OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [classpath/] [gnu/] [java/] [security/] [sig/] [rsa/] [RSA.java] - Blame information for rev 769

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 769 jeremybenn
/* RSA.java --
2
   Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
3
 
4
This file is a part of GNU Classpath.
5
 
6
GNU Classpath is free software; you can redistribute it and/or modify
7
it under the terms of the GNU General Public License as published by
8
the Free Software Foundation; either version 2 of the License, or (at
9
your option) any later version.
10
 
11
GNU Classpath is distributed in the hope that it will be useful, but
12
WITHOUT ANY WARRANTY; without even the implied warranty of
13
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
General Public License for more details.
15
 
16
You should have received a copy of the GNU General Public License
17
along with GNU Classpath; if not, write to the Free Software
18
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
19
USA
20
 
21
Linking this library statically or dynamically with other modules is
22
making a combined work based on this library.  Thus, the terms and
23
conditions of the GNU General Public License cover the whole
24
combination.
25
 
26
As a special exception, the copyright holders of this library give you
27
permission to link this library with independent modules to produce an
28
executable, regardless of the license terms of these independent
29
modules, and to copy and distribute the resulting executable under
30
terms of your choice, provided that you also meet, for each linked
31
independent module, the terms and conditions of the license of that
32
module.  An independent module is a module which is not derived from
33
or based on this library.  If you modify this library, you may extend
34
this exception to your version of the library, but you are not
35
obligated to do so.  If you do not wish to do so, delete this
36
exception statement from your version.  */
37
 
38
 
39
package gnu.java.security.sig.rsa;
40
 
41
import gnu.java.security.Properties;
42
import gnu.java.security.util.PRNG;
43
 
44
import java.math.BigInteger;
45
import java.security.PrivateKey;
46
import java.security.PublicKey;
47
import java.security.interfaces.RSAPrivateCrtKey;
48
import java.security.interfaces.RSAPrivateKey;
49
import java.security.interfaces.RSAPublicKey;
50
 
51
/**
52
 * Utility methods related to the RSA algorithm.
53
 * <p>
54
 * References:
55
 * <ol>
56
 * <li><a
57
 * href="http://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/rsa-pss.zip">
58
 * RSA-PSS Signature Scheme with Appendix, part B.</a><br>
59
 * Primitive specification and supporting documentation.<br>
60
 * Jakob Jonsson and Burt Kaliski.</li>
61
 * <li><a href="http://www.ietf.org/rfc/rfc3447.txt">Public-Key Cryptography
62
 * Standards (PKCS) #1:</a><br>
63
 * RSA Cryptography Specifications Version 2.1.<br>
64
 * Jakob Jonsson and Burt Kaliski.</li>
65
 * <li><a href="http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html">
66
 * Remote timing attacks are practical</a><br>
67
 * D. Boneh and D. Brumley.</li>
68
 * </ol>
69
 */
70
public class RSA
71
{
72
  private static final BigInteger ZERO = BigInteger.ZERO;
73
 
74
  private static final BigInteger ONE = BigInteger.ONE;
75
 
76
  /** Our default source of randomness. */
77
  private static final PRNG prng = PRNG.getInstance();
78
 
79
  /** Trivial private constructor to enforce Singleton pattern. */
80
  private RSA()
81
  {
82
    super();
83
  }
84
 
85
  /**
86
   * An implementation of the <b>RSASP</b> method: Assuming that the designated
87
   * RSA private key is a valid one, this method computes a <i>signature
88
   * representative</i> for a designated <i>message representative</i> signed
89
   * by the holder of the designated RSA private key.
90
   *
91
   * @param K the RSA private key.
92
   * @param m the <i>message representative</i>: an integer between
93
   *          <code>0</code> and <code>n - 1</code>, where <code>n</code>
94
   *          is the RSA <i>modulus</i>.
95
   * @return the <i>signature representative</i>, an integer between
96
   *         <code>0</code> and <code>n - 1</code>, where <code>n</code>
97
   *         is the RSA <i>modulus</i>.
98
   * @throws ClassCastException if <code>K</code> is not an RSA one.
99
   * @throws IllegalArgumentException if <code>m</code> (the <i>message
100
   *           representative</i>) is out of range.
101
   */
102
  public static final BigInteger sign(final PrivateKey K, final BigInteger m)
103
  {
104
    try
105
      {
106
        return RSADP((RSAPrivateKey) K, m);
107
      }
108
    catch (IllegalArgumentException x)
109
      {
110
        throw new IllegalArgumentException("message representative out of range");
111
      }
112
  }
113
 
114
  /**
115
   * An implementation of the <b>RSAVP</b> method: Assuming that the designated
116
   * RSA public key is a valid one, this method computes a <i>message
117
   * representative</i> for the designated <i>signature representative</i>
118
   * generated by an RSA private key, for a message intended for the holder of
119
   * the designated RSA public key.
120
   *
121
   * @param K the RSA public key.
122
   * @param s the <i>signature representative</i>, an integer between
123
   *          <code>0</code> and <code>n - 1</code>, where <code>n</code>
124
   *          is the RSA <i>modulus</i>.
125
   * @return a <i>message representative</i>: an integer between <code>0</code>
126
   *         and <code>n - 1</code>, where <code>n</code> is the RSA
127
   *         <i>modulus</i>.
128
   * @throws ClassCastException if <code>K</code> is not an RSA one.
129
   * @throws IllegalArgumentException if <code>s</code> (the <i>signature
130
   *           representative</i>) is out of range.
131
   */
132
  public static final BigInteger verify(final PublicKey K, final BigInteger s)
133
  {
134
    try
135
      {
136
        return RSAEP((RSAPublicKey) K, s);
137
      }
138
    catch (IllegalArgumentException x)
139
      {
140
        throw new IllegalArgumentException("signature representative out of range");
141
      }
142
  }
143
 
144
  /**
145
   * An implementation of the <code>RSAEP</code> algorithm.
146
   *
147
   * @param K the recipient's RSA public key.
148
   * @param m the message representative as an MPI.
149
   * @return the resulting MPI --an MPI between <code>0</code> and
150
   *         <code>n - 1</code> (<code>n</code> being the public shared
151
   *         modulus)-- that will eventually be padded with an appropriate
152
   *         framing/padding scheme.
153
   * @throws ClassCastException if <code>K</code> is not an RSA one.
154
   * @throws IllegalArgumentException if <code>m</code>, the message
155
   *           representative is not between <code>0</code> and
156
   *           <code>n - 1</code> (<code>n</code> being the public shared
157
   *           modulus).
158
   */
159
  public static final BigInteger encrypt(final PublicKey K, final BigInteger m)
160
  {
161
    try
162
      {
163
        return RSAEP((RSAPublicKey) K, m);
164
      }
165
    catch (IllegalArgumentException x)
166
      {
167
        throw new IllegalArgumentException("message representative out of range");
168
      }
169
  }
170
 
171
  /**
172
   * An implementation of the <code>RSADP</code> algorithm.
173
   *
174
   * @param K the recipient's RSA private key.
175
   * @param c the ciphertext representative as an MPI.
176
   * @return the message representative, an MPI between <code>0</code> and
177
   *         <code>n - 1</code> (<code>n</code> being the shared public
178
   *         modulus).
179
   * @throws ClassCastException if <code>K</code> is not an RSA one.
180
   * @throws IllegalArgumentException if <code>c</code>, the ciphertext
181
   *           representative is not between <code>0</code> and
182
   *           <code>n - 1</code> (<code>n</code> being the shared public
183
   *           modulus).
184
   */
185
  public static final BigInteger decrypt(final PrivateKey K, final BigInteger c)
186
  {
187
    try
188
      {
189
        return RSADP((RSAPrivateKey) K, c);
190
      }
191
    catch (IllegalArgumentException x)
192
      {
193
        throw new IllegalArgumentException("ciphertext representative out of range");
194
      }
195
  }
196
 
197
  /**
198
   * Converts a <i>multi-precision integer</i> (MPI) <code>s</code> into an
199
   * octet sequence of length <code>k</code>.
200
   *
201
   * @param s the multi-precision integer to convert.
202
   * @param k the length of the output.
203
   * @return the result of the transform.
204
   * @exception IllegalArgumentException if the length in octets of meaningful
205
   *              bytes of <code>s</code> is greater than <code>k</code>.
206
   */
207
  public static final byte[] I2OSP(final BigInteger s, final int k)
208
  {
209
    byte[] result = s.toByteArray();
210
    if (result.length < k)
211
      {
212
        final byte[] newResult = new byte[k];
213
        System.arraycopy(result, 0, newResult, k - result.length, result.length);
214
        result = newResult;
215
      }
216
    else if (result.length > k)
217
      { // leftmost extra bytes should all be 0
218
        final int limit = result.length - k;
219
        for (int i = 0; i < limit; i++)
220
          {
221
            if (result[i] != 0x00)
222
              throw new IllegalArgumentException("integer too large");
223
          }
224
        final byte[] newResult = new byte[k];
225
        System.arraycopy(result, limit, newResult, 0, k);
226
        result = newResult;
227
      }
228
    return result;
229
  }
230
 
231
  private static final BigInteger RSAEP(final RSAPublicKey K, final BigInteger m)
232
  {
233
    // 1. If the representative m is not between 0 and n - 1, output
234
    // "representative out of range" and stop.
235
    final BigInteger n = K.getModulus();
236
    if (m.compareTo(ZERO) < 0 || m.compareTo(n.subtract(ONE)) > 0)
237
      throw new IllegalArgumentException();
238
    // 2. Let c = m^e mod n.
239
    final BigInteger e = K.getPublicExponent();
240
    final BigInteger result = m.modPow(e, n);
241
    // 3. Output c.
242
    return result;
243
  }
244
 
245
  private static final BigInteger RSADP(final RSAPrivateKey K, BigInteger c)
246
  {
247
    // 1. If the representative c is not between 0 and n - 1, output
248
    // "representative out of range" and stop.
249
    final BigInteger n = K.getModulus();
250
    if (c.compareTo(ZERO) < 0 || c.compareTo(n.subtract(ONE)) > 0)
251
      throw new IllegalArgumentException();
252
    // 2. The representative m is computed as follows.
253
    BigInteger result;
254
    if (! (K instanceof RSAPrivateCrtKey))
255
      {
256
        // a. If the first form (n, d) of K is used, let m = c^d mod n.
257
        final BigInteger d = K.getPrivateExponent();
258
        result = c.modPow(d, n);
259
      }
260
    else
261
      {
262
        // from [3] p.13 --see class docs:
263
        // The RSA blinding operation calculates x = (r^e) * g mod n before
264
        // decryption, where r is random, e is the RSA encryption exponent, and
265
        // g is the ciphertext to be decrypted. x is then decrypted as normal,
266
        // followed by division by r, i.e. (x^e) / r mod n. Since r is random,
267
        // x is random and timing the decryption should not reveal information
268
        // about the key. Note that r should be a new random number for every
269
        // decryption.
270
        final boolean rsaBlinding = Properties.doRSABlinding();
271
        BigInteger r = null;
272
        BigInteger e = null;
273
        if (rsaBlinding)
274
          { // pre-decryption
275
            r = newR(n);
276
            e = ((RSAPrivateCrtKey) K).getPublicExponent();
277
            final BigInteger x = r.modPow(e, n).multiply(c).mod(n);
278
            c = x;
279
          }
280
        // b. If the second form (p, q, dP, dQ, qInv) and (r_i, d_i, t_i)
281
        // of K is used, proceed as follows:
282
        final BigInteger p = ((RSAPrivateCrtKey) K).getPrimeP();
283
        final BigInteger q = ((RSAPrivateCrtKey) K).getPrimeQ();
284
        final BigInteger dP = ((RSAPrivateCrtKey) K).getPrimeExponentP();
285
        final BigInteger dQ = ((RSAPrivateCrtKey) K).getPrimeExponentQ();
286
        final BigInteger qInv = ((RSAPrivateCrtKey) K).getCrtCoefficient();
287
        // i. Let m_1 = c^dP mod p and m_2 = c^dQ mod q.
288
        final BigInteger m_1 = c.modPow(dP, p);
289
        final BigInteger m_2 = c.modPow(dQ, q);
290
        // ii. If u > 2, let m_i = c^(d_i) mod r_i, i = 3, ..., u.
291
        // iii. Let h = (m_1 - m_2) * qInv mod p.
292
        final BigInteger h = m_1.subtract(m_2).multiply(qInv).mod(p);
293
        // iv. Let m = m_2 + q * h.
294
        result = m_2.add(q.multiply(h));
295
        if (rsaBlinding) // post-decryption
296
          result = result.multiply(r.modInverse(n)).mod(n);
297
      }
298
    // 3. Output m
299
    return result;
300
  }
301
 
302
  /**
303
   * Returns a random MPI with a random bit-length of the form <code>8b</code>,
304
   * where <code>b</code> is in the range <code>[32..64]</code>.
305
   *
306
   * @return a random MPI whose length in bytes is between 32 and 64 inclusive.
307
   */
308
  private static final BigInteger newR(final BigInteger N)
309
  {
310
    final int upper = (N.bitLength() + 7) / 8;
311
    final int lower = upper / 2;
312
    final byte[] bl = new byte[1];
313
    int b;
314
    do
315
      {
316
        prng.nextBytes(bl);
317
        b = bl[0] & 0xFF;
318
      }
319
    while (b < lower || b > upper);
320
    final byte[] buffer = new byte[b]; // 256-bit MPI
321
    prng.nextBytes(buffer);
322
    return new BigInteger(1, buffer);
323
  }
324
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.