
|
wr_tran_frame_tog <= 1'b0;
|
| 680 |
|
|
wr_tran_frame_sync <= 1'b0;
|
| 681 |
|
|
wr_tran_frame_delay <= 1'b0;
|
| 682 |
|
|
wr_transmit_frame <= 1'b0;
|
| 683 |
|
|
end
|
| 684 |
|
|
else
|
| 685 |
|
|
begin
|
| 686 |
|
|
wr_tran_frame_tog <= rd_tran_frame_tog;
|
| 687 |
|
|
wr_tran_frame_sync <= wr_tran_frame_tog;
|
| 688 |
|
|
wr_tran_frame_delay <= wr_tran_frame_sync;
|
| 689 |
|
|
// edge detector
|
| 690 |
|
|
if ((wr_tran_frame_delay ^ wr_tran_frame_sync) == 1'b1)
|
| 691 |
|
|
wr_transmit_frame <= 1'b1;
|
| 692 |
|
|
else
|
| 693 |
|
|
wr_transmit_frame <= 1'b0;
|
| 694 |
|
|
end
|
| 695 |
|
|
end
|
| 696 |
|
|
|
| 697 |
|
|
//---------------------------------------------------------------------------
|
| 698 |
|
|
generate if (FULL_DUPLEX_ONLY == 1) begin : gen_fd_count
|
| 699 |
|
|
|
| 700 |
|
|
// count the number of frames in the fifo. the counter is incremented when a
|
| 701 |
|
|
// frame is stored and decremented when a frame is transmitted. Need to keep
|
| 702 |
|
|
// the counter on the write clock as this is the fastest clock.
|
| 703 |
|
|
always @(posedge wr_clk)
|
| 704 |
|
|
begin
|
| 705 |
|
|
if (wr_sreset == 1'b1)
|
| 706 |
|
|
wr_frames <= 9'b0;
|
| 707 |
|
|
else
|
| 708 |
|
|
if ((wr_store_frame & !wr_transmit_frame) == 1'b1)
|
| 709 |
|
|
wr_frames <= wr_frames + 1;
|
| 710 |
|
|
else if ((!wr_store_frame & wr_transmit_frame) == 1'b1)
|
| 711 |
|
|
wr_frames <= wr_frames - 1;
|
| 712 |
|
|
end
|
| 713 |
|
|
|
| 714 |
|
|
end // gen_fd_count
|
| 715 |
|
|
endgenerate
|
| 716 |
|
|
|
| 717 |
|
|
//---------------------------------------------------------------------------
|
| 718 |
|
|
generate if (FULL_DUPLEX_ONLY != 1) begin : gen_hd_count
|
| 719 |
|
|
|
| 720 |
|
|
// generate a toggle to indicate when a frame has been transmitted from the fifo
|
| 721 |
|
|
always @(posedge rd_clk)
|
| 722 |
|
|
begin // process
|
| 723 |
|
|
if (rd_sreset == 1'b1)
|
| 724 |
|
|
rd_retran_frame_tog <= 1'b0;
|
| 725 |
|
|
else if (rd_enable == 1'b1)
|
| 726 |
|
|
if (rd_retransmit_frame == 1'b1) // assumes EOF_s is valid for one clock
|
| 727 |
|
|
// cycle only ever! check
|
| 728 |
|
|
rd_retran_frame_tog <= !rd_retran_frame_tog;
|
| 729 |
|
|
end
|
| 730 |
|
|
|
| 731 |
|
|
// move the read transmit frame signal onto the write clock domain
|
| 732 |
|
|
always @(posedge wr_clk)
|
| 733 |
|
|
begin
|
| 734 |
|
|
if (wr_sreset == 1'b1)
|
| 735 |
|
|
begin
|
| 736 |
|
|
wr_retran_frame_tog <= 1'b0;
|
| 737 |
|
|
wr_retran_frame_sync <= 1'b0;
|
| 738 |
|
|
wr_retran_frame_delay <= 1'b0;
|
| 739 |
|
|
wr_retransmit_frame <= 1'b0;
|
| 740 |
|
|
end
|
| 741 |
|
|
else
|
| 742 |
|
|
begin
|
| 743 |
|
|
wr_retran_frame_tog <= rd_retran_frame_tog;
|
| 744 |
|
|
wr_retran_frame_sync <= wr_retran_frame_tog;
|
| 745 |
|
|
wr_retran_frame_delay <= wr_retran_frame_sync;
|
| 746 |
|
|
// edge detector
|
| 747 |
|
|
if ((wr_retran_frame_delay ^ wr_retran_frame_sync) == 1'b1)
|
| 748 |
|
|
wr_retransmit_frame <= 1'b1;
|
| 749 |
|
|
else
|
| 750 |
|
|
wr_retransmit_frame <= 1'b0;
|
| 751 |
|
|
end
|
| 752 |
|
|
end
|
| 753 |
|
|
|
| 754 |
|
|
// count the number of frames in the fifo. the counter is incremented when a
|
| 755 |
|
|
// frame is stored or retransmitted and decremented when a frame is transmitted. Need to keep
|
| 756 |
|
|
// the counter on the write clock as this is the fastest clock.
|
| 757 |
|
|
// Assumes transmit and retransmit cannot happen at same time
|
| 758 |
|
|
always @(posedge wr_clk)
|
| 759 |
|
|
begin
|
| 760 |
|
|
if (wr_sreset == 1'b1)
|
| 761 |
|
|
wr_frames <= 9'b0;
|
| 762 |
|
|
else
|
| 763 |
|
|
if ((wr_store_frame & wr_retransmit_frame) == 1'b1)
|
| 764 |
|
|
wr_frames <= wr_frames + 2;
|
| 765 |
|
|
else if (((wr_store_frame | wr_retransmit_frame) & !wr_transmit_frame) == 1'b1)
|
| 766 |
|
|
wr_frames <= wr_frames + 1;
|
| 767 |
|
|
else if (wr_transmit_frame == 1'b1 & !wr_store_frame)
|
| 768 |
|
|
wr_frames <= wr_frames - 1;
|
| 769 |
|
|
end
|
| 770 |
|
|
|
| 771 |
|
|
end // gen_hd_count
|
| 772 |
|
|
endgenerate
|
| 773 |
|
|
|
| 774 |
|
|
|
| 775 |
|
|
//---------------------------------------------------------------------------
|
| 776 |
|
|
// generate a frame in fifo signal for use in control logic
|
| 777 |
|
|
always @(posedge wr_clk)
|
| 778 |
|
|
begin
|
| 779 |
|
|
if (wr_sreset == 1'b1)
|
| 780 |
|
|
wr_frame_in_fifo <= 1'b0;
|
| 781 |
|
|
else
|
| 782 |
|
|
if (wr_frames != 9'b0)
|
| 783 |
|
|
wr_frame_in_fifo <= 1'b1;
|
| 784 |
|
|
else
|
| 785 |
|
|
wr_frame_in_fifo <= 1'b0;
|
| 786 |
|
|
end
|
| 787 |
|
|
|
| 788 |
|
|
// register back onto read domain for use in the read logic
|
| 789 |
|
|
always @(posedge rd_clk)
|
| 790 |
|
|
begin
|
| 791 |
|
|
if (rd_sreset == 1'b1)
|
| 792 |
|
|
begin
|
| 793 |
|
|
frame_in_fifo_sync <= 1'b0;
|
| 794 |
|
|
frame_in_fifo <= 1'b0;
|
| 795 |
|
|
end
|
| 796 |
|
|
else if (rd_enable == 1'b1)
|
| 797 |
|
|
begin
|
| 798 |
|
|
frame_in_fifo_sync <= wr_frame_in_fifo;
|
| 799 |
|
|
frame_in_fifo <= frame_in_fifo_sync;
|
| 800 |
|
|
end
|
| 801 |
|
|
end
|
| 802 |
|
|
|
| 803 |
|
|
//---------------------------------------------------------------------------
|
| 804 |
|
|
// Address counters
|
| 805 |
|
|
//---------------------------------------------------------------------------
|
| 806 |
|
|
// Address counters
|
| 807 |
|
|
// write address is incremented when write enable signal has been asserted
|
| 808 |
|
|
always @(posedge wr_clk)
|
| 809 |
|
|
begin
|
| 810 |
|
|
if (wr_sreset == 1'b1)
|
| 811 |
|
|
wr_addr <= 12'b0;
|
| 812 |
|
|
else if (wr_addr_reload == 1'b1)
|
| 813 |
|
|
wr_addr <= wr_start_addr;
|
| 814 |
|
|
else if (wr_addr_inc == 1'b1)
|
| 815 |
|
|
wr_addr <= wr_addr + 1;
|
| 816 |
|
|
end
|
| 817 |
|
|
|
| 818 |
|
|
// store the start address incase the address must be reset
|
| 819 |
|
|
always @(posedge wr_clk)
|
| 820 |
|
|
begin
|
| 821 |
|
|
if (wr_sreset == 1'b1)
|
| 822 |
|
|
wr_start_addr <= 12'b0;
|
| 823 |
|
|
else if (wr_start_addr_load == 1'b1)
|
| 824 |
|
|
wr_start_addr <= wr_addr + 1;
|
| 825 |
|
|
end
|
| 826 |
|
|
|
| 827 |
|
|
//---------------------------------------------------------------------------
|
| 828 |
|
|
generate if (FULL_DUPLEX_ONLY == 1) begin : gen_fd_addr
|
| 829 |
|
|
// read address is incremented when read enable signal has been asserted
|
| 830 |
|
|
always @(posedge rd_clk)
|
| 831 |
|
|
begin
|
| 832 |
|
|
if (rd_sreset == 1'b1)
|
| 833 |
|
|
rd_addr <= 12'b0;
|
| 834 |
|
|
else if (rd_enable == 1'b1)
|
| 835 |
|
|
if (rd_addr_reload == 1'b1)
|
| 836 |
|
|
rd_addr <= rd_dec_addr;
|
| 837 |
|
|
else if (rd_addr_inc == 1'b1)
|
| 838 |
|
|
rd_addr <= rd_addr + 1;
|
| 839 |
|
|
end
|
| 840 |
|
|
|
| 841 |
|
|
// do not need to keep a start address, but the address is needed to
|
| 842 |
|
|
// calculate fifo occupancy.
|
| 843 |
|
|
always @(posedge rd_clk)
|
| 844 |
|
|
begin
|
| 845 |
|
|
if (rd_sreset == 1'b1)
|
| 846 |
|
|
rd_start_addr <= 12'b0;
|
| 847 |
|
|
else if (rd_enable == 1'b1)
|
| 848 |
|
|
rd_start_addr <= rd_addr;
|
| 849 |
|
|
end
|
| 850 |
|
|
|
| 851 |
|
|
|
| 852 |
|
|
|
| 853 |
|
|
end // gen_fd_addr // full duplex address counters
|
| 854 |
|
|
endgenerate
|
| 855 |
|
|
|
| 856 |
|
|
//---------------------------------------------------------------------------
|
| 857 |
|
|
generate if (FULL_DUPLEX_ONLY != 1) begin : gen_hd_addr
|
| 858 |
|
|
// read address is incremented when read enable signal has been asserted
|
| 859 |
|
|
always @(posedge rd_clk)
|
| 860 |
|
|
begin
|
| 861 |
|
|
if (rd_sreset == 1'b1)
|
| 862 |
|
|
rd_addr <= 12'b0;
|
| 863 |
|
|
else if (rd_enable == 1'b1)
|
| 864 |
|
|
if (rd_addr_reload == 1'b1)
|
| 865 |
|
|
rd_addr <= rd_dec_addr;
|
| 866 |
|
|
else if (rd_start_addr_reload == 1'b1)
|
| 867 |
|
|
rd_addr <= rd_start_addr;
|
| 868 |
|
|
else if (rd_addr_inc == 1'b1)
|
| 869 |
|
|
rd_addr <= rd_addr + 1;
|
| 870 |
|
|
end
|
| 871 |
|
|
|
| 872 |
|
|
always @(posedge rd_clk)
|
| 873 |
|
|
begin
|
| 874 |
|
|
if (rd_sreset == 1'b1)
|
| 875 |
|
|
rd_start_addr <= 12'b0;
|
| 876 |
|
|
else if (rd_enable == 1'b1)
|
| 877 |
|
|
if (rd_start_addr_load == 1'b1)
|
| 878 |
|
|
rd_start_addr <= rd_addr - 4;
|
| 879 |
|
|
end
|
| 880 |
|
|
|
| 881 |
|
|
// Collision window expires after MAC has been transmitting for required slot
|
| 882 |
|
|
// time. This is 512 clock cycles at 1G. Also if the end of frame has fully
|
| 883 |
|
|
// been transmitted by the mac then a collision cannot occur.
|
| 884 |
|
|
// this collision expire signal goes high at 768 cycles from the start of the
|
| 885 |
|
|
// frame.
|
| 886 |
|
|
// inefficient for short frames, however should be enough to prevent fifo
|
| 887 |
|
|
// locking up.
|
| 888 |
|
|
always @(posedge rd_clk)
|
| 889 |
|
|
begin
|
| 890 |
|
|
if (rd_sreset == 1'b1)
|
| 891 |
|
|
rd_col_window_expire <= 1'b0;
|
| 892 |
|
|
else if (rd_enable == 1'b1)
|
| 893 |
|
|
if (rd_transmit_frame == 1'b1)
|
| 894 |
|
|
rd_col_window_expire <= 1'b0;
|
| 895 |
|
|
else if (rd_slot_timer[9:8] == 2'b11)
|
| 896 |
|
|
rd_col_window_expire <= 1'b1;
|
| 897 |
|
|
end
|
| 898 |
|
|
|
| 899 |
|
|
assign rd_idle_state = (rd_state == IDLE_s) ? 1'b1 : 1'b0;
|
| 900 |
|
|
|
| 901 |
|
|
always @(posedge rd_clk)
|
| 902 |
|
|
begin
|
| 903 |
|
|
if (rd_enable == 1'b1)
|
| 904 |
|
|
begin
|
| 905 |
|
|
rd_col_window_pipe[0] <= rd_col_window_expire & rd_idle_state;
|
| 906 |
|
|
if (rd_txfer_en == 1'b1)
|
| 907 |
|
|
rd_col_window_pipe[1] <= rd_col_window_pipe[0];
|
| 908 |
|
|
end
|
| 909 |
|
|
end
|
| 910 |
|
|
|
| 911 |
|
|
always @(posedge rd_clk)
|
| 912 |
|
|
begin
|
| 913 |
|
|
if (rd_sreset == 1'b1) // will not count until after first
|
| 914 |
|
|
// frame is sent.
|
| 915 |
|
|
rd_slot_timer <= 10'b0;
|
| 916 |
|
|
else if (rd_enable == 1'b1)
|
| 917 |
|
|
if (rd_transmit_frame == 1'b1) // reset counter
|
| 918 |
|
|
rd_slot_timer <= 10'b0;
|
| 919 |
|
|
// do not allow counter to role over.
|
| 920 |
|
|
// only count when frame is being transmitted.
|
| 921 |
|
|
else if (rd_slot_timer != 10'b1111111111)
|
| 922 |
|
|
rd_slot_timer <= rd_slot_timer + 1;
|
| 923 |
|
|
end
|
| 924 |
|
|
|
| 925 |
|
|
|
| 926 |
|
|
end // gen_hd_addr // half duplex address counters
|
| 927 |
|
|
endgenerate
|
| 928 |
|
|
|
| 929 |
|
|
always @(posedge rd_clk)
|
| 930 |
|
|
begin
|
| 931 |
|
|
if (rd_sreset == 1'b1)
|
| 932 |
|
|
rd_dec_addr <= 12'b0;
|
| 933 |
|
|
else if (rd_enable == 1'b1)
|
| 934 |
|
|
if (rd_addr_inc == 1'b1)
|
| 935 |
|
|
rd_dec_addr <= rd_addr - 1;
|
| 936 |
|
|
end
|
| 937 |
|
|
|
| 938 |
|
|
//---------------------------------------------------------------------------
|
| 939 |
|
|
always @(posedge rd_clk)
|
| 940 |
|
|
begin
|
| 941 |
|
|
if (rd_sreset == 1'b1)
|
| 942 |
|
|
begin
|
| 943 |
|
|
rd_bram_u <= 1'b0;
|
| 944 |
|
|
rd_bram_u_reg <= 1'b0;
|
| 945 |
|
|
end
|
| 946 |
|
|
else if (rd_enable == 1'b1)
|
| 947 |
|
|
if (rd_addr_inc == 1'b1)
|
| 948 |
|
|
begin
|
| 949 |
|
|
rd_bram_u <= rd_addr[11];
|
| 950 |
|
|
rd_bram_u_reg <= rd_bram_u;
|
| 951 |
|
|
end
|
| 952 |
|
|
end
|
| 953 |
|
|
|
| 954 |
|
|
//---------------------------------------------------------------------------
|
| 955 |
|
|
// Data Pipelines
|
| 956 |
|
|
//---------------------------------------------------------------------------
|
| 957 |
|
|
// register input signals to fifo
|
| 958 |
|
|
// no reset to allow srl16 target
|
| 959 |
|
|
always @(posedge wr_clk)
|
| 960 |
|
|
begin
|
| 961 |
|
|
wr_data_pipe[0] <= wr_data;
|
| 962 |
|
|
if (wr_accept_pipe[0] == 1'b1)
|
| 963 |
|
|
wr_data_pipe[1] <= wr_data_pipe[0];
|
| 964 |
|
|
if (wr_accept_pipe[1] == 1'b1)
|
| 965 |
|
|
wr_data_bram <= wr_data_pipe[1];
|
| 966 |
|
|
end
|
| 967 |
|
|
|
| 968 |
|
|
// no reset to allow srl16 target
|
| 969 |
|
|
always @(posedge wr_clk)
|
| 970 |
|
|
begin
|
| 971 |
|
|
wr_sof_pipe[0] <= !wr_sof_n;
|
| 972 |
|
|
if (wr_accept_pipe[0] == 1'b1)
|
| 973 |
|
|
wr_sof_pipe[1] <= wr_sof_pipe[0];
|
| 974 |
|
|
end
|
| 975 |
|
|
|
| 976 |
|
|
always @(posedge wr_clk)
|
| 977 |
|
|
begin
|
| 978 |
|
|
if (wr_sreset == 1'b1)
|
| 979 |
|
|
begin
|
| 980 |
|
|
wr_accept_pipe[0] <= 1'b0;
|
| 981 |
|
|
wr_accept_pipe[1] <= 1'b0;
|
| 982 |
|
|
wr_accept_bram <= 1'b0;
|
| 983 |
|
|
end
|
| 984 |
|
|
else
|
| 985 |
|
|
begin
|
| 986 |
|
|
wr_accept_pipe[0] <= !wr_src_rdy_n & !wr_dst_rdy_int_n;
|
| 987 |
|
|
wr_accept_pipe[1] <= wr_accept_pipe[0];
|
| 988 |
|
|
wr_accept_bram <= wr_accept_pipe[1];
|
| 989 |
|
|
end
|
| 990 |
|
|
end
|
| 991 |
|
|
|
| 992 |
|
|
always @(posedge wr_clk)
|
| 993 |
|
|
begin
|
| 994 |
|
|
wr_eof_pipe[0] <= !wr_eof_n;
|
| 995 |
|
|
if (wr_accept_pipe[0] == 1'b1)
|
| 996 |
|
|
wr_eof_pipe[1] <= wr_eof_pipe[0];
|
| 997 |
|
|
if (wr_accept_pipe[1] == 1'b1)
|
| 998 |
|
|
wr_eof_bram[0] <= wr_eof_pipe[1];
|
| 999 |
|
|
end
|
| 1000 |
|
|
|
| 1001 |
|
|
// register data outputs from bram
|
| 1002 |
|
|
// no reset to allow srl16 target
|
| 1003 |
|
|
always @(posedge rd_clk)
|
| 1004 |
|
|
begin
|
| 1005 |
|
|
if (rd_enable == 1'b1)
|
| 1006 |
|
|
if (rd_en == 1'b1)
|
| 1007 |
|
|
begin
|
| 1008 |
|
|
rd_data_pipe_u <= rd_data_bram_u;
|
| 1009 |
|
|
rd_data_pipe_l <= rd_data_bram_l;
|
| 1010 |
|
|
if (rd_bram_u_reg == 1'b1)
|
| 1011 |
|
|
rd_data_pipe <= rd_data_pipe_u;
|
| 1012 |
|
|
else
|
| 1013 |
|
|
rd_data_pipe <= rd_data_pipe_l;
|
| 1014 |
|
|
end
|
| 1015 |
|
|
end
|
| 1016 |
|
|
|
| 1017 |
|
|
// register data outputs from bram
|
| 1018 |
|
|
// no reset to allow srl16 target
|
| 1019 |
|
|
always @(posedge rd_clk)
|
| 1020 |
|
|
begin
|
| 1021 |
|
|
if (rd_enable == 1'b1)
|
| 1022 |
|
|
if (rd_en == 1'b1)
|
| 1023 |
|
|
begin
|
| 1024 |
|
|
if (rd_bram_u == 1'b1)
|
| 1025 |
|
|
rd_eof_pipe <= rd_eof_bram_u[0];
|
| 1026 |
|
|
else
|
| 1027 |
|
|
rd_eof_pipe <= rd_eof_bram_l[0];
|
| 1028 |
|
|
rd_eof <= rd_eof_pipe;
|
| 1029 |
|
|
rd_eof_reg <= rd_eof | rd_eof_pipe;
|
| 1030 |
|
|
end
|
| 1031 |
|
|
end
|
| 1032 |
|
|
|
| 1033 |
|
|
//---------------------------------------------------------------------------
|
| 1034 |
|
|
generate if (FULL_DUPLEX_ONLY != 1) begin : gen_hd_input
|
| 1035 |
|
|
// register the collision and retransmit signals
|
| 1036 |
|
|
always @(posedge rd_clk)
|
| 1037 |
|
|
begin
|
| 1038 |
|
|
if (rd_enable == 1'b1)
|
| 1039 |
|
|
rd_drop_frame <= tx_collision & !tx_retransmit;
|
| 1040 |
|
|
end
|
| 1041 |
|
|
|
| 1042 |
|
|
always @(posedge rd_clk)
|
| 1043 |
|
|
begin
|
| 1044 |
|
|
if (rd_enable == 1'b1)
|
| 1045 |
|
|
rd_retransmit <= tx_collision & tx_retransmit;
|
| 1046 |
|
|
end
|
| 1047 |
|
|
|
| 1048 |
|
|
end // gen_hd_input // half duplex register input
|
| 1049 |
|
|
endgenerate
|
| 1050 |
|
|
|
| 1051 |
|
|
//---------------------------------------------------------------------------
|
| 1052 |
|
|
// Fifo full functionality
|
| 1053 |
|
|
//---------------------------------------------------------------------------
|
| 1054 |
|
|
// when full duplex full functionality is difference between read and write addresses.
|
| 1055 |
|
|
// when in half duplex is difference between read start and write addresses.
|
| 1056 |
|
|
// Cannot use gray code this time as the read address and read start addresses jump by more than 1
|
| 1057 |
|
|
|
| 1058 |
|
|
// generate an enable pulse for the read side every 16 read clocks. This provides for the worst case
|
| 1059 |
|
|
// situation where wr clk is 20Mhz and rd clk is 125 Mhz.
|
| 1060 |
|
|
always @(posedge rd_clk)
|
| 1061 |
|
|
begin
|
| 1062 |
|
|
if (rd_sreset == 1'b1)
|
| 1063 |
|
|
rd_16_count <= 4'b0;
|
| 1064 |
|
|
else if (rd_enable == 1'b1)
|
| 1065 |
|
|
rd_16_count <= rd_16_count + 1;
|
| 1066 |
|
|
end
|
| 1067 |
|
|
|
| 1068 |
|
|
assign rd_txfer_en = (rd_16_count == 4'b1111) ? 1'b1 : 1'b0;
|
| 1069 |
|
|
|
| 1070 |
|
|
// register the start address on the enable pulse
|
| 1071 |
|
|
always @(posedge rd_clk)
|
| 1072 |
|
|
begin
|
| 1073 |
|
|
if (rd_sreset == 1'b1)
|
| 1074 |
|
|
rd_addr_txfer <= 12'b0;
|
| 1075 |
|
|
else if (rd_enable == 1'b1)
|
| 1076 |
|
|
begin
|
| 1077 |
|
|
if (rd_txfer_en == 1'b1)
|
| 1078 |
|
|
rd_addr_txfer <= rd_start_addr;
|
| 1079 |
|
|
end
|
| 1080 |
|
|
end
|
| 1081 |
|
|
|
| 1082 |
|
|
// generate a toggle to indicate that the address has been loaded.
|
| 1083 |
|
|
always @(posedge rd_clk)
|
| 1084 |
|
|
begin
|
| 1085 |
|
|
if (rd_sreset == 1'b1)
|
| 1086 |
|
|
rd_txfer_tog <= 1'b0;
|
| 1087 |
|
|
else if (rd_enable == 1'b1)
|
| 1088 |
|
|
begin
|
| 1089 |
|
|
if (rd_txfer_en == 1'b1)
|
| 1090 |
|
|
rd_txfer_tog <= !rd_txfer_tog;
|
| 1091 |
|
|
end
|
| 1092 |
|
|
end
|
| 1093 |
|
|
|
| 1094 |
|
|
// pass the toggle to the write side
|
| 1095 |
|
|
always @(posedge wr_clk)
|
| 1096 |
|
|
begin
|
| 1097 |
|
|
if (wr_sreset == 1'b1)
|
| 1098 |
|
|
begin
|
| 1099 |
|
|
wr_txfer_tog <= 1'b0;
|
| 1100 |
|
|
wr_txfer_tog_sync <= 1'b0;
|
| 1101 |
|
|
wr_txfer_tog_delay <= 1'b0;
|
| 1102 |
|
|
end
|
| 1103 |
|
|
else
|
| 1104 |
|
|
begin
|
| 1105 |
|
|
wr_txfer_tog <= rd_txfer_tog;
|
| 1106 |
|
|
wr_txfer_tog_sync <= wr_txfer_tog;
|
| 1107 |
|
|
wr_txfer_tog_delay <= wr_txfer_tog_sync;
|
| 1108 |
|
|
end
|
| 1109 |
|
|
end
|
| 1110 |
|
|
|
| 1111 |
|
|
// generate an enable pulse from the toggle, the address should have
|
| 1112 |
|
|
// been steady on the wr clock input for at least one clock
|
| 1113 |
|
|
assign wr_txfer_en = wr_txfer_tog_delay ^ wr_txfer_tog_sync;
|
| 1114 |
|
|
|
| 1115 |
|
|
// capture the address on the write clock when the enable pulse is high.
|
| 1116 |
|
|
always @(posedge wr_clk)
|
| 1117 |
|
|
begin
|
| 1118 |
|
|
if (wr_sreset == 1'b1)
|
| 1119 |
|
|
wr_rd_addr <= 12'b0;
|
| 1120 |
|
|
else if (wr_txfer_en == 1'b1)
|
| 1121 |
|
|
wr_rd_addr <= rd_addr_txfer;
|
| 1122 |
|
|
end
|
| 1123 |
|
|
|
| 1124 |
|
|
|
| 1125 |
|
|
// Obtain the difference between write and read pointers
|
| 1126 |
|
|
always @(posedge wr_clk)
|
| 1127 |
|
|
begin
|
| 1128 |
|
|
if (wr_sreset == 1'b1)
|
| 1129 |
|
|
wr_addr_diff <= 12'b0;
|
| 1130 |
|
|
else
|
| 1131 |
|
|
wr_addr_diff <= wr_rd_addr - wr_addr;
|
| 1132 |
|
|
end
|
| 1133 |
|
|
|
| 1134 |
|
|
|
| 1135 |
|
|
// Detect when the FIFO is full
|
| 1136 |
|
|
always @(posedge wr_clk)
|
| 1137 |
|
|
begin
|
| 1138 |
|
|
if (wr_sreset == 1'b1)
|
| 1139 |
|
|
wr_fifo_full <= 1'b0;
|
| 1140 |
|
|
else
|
| 1141 |
|
|
// The FIFO is considered to be full if the write address
|
| 1142 |
|
|
// pointer is within 1 to 3 of the read address pointer.
|
| 1143 |
|
|
if (wr_addr_diff[11:4] == 8'b0 && wr_addr_diff[3:2] != 2'b0)
|
| 1144 |
|
|
wr_fifo_full <= 1'b1;
|
| 1145 |
|
|
else
|
| 1146 |
|
|
wr_fifo_full <= 1'b0;
|
| 1147 |
|
|
end
|
| 1148 |
|
|
|
| 1149 |
|
|
// memory overflow occurs when the fifo is full and there are no frames
|
| 1150 |
|
|
// available in the fifo for transmission. If the collision window has
|
| 1151 |
|
|
// expired and there are no frames in the fifo and the fifo is full, then the
|
| 1152 |
|
|
// fifo is in an overflow state. we must accept the rest of the incoming
|
| 1153 |
|
|
// frame in overflow condition.
|
| 1154 |
|
|
|
| 1155 |
|
|
generate if (FULL_DUPLEX_ONLY == 1) begin : gen_fd_ovflow
|
| 1156 |
|
|
// in full duplex mode, the fifo memory can only overflow if the fifo goes
|
| 1157 |
|
|
// full but there is no frame available to be retranmsitted
|
| 1158 |
|
|
// do not allow to go high when the frame count is being updated, ie wr_store_frame is asserted.
|
| 1159 |
|
|
assign wr_fifo_overflow = (wr_fifo_full == 1'b1 && wr_frame_in_fifo == 1'b0
|
| 1160 |
|
|
&& wr_eof_state == 1'b0 && wr_eof_state_reg == 1'b0) ? 1'b1 : 1'b0;
|
| 1161 |
|
|
end // gen_fd_ovflow
|
| 1162 |
|
|
endgenerate
|
| 1163 |
|
|
|
| 1164 |
|
|
generate if (FULL_DUPLEX_ONLY != 1) begin : gen_hd_ovflow
|
| 1165 |
|
|
// register wr col window to give address counter sufficient time to update.
|
| 1166 |
|
|
// do not allow to go high when the frame count is being updated, ie wr_store_frame is asserted.
|
| 1167 |
|
|
assign wr_fifo_overflow = (wr_fifo_full == 1'b1 && wr_frame_in_fifo == 1'b0
|
| 1168 |
|
|
&& wr_eof_state == 1'b0 && wr_eof_state_reg == 1'b0 && wr_col_window_expire == 1'b1) ? 1'b1 : 1'b0;
|
| 1169 |
|
|
|
| 1170 |
|
|
// register rd_col_window signal
|
| 1171 |
|
|
// this signal is long, and will remain high until overflow functionality
|
| 1172 |
|
|
// has finished, so save just to register the once.
|
| 1173 |
|
|
always @(posedge wr_clk)
|
| 1174 |
|
|
begin // process
|
| 1175 |
|
|
if (wr_sreset == 1'b1)
|
| 1176 |
|
|
begin
|
| 1177 |
|
|
wr_col_window_pipe[0] <= 1'b0;
|
| 1178 |
|
|
wr_col_window_pipe[1] <= 1'b0;
|
| 1179 |
|
|
wr_col_window_expire <= 1'b0;
|
| 1180 |
|
|
end
|
| 1181 |
|
|
else
|
| 1182 |
|
|
begin
|
| 1183 |
|
|
if (wr_txfer_en == 1'b1)
|
| 1184 |
|
|
wr_col_window_pipe[0] <= rd_col_window_pipe[1];
|
| 1185 |
|
|
wr_col_window_pipe[1] <= wr_col_window_pipe[0];
|
| 1186 |
|
|
wr_col_window_expire <= wr_col_window_pipe[1];
|
| 1187 |
|
|
end
|
| 1188 |
|
|
end
|
| 1189 |
|
|
|
| 1190 |
|
|
end // gen_hd_ovflow
|
| 1191 |
|
|
endgenerate
|
| 1192 |
|
|
|
| 1193 |
|
|
|
| 1194 |
|
|
|
| 1195 |
|
|
//--------------------------------------------------------------------
|
| 1196 |
|
|
// Create FIFO Status Signals in the Write Domain
|
| 1197 |
|
|
//--------------------------------------------------------------------
|
| 1198 |
|
|
|
| 1199 |
|
|
// The FIFO status signal is four bits which represents the occupancy
|
| 1200 |
|
|
// of the FIFO in 16'ths. To generate this signal we therefore only
|
| 1201 |
|
|
// need to compare the 4 most significant bits of the write address
|
| 1202 |
|
|
// pointer with the 4 most significant bits of the read address
|
| 1203 |
|
|
// pointer.
|
| 1204 |
|
|
|
| 1205 |
|
|
// The 4 most significant bits of the write pointer minus the 4 msb of
|
| 1206 |
|
|
// the read pointer gives us our FIFO status.
|
| 1207 |
|
|
always @(posedge wr_clk)
|
| 1208 |
|
|
begin
|
| 1209 |
|
|
if (wr_sreset == 1'b1)
|
| 1210 |
|
|
wr_fifo_status <= 4'b0;
|
| 1211 |
|
|
else
|
| 1212 |
|
|
if (wr_addr_diff == 12'b0)
|
| 1213 |
|
|
wr_fifo_status <= 4'b0;
|
| 1214 |
|
|
else
|
| 1215 |
|
|
begin
|
| 1216 |
|
|
wr_fifo_status[3] <= !wr_addr_diff[11];
|
| 1217 |
|
|
wr_fifo_status[2] <= !wr_addr_diff[10];
|
| 1218 |
|
|
wr_fifo_status[1] <= !wr_addr_diff[9];
|
| 1219 |
|
|
wr_fifo_status[0] <= !wr_addr_diff[8];
|
| 1220 |
|
|
end
|
| 1221 |
|
|
end
|
| 1222 |
|
|
|
| 1223 |
|
|
//---------------------------------------------------------------------------
|
| 1224 |
|
|
// Memory
|
| 1225 |
|
|
//---------------------------------------------------------------------------
|
| 1226 |
|
|
assign rd_en_bram = rd_en & rd_enable_delay2;
|
| 1227 |
|
|
|
| 1228 |
|
|
// Block Ram for lower address space (rx_addr(11) = 1'b0)
|
| 1229 |
|
|
defparam ramgen_l.WRITE_MODE_A = "READ_FIRST";
|
| 1230 |
|
|
defparam ramgen_l.WRITE_MODE_B = "READ_FIRST";
|
| 1231 |
|
|
RAMB16_S9_S9 ramgen_l (
|
| 1232 |
|
|
.WEA (wr_en_l),
|
| 1233 |
|
|
.ENA (VCC),
|
| 1234 |
|
|
.SSRA (wr_sreset),
|
| 1235 |
|
|
.CLKA (wr_clk),
|
| 1236 |
|
|
.ADDRA(wr_addr[10:0]),
|
| 1237 |
|
|
.DIA (wr_data_bram),
|
| 1238 |
|
|
.DIPA (wr_eof_bram),
|
| 1239 |
|
|
.WEB (GND),
|
| 1240 |
|
|
.ENB (rd_en_bram),
|
| 1241 |
|
|
.SSRB (rd_sreset),
|
| 1242 |
|
|
.CLKB (rd_clk),
|
| 1243 |
|
|
.ADDRB(rd_addr[10:0]),
|
| 1244 |
|
|
.DIB (GND_BUS[7:0]),
|
| 1245 |
|
|
.DIPB (GND_BUS[0:0]),
|
| 1246 |
|
|
.DOA (),
|
| 1247 |
|
|
.DOPA (),
|
| 1248 |
|
|
.DOB (rd_data_bram_l),
|
| 1249 |
|
|
.DOPB (rd_eof_bram_l));
|
| 1250 |
|
|
|
| 1251 |
|
|
// Block Ram for lower address space (rx_addr(11) = 1'b0)
|
| 1252 |
|
|
defparam ramgen_u.WRITE_MODE_A = "READ_FIRST";
|
| 1253 |
|
|
defparam ramgen_u.WRITE_MODE_B = "READ_FIRST";
|
| 1254 |
|
|
RAMB16_S9_S9 ramgen_u (
|
| 1255 |
|
|
.WEA (wr_en_u),
|
| 1256 |
|
|
.ENA (VCC),
|
| 1257 |
|
|
.SSRA (wr_sreset),
|
| 1258 |
|
|
.CLKA (wr_clk),
|
| 1259 |
|
|
.ADDRA(wr_addr[10:0]),
|
| 1260 |
|
|
.DIA (wr_data_bram),
|
| 1261 |
|
|
.DIPA (wr_eof_bram),
|
| 1262 |
|
|
.WEB (GND),
|
| 1263 |
|
|
.ENB (rd_en_bram),
|
| 1264 |
|
|
.SSRB (rd_sreset),
|
| 1265 |
|
|
.CLKB (rd_clk),
|
| 1266 |
|
|
.ADDRB(rd_addr[10:0]),
|
| 1267 |
|
|
.DIB (GND_BUS[7:0]),
|
| 1268 |
|
|
.DIPB (GND_BUS[0:0]),
|
| 1269 |
|
|
.DOA (),
|
| 1270 |
|
|
.DOPA (),
|
| 1271 |
|
|
.DOB (rd_data_bram_u),
|
| 1272 |
|
|
.DOPB (rd_eof_bram_u));
|
| 1273 |
|
|
|
| 1274 |
|
|
|
| 1275 |
|
|
|
| 1276 |
|
|
endmodule
|