OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [classpath/] [native/] [fdlibm/] [dtoa.c] - Blame information for rev 774

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 774 jeremybenn
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2006 by AT&T.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
 
20
/* Please send bug reports to
21
        David M. Gay
22
        AT&T Bell Laboratories, Room 2C-463
23
        600 Mountain Avenue
24
        Murray Hill, NJ 07974-2070
25
        U.S.A.
26
        dmg@research.att.com or research!dmg
27
 */
28
 
29
#include <string.h>
30
#include <stdlib.h>
31
#include "mprec.h"
32
#include <stdlib.h>
33
 
34
static int
35
_DEFUN (quorem,
36
        (b, S),
37
        _Jv_Bigint * b _AND _Jv_Bigint * S)
38
{
39
  int n;
40
  long borrow, y;
41
  unsigned long carry, q, ys;
42
  unsigned long *bx, *bxe, *sx, *sxe;
43
#ifdef Pack_32
44
  long z;
45
  unsigned long si, zs;
46
#endif
47
 
48
  n = S->_wds;
49
#ifdef DEBUG
50
  /*debug*/ if (b->_wds > n)
51
    /*debug*/ Bug ("oversize b in quorem");
52
#endif
53
  if (b->_wds < n)
54
    return 0;
55
  sx = S->_x;
56
  sxe = sx + --n;
57
  bx = b->_x;
58
  bxe = bx + n;
59
  q = *bxe / (*sxe + 1);        /* ensure q <= true quotient */
60
#ifdef DEBUG
61
  /*debug*/ if (q > 9)
62
    /*debug*/ Bug ("oversized quotient in quorem");
63
#endif
64
  if (q)
65
    {
66
      borrow = 0;
67
      carry = 0;
68
      do
69
        {
70
#ifdef Pack_32
71
          si = *sx++;
72
          ys = (si & 0xffff) * q + carry;
73
          zs = (si >> 16) * q + (ys >> 16);
74
          carry = zs >> 16;
75
          y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
76
          borrow = y >> 16;
77
          Sign_Extend (borrow, y);
78
          z = (*bx >> 16) - (zs & 0xffff) + borrow;
79
          borrow = z >> 16;
80
          Sign_Extend (borrow, z);
81
          Storeinc (bx, z, y);
82
#else
83
          ys = *sx++ * q + carry;
84
          carry = ys >> 16;
85
          y = *bx - (ys & 0xffff) + borrow;
86
          borrow = y >> 16;
87
          Sign_Extend (borrow, y);
88
          *bx++ = y & 0xffff;
89
#endif
90
        }
91
      while (sx <= sxe);
92
      if (!*bxe)
93
        {
94
          bx = b->_x;
95
          while (--bxe > bx && !*bxe)
96
            --n;
97
          b->_wds = n;
98
        }
99
    }
100
  if (cmp (b, S) >= 0)
101
    {
102
      q++;
103
      borrow = 0;
104
      carry = 0;
105
      bx = b->_x;
106
      sx = S->_x;
107
      do
108
        {
109
#ifdef Pack_32
110
          si = *sx++;
111
          ys = (si & 0xffff) + carry;
112
          zs = (si >> 16) + (ys >> 16);
113
          carry = zs >> 16;
114
          y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
115
          borrow = y >> 16;
116
          Sign_Extend (borrow, y);
117
          z = (*bx >> 16) - (zs & 0xffff) + borrow;
118
          borrow = z >> 16;
119
          Sign_Extend (borrow, z);
120
          Storeinc (bx, z, y);
121
#else
122
          ys = *sx++ + carry;
123
          carry = ys >> 16;
124
          y = *bx - (ys & 0xffff) + borrow;
125
          borrow = y >> 16;
126
          Sign_Extend (borrow, y);
127
          *bx++ = y & 0xffff;
128
#endif
129
        }
130
      while (sx <= sxe);
131
      bx = b->_x;
132
      bxe = bx + n;
133
      if (!*bxe)
134
        {
135
          while (--bxe > bx && !*bxe)
136
            --n;
137
          b->_wds = n;
138
        }
139
    }
140
  return q;
141
}
142
 
143
#ifdef DEBUG
144
#include <stdio.h>
145
 
146
void
147
print (_Jv_Bigint * b)
148
{
149
  int i, wds;
150
  unsigned long *x, y;
151
  wds = b->_wds;
152
  x = b->_x+wds;
153
  i = 0;
154
  do
155
    {
156
      x--;
157
      fprintf (stderr, "%08x", *x);
158
    }
159
  while (++i < wds);
160
  fprintf (stderr, "\n");
161
}
162
#endif
163
 
164
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
165
 *
166
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
167
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
168
 *
169
 * Modifications:
170
 *      1. Rather than iterating, we use a simple numeric overestimate
171
 *         to determine k = floor(log10(d)).  We scale relevant
172
 *         quantities using O(log2(k)) rather than O(k) multiplications.
173
 *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
174
 *         try to generate digits strictly left to right.  Instead, we
175
 *         compute with fewer bits and propagate the carry if necessary
176
 *         when rounding the final digit up.  This is often faster.
177
 *      3. Under the assumption that input will be rounded nearest,
178
 *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
179
 *         That is, we allow equality in stopping tests when the
180
 *         round-nearest rule will give the same floating-point value
181
 *         as would satisfaction of the stopping test with strict
182
 *         inequality.
183
 *      4. We remove common factors of powers of 2 from relevant
184
 *         quantities.
185
 *      5. When converting floating-point integers less than 1e16,
186
 *         we use floating-point arithmetic rather than resorting
187
 *         to multiple-precision integers.
188
 *      6. When asked to produce fewer than 15 digits, we first try
189
 *         to get by with floating-point arithmetic; we resort to
190
 *         multiple-precision integer arithmetic only if we cannot
191
 *         guarantee that the floating-point calculation has given
192
 *         the correctly rounded result.  For k requested digits and
193
 *         "uniformly" distributed input, the probability is
194
 *         something like 10^(k-15) that we must resort to the long
195
 *         calculation.
196
 */
197
 
198
 
199
char *
200
_DEFUN (_dtoa_r,
201
        (ptr, _d, mode, ndigits, decpt, sign, rve, float_type),
202
        struct _Jv_reent *ptr _AND
203
        double _d _AND
204
        int mode _AND
205
        int ndigits _AND
206
        int *decpt _AND
207
        int *sign _AND
208
        char **rve _AND
209
        int float_type)
210
{
211
  /*
212
        float_type == 0 for double precision, 1 for float.
213
 
214
        Arguments ndigits, decpt, sign are similar to those
215
        of ecvt and fcvt; trailing zeros are suppressed from
216
        the returned string.  If not null, *rve is set to point
217
        to the end of the return value.  If d is +-Infinity or NaN,
218
        then *decpt is set to 9999.
219
 
220
        mode:
221
 
222
                        and rounded to nearest.
223
                1 ==> like 0, but with Steele & White stopping rule;
224
                        e.g. with IEEE P754 arithmetic , mode 0 gives
225
                        1e23 whereas mode 1 gives 9.999999999999999e22.
226
                2 ==> max(1,ndigits) significant digits.  This gives a
227
                        return value similar to that of ecvt, except
228
                        that trailing zeros are suppressed.
229
                3 ==> through ndigits past the decimal point.  This
230
                        gives a return value similar to that from fcvt,
231
                        except that trailing zeros are suppressed, and
232
                        ndigits can be negative.
233
                4-9 should give the same return values as 2-3, i.e.,
234
                        4 <= mode <= 9 ==> same return as mode
235
                        2 + (mode & 1).  These modes are mainly for
236
                        debugging; often they run slower but sometimes
237
                        faster than modes 2-3.
238
                4,5,8,9 ==> left-to-right digit generation.
239
                6-9 ==> don't try fast floating-point estimate
240
                        (if applicable).
241
 
242
                > 16 ==> Floating-point arg is treated as single precision.
243
 
244
                Values of mode other than 0-9 are treated as mode 0.
245
 
246
                Sufficient space is allocated to the return value
247
                to hold the suppressed trailing zeros.
248
        */
249
 
250
  int bbits, b2, b5, be, dig, i, ieps, ilim0, j, j1, k, k0,
251
    k_check, leftright, m2, m5, s2, s5, try_quick;
252
  int ilim = 0, ilim1 = 0, spec_case = 0;
253
  union double_union d, d2, eps;
254
  long L;
255
#ifndef Sudden_Underflow
256
  int denorm;
257
  unsigned long x;
258
#endif
259
  _Jv_Bigint *b, *b1, *delta, *mlo = NULL, *mhi, *S;
260
  double ds;
261
  char *s, *s0;
262
 
263
  d.d = _d;
264
 
265
  if (ptr->_result)
266
    {
267
      ptr->_result->_k = ptr->_result_k;
268
      ptr->_result->_maxwds = 1 << ptr->_result_k;
269
      Bfree (ptr, ptr->_result);
270
      ptr->_result = 0;
271
    }
272
 
273
  if (word0 (d) & Sign_bit)
274
    {
275
      /* set sign for everything, including 0's and NaNs */
276
      *sign = 1;
277
      word0 (d) &= ~Sign_bit;   /* clear sign bit */
278
    }
279
  else
280
    *sign = 0;
281
 
282
#if defined(IEEE_Arith) + defined(VAX)
283
#ifdef IEEE_Arith
284
  if ((word0 (d) & Exp_mask) == Exp_mask)
285
#else
286
  if (word0 (d) == 0x8000)
287
#endif
288
    {
289
      /* Infinity or NaN */
290
      *decpt = 9999;
291
      s =
292
#ifdef IEEE_Arith
293
        !word1 (d) && !(word0 (d) & 0xfffff) ? "Infinity" :
294
#endif
295
        "NaN";
296
      if (rve)
297
        *rve =
298
#ifdef IEEE_Arith
299
          s[3] ? s + 8 :
300
#endif
301
          s + 3;
302
      return s;
303
    }
304
#endif
305
#ifdef IBM
306
  d.d += 0;                      /* normalize */
307
#endif
308
  if (!d.d)
309
    {
310
      *decpt = 1;
311
      s = "0";
312
      if (rve)
313
        *rve = s + 1;
314
      return s;
315
    }
316
 
317
  b = d2b (ptr, d.d, &be, &bbits);
318
#ifdef Sudden_Underflow
319
  i = (int) (word0 (d) >> Exp_shift1 & (Exp_mask >> Exp_shift1));
320
#else
321
  if ((i = (int) (word0 (d) >> Exp_shift1 & (Exp_mask >> Exp_shift1))))
322
    {
323
#endif
324
      d2.d = d.d;
325
      word0 (d2) &= Frac_mask1;
326
      word0 (d2) |= Exp_11;
327
#ifdef IBM
328
      if (j = 11 - hi0bits (word0 (d2) & Frac_mask))
329
        d2.d /= 1 << j;
330
#endif
331
 
332
      /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
333
                 * log10(x)      =  log(x) / log(10)
334
                 *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
335
                 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
336
                 *
337
                 * This suggests computing an approximation k to log10(d) by
338
                 *
339
                 * k = (i - Bias)*0.301029995663981
340
                 *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
341
                 *
342
                 * We want k to be too large rather than too small.
343
                 * The error in the first-order Taylor series approximation
344
                 * is in our favor, so we just round up the constant enough
345
                 * to compensate for any error in the multiplication of
346
                 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
347
                 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
348
                 * adding 1e-13 to the constant term more than suffices.
349
                 * Hence we adjust the constant term to 0.1760912590558.
350
                 * (We could get a more accurate k by invoking log10,
351
                 *  but this is probably not worthwhile.)
352
                 */
353
 
354
      i -= Bias;
355
#ifdef IBM
356
      i <<= 2;
357
      i += j;
358
#endif
359
#ifndef Sudden_Underflow
360
      denorm = 0;
361
    }
362
  else
363
    {
364
      /* d is denormalized */
365
 
366
      i = bbits + be + (Bias + (P - 1) - 1);
367
      x = i > 32 ? word0 (d) << (64 - i) | word1 (d) >> (i - 32)
368
        : word1 (d) << (32 - i);
369
      d2.d = x;
370
      word0 (d2) -= 31 * Exp_msk1;      /* adjust exponent */
371
      i -= (Bias + (P - 1) - 1) + 1;
372
      denorm = 1;
373
    }
374
#endif
375
  ds = (d2.d - 1.5) * 0.289529654602168 + 0.1760912590558 + i * 0.301029995663981;
376
  k = (int) ds;
377
  if (ds < 0. && ds != k)
378
    k--;                        /* want k = floor(ds) */
379
  k_check = 1;
380
  if (k >= 0 && k <= Ten_pmax)
381
    {
382
      if (d.d < tens[k])
383
        k--;
384
      k_check = 0;
385
    }
386
  j = bbits - i - 1;
387
  if (j >= 0)
388
    {
389
      b2 = 0;
390
      s2 = j;
391
    }
392
  else
393
    {
394
      b2 = -j;
395
      s2 = 0;
396
    }
397
  if (k >= 0)
398
    {
399
      b5 = 0;
400
      s5 = k;
401
      s2 += k;
402
    }
403
  else
404
    {
405
      b2 -= k;
406
      b5 = -k;
407
      s5 = 0;
408
    }
409
  if (mode < 0 || mode > 9)
410
    mode = 0;
411
  try_quick = 1;
412
  if (mode > 5)
413
    {
414
      mode -= 4;
415
      try_quick = 0;
416
    }
417
  leftright = 1;
418
  switch (mode)
419
    {
420
    case 0:
421
    case 1:
422
      ilim = ilim1 = -1;
423
      i = 18;
424
      ndigits = 0;
425
      break;
426
    case 2:
427
      leftright = 0;
428
      /* no break */
429
    case 4:
430
      if (ndigits <= 0)
431
        ndigits = 1;
432
      ilim = ilim1 = i = ndigits;
433
      break;
434
    case 3:
435
      leftright = 0;
436
      /* no break */
437
    case 5:
438
      i = ndigits + k + 1;
439
      ilim = i;
440
      ilim1 = i - 1;
441
      if (i <= 0)
442
        i = 1;
443
    }
444
  j = sizeof (unsigned long);
445
  for (ptr->_result_k = 0; (int) (sizeof (_Jv_Bigint) - sizeof (unsigned long)) + j <= i;
446
       j <<= 1)
447
    ptr->_result_k++;
448
  ptr->_result = Balloc (ptr, ptr->_result_k);
449
  s = s0 = (char *) ptr->_result;
450
 
451
  if (ilim >= 0 && ilim <= Quick_max && try_quick)
452
    {
453
      /* Try to get by with floating-point arithmetic. */
454
 
455
      i = 0;
456
      d2.d = d.d;
457
      k0 = k;
458
      ilim0 = ilim;
459
      ieps = 2;                 /* conservative */
460
      if (k > 0)
461
        {
462
          ds = tens[k & 0xf];
463
          j = k >> 4;
464
          if (j & Bletch)
465
            {
466
              /* prevent overflows */
467
              j &= Bletch - 1;
468
              d.d /= bigtens[n_bigtens - 1];
469
              ieps++;
470
            }
471
          for (; j; j >>= 1, i++)
472
            if (j & 1)
473
              {
474
                ieps++;
475
                ds *= bigtens[i];
476
              }
477
          d.d /= ds;
478
        }
479
      else if ((j1 = -k))
480
        {
481
          d.d *= tens[j1 & 0xf];
482
          for (j = j1 >> 4; j; j >>= 1, i++)
483
            if (j & 1)
484
              {
485
                ieps++;
486
                d.d *= bigtens[i];
487
              }
488
        }
489
      if (k_check && d.d < 1. && ilim > 0)
490
        {
491
          if (ilim1 <= 0)
492
            goto fast_failed;
493
          ilim = ilim1;
494
          k--;
495
          d.d *= 10.;
496
          ieps++;
497
        }
498
      eps.d = ieps * d.d + 7.;
499
      word0 (eps) -= (P - 1) * Exp_msk1;
500
      if (ilim == 0)
501
        {
502
          S = mhi = 0;
503
          d.d -= 5.;
504
          if (d.d > eps.d)
505
            goto one_digit;
506
          if (d.d < -eps.d)
507
            goto no_digits;
508
          goto fast_failed;
509
        }
510
#ifndef No_leftright
511
      if (leftright)
512
        {
513
          /* Use Steele & White method of only
514
           * generating digits needed.
515
           */
516
          eps.d = 0.5 / tens[ilim - 1] - eps.d;
517
          for (i = 0;;)
518
            {
519
              L = d.d;
520
              d.d -= L;
521
              *s++ = '0' + (int) L;
522
              if (d.d < eps.d)
523
                goto ret1;
524
              if (1. - d.d < eps.d)
525
                goto bump_up;
526
              if (++i >= ilim)
527
                break;
528
              eps.d *= 10.;
529
              d.d *= 10.;
530
            }
531
        }
532
      else
533
        {
534
#endif
535
          /* Generate ilim digits, then fix them up. */
536
          eps.d *= tens[ilim - 1];
537
          for (i = 1;; i++, d.d *= 10.)
538
            {
539
              L = d.d;
540
              d.d -= L;
541
              *s++ = '0' + (int) L;
542
              if (i == ilim)
543
                {
544
                  if (d.d > 0.5 + eps.d)
545
                    goto bump_up;
546
                  else if (d.d < 0.5 - eps.d)
547
                    {
548
                      while (*--s == '0');
549
                      s++;
550
                      goto ret1;
551
                    }
552
                  break;
553
                }
554
            }
555
#ifndef No_leftright
556
        }
557
#endif
558
    fast_failed:
559
      s = s0;
560
      d.d = d2.d;
561
      k = k0;
562
      ilim = ilim0;
563
    }
564
 
565
  /* Do we have a "small" integer? */
566
 
567
  if (be >= 0 && k <= Int_max)
568
    {
569
      /* Yes. */
570
      ds = tens[k];
571
      if (ndigits < 0 && ilim <= 0)
572
        {
573
          S = mhi = 0;
574
          if (ilim < 0 || d.d <= 5 * ds)
575
            goto no_digits;
576
          goto one_digit;
577
        }
578
      for (i = 1;; i++)
579
        {
580
          L = d.d / ds;
581
          d.d -= L * ds;
582
#ifdef Check_FLT_ROUNDS
583
          /* If FLT_ROUNDS == 2, L will usually be high by 1 */
584
          if (d.d < 0)
585
            {
586
              L--;
587
              d.d += ds;
588
            }
589
#endif
590
          *s++ = '0' + (int) L;
591
          if (i == ilim)
592
            {
593
              d.d += d.d;
594
              if (d.d > ds || (d.d == ds && L & 1))
595
                {
596
                bump_up:
597
                  while (*--s == '9')
598
                    if (s == s0)
599
                      {
600
                        k++;
601
                        *s = '0';
602
                        break;
603
                      }
604
                  ++*s++;
605
                }
606
              break;
607
            }
608
          if (!(d.d *= 10.))
609
            break;
610
        }
611
      goto ret1;
612
    }
613
 
614
  m2 = b2;
615
  m5 = b5;
616
  mhi = mlo = 0;
617
  if (leftright)
618
    {
619
      if (mode < 2)
620
        {
621
          i =
622
#ifndef Sudden_Underflow
623
            denorm ? be + (Bias + (P - 1) - 1 + 1) :
624
#endif
625
#ifdef IBM
626
            1 + 4 * P - 3 - bbits + ((bbits + be - 1) & 3);
627
#else
628
            1 + P - bbits;
629
#endif
630
        }
631
      else
632
        {
633
          j = ilim - 1;
634
          if (m5 >= j)
635
            m5 -= j;
636
          else
637
            {
638
              s5 += j -= m5;
639
              b5 += j;
640
              m5 = 0;
641
            }
642
          if ((i = ilim) < 0)
643
            {
644
              m2 -= i;
645
              i = 0;
646
            }
647
        }
648
      b2 += i;
649
      s2 += i;
650
      mhi = i2b (ptr, 1);
651
    }
652
  if (m2 > 0 && s2 > 0)
653
    {
654
      i = m2 < s2 ? m2 : s2;
655
      b2 -= i;
656
      m2 -= i;
657
      s2 -= i;
658
    }
659
  if (b5 > 0)
660
    {
661
      if (leftright)
662
        {
663
          if (m5 > 0)
664
            {
665
              mhi = pow5mult (ptr, mhi, m5);
666
              b1 = mult (ptr, mhi, b);
667
              Bfree (ptr, b);
668
              b = b1;
669
            }
670
          if ((j = b5 - m5))
671
            b = pow5mult (ptr, b, j);
672
        }
673
      else
674
        b = pow5mult (ptr, b, b5);
675
    }
676
  S = i2b (ptr, 1);
677
  if (s5 > 0)
678
    S = pow5mult (ptr, S, s5);
679
 
680
  /* Check for special case that d is a normalized power of 2. */
681
 
682
  if (mode < 2)
683
    {
684
      if (!word1 (d) && !(word0 (d) & Bndry_mask)
685
#ifndef Sudden_Underflow
686
          && word0(d) & Exp_mask
687
#endif
688
        )
689
        {
690
          /* The special case */
691
          b2 += Log2P;
692
          s2 += Log2P;
693
          spec_case = 1;
694
        }
695
      else
696
        spec_case = 0;
697
    }
698
 
699
  /* Arrange for convenient computation of quotients:
700
   * shift left if necessary so divisor has 4 leading 0 bits.
701
   *
702
   * Perhaps we should just compute leading 28 bits of S once
703
   * and for all and pass them and a shift to quorem, so it
704
   * can do shifts and ors to compute the numerator for q.
705
   */
706
 
707
#ifdef Pack_32
708
  if ((i = ((s5 ? 32 - hi0bits (S->_x[S->_wds - 1]) : 1) + s2) & 0x1f))
709
    i = 32 - i;
710
#else
711
  if ((i = ((s5 ? 32 - hi0bits (S->_x[S->_wds - 1]) : 1) + s2) & 0xf))
712
    i = 16 - i;
713
#endif
714
  if (i > 4)
715
    {
716
      i -= 4;
717
      b2 += i;
718
      m2 += i;
719
      s2 += i;
720
    }
721
  else if (i < 4)
722
    {
723
      i += 28;
724
      b2 += i;
725
      m2 += i;
726
      s2 += i;
727
    }
728
  if (b2 > 0)
729
    b = lshift (ptr, b, b2);
730
  if (s2 > 0)
731
    S = lshift (ptr, S, s2);
732
  if (k_check)
733
    {
734
      if (cmp (b, S) < 0)
735
        {
736
          k--;
737
          b = multadd (ptr, b, 10, 0);   /* we botched the k estimate */
738
          if (leftright)
739
            mhi = multadd (ptr, mhi, 10, 0);
740
          ilim = ilim1;
741
        }
742
    }
743
  if (ilim <= 0 && mode > 2)
744
    {
745
      if (ilim < 0 || cmp (b, S = multadd (ptr, S, 5, 0)) <= 0)
746
        {
747
          /* no digits, fcvt style */
748
        no_digits:
749
          k = -1 - ndigits;
750
          goto ret;
751
        }
752
    one_digit:
753
      *s++ = '1';
754
      k++;
755
      goto ret;
756
    }
757
  if (leftright)
758
    {
759
      if (m2 > 0)
760
        mhi = lshift (ptr, mhi, m2);
761
 
762
      /* Single precision case, */
763
      if (float_type)
764
        mhi = lshift (ptr, mhi, 29);
765
 
766
      /* Compute mlo -- check for special case
767
       * that d is a normalized power of 2.
768
       */
769
 
770
      mlo = mhi;
771
      if (spec_case)
772
        {
773
          mhi = Balloc (ptr, mhi->_k);
774
          Bcopy (mhi, mlo);
775
          mhi = lshift (ptr, mhi, Log2P);
776
        }
777
 
778
      for (i = 1;; i++)
779
        {
780
          dig = quorem (b, S) + '0';
781
          /* Do we yet have the shortest decimal string
782
           * that will round to d?
783
           */
784
          j = cmp (b, mlo);
785
          delta = diff (ptr, S, mhi);
786
          j1 = delta->_sign ? 1 : cmp (b, delta);
787
          Bfree (ptr, delta);
788
#ifndef ROUND_BIASED
789
          if (j1 == 0 && !mode && !(word1 (d) & 1))
790
            {
791
              if (dig == '9')
792
                goto round_9_up;
793
              if (j > 0)
794
                dig++;
795
              *s++ = dig;
796
              goto ret;
797
            }
798
#endif
799
          if (j < 0 || (j == 0 && !mode
800
#ifndef ROUND_BIASED
801
              && !(word1 (d) & 1)
802
#endif
803
            ))
804
            {
805
              if (j1 > 0)
806
                {
807
                  b = lshift (ptr, b, 1);
808
                  j1 = cmp (b, S);
809
                  if ((j1 > 0 || (j1 == 0 && dig & 1))
810
                      && dig++ == '9')
811
                    goto round_9_up;
812
                }
813
              *s++ = dig;
814
              goto ret;
815
            }
816
          if (j1 > 0)
817
            {
818
              if (dig == '9')
819
                {               /* possible if i == 1 */
820
                round_9_up:
821
                  *s++ = '9';
822
                  goto roundoff;
823
                }
824
              *s++ = dig + 1;
825
              goto ret;
826
            }
827
          *s++ = dig;
828
          if (i == ilim)
829
            break;
830
          b = multadd (ptr, b, 10, 0);
831
          if (mlo == mhi)
832
            mlo = mhi = multadd (ptr, mhi, 10, 0);
833
          else
834
            {
835
              mlo = multadd (ptr, mlo, 10, 0);
836
              mhi = multadd (ptr, mhi, 10, 0);
837
            }
838
        }
839
    }
840
  else
841
    for (i = 1;; i++)
842
      {
843
        *s++ = dig = quorem (b, S) + '0';
844
        if (i >= ilim)
845
          break;
846
        b = multadd (ptr, b, 10, 0);
847
      }
848
 
849
  /* Round off last digit */
850
 
851
  b = lshift (ptr, b, 1);
852
  j = cmp (b, S);
853
  if (j > 0 || (j == 0 && dig & 1))
854
    {
855
    roundoff:
856
      while (*--s == '9')
857
        if (s == s0)
858
          {
859
            k++;
860
            *s++ = '1';
861
            goto ret;
862
          }
863
      ++*s++;
864
    }
865
  else
866
    {
867
      while (*--s == '0');
868
      s++;
869
    }
870
ret:
871
  Bfree (ptr, S);
872
  if (mhi)
873
    {
874
      if (mlo && mlo != mhi)
875
        Bfree (ptr, mlo);
876
      Bfree (ptr, mhi);
877
    }
878
ret1:
879
  Bfree (ptr, b);
880
  *s = 0;
881
  *decpt = k + 1;
882
  if (rve)
883
    *rve = s;
884
  return s0;
885
}
886
 
887
 
888
_VOID
889
_DEFUN (_dtoa,
890
        (_d, mode, ndigits, decpt, sign, rve, buf, float_type),
891
        double _d _AND
892
        int mode _AND
893
        int ndigits _AND
894
        int *decpt _AND
895
        int *sign _AND
896
        char **rve _AND
897
        char *buf _AND
898
        int float_type)
899
{
900
  struct _Jv_reent reent;
901
  char *p;
902
  int i;
903
 
904
  memset (&reent, 0, sizeof reent);
905
 
906
  p = _dtoa_r (&reent, _d, mode, ndigits, decpt, sign, rve, float_type);
907
  strcpy (buf, p);
908
 
909
  for (i = 0; i < reent._result_k; ++i)
910
    {
911
      struct _Jv_Bigint *l = reent._freelist[i];
912
      while (l)
913
        {
914
          struct _Jv_Bigint *next = l->_next;
915
          free (l);
916
          l = next;
917
        }
918
    }
919
  if (reent._freelist)
920
    free (reent._freelist);
921
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.