OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [classpath/] [native/] [fdlibm/] [e_exp.c] - Blame information for rev 774

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 774 jeremybenn
 
2
/* @(#)e_exp.c 1.6 04/04/22 */
3
/*
4
 * ====================================================
5
 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
6
 *
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
 
13
/* __ieee754_exp(x)
14
 * Returns the exponential of x.
15
 *
16
 * Method
17
 *   1. Argument reduction:
18
 *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
19
 *      Given x, find r and integer k such that
20
 *
21
 *               x = k*ln2 + r,  |r| <= 0.5*ln2.
22
 *
23
 *      Here r will be represented as r = hi-lo for better
24
 *      accuracy.
25
 *
26
 *   2. Approximation of exp(r) by a special rational function on
27
 *      the interval [0,0.34658]:
28
 *      Write
29
 *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
30
 *      We use a special Remes algorithm on [0,0.34658] to generate
31
 *      a polynomial of degree 5 to approximate R. The maximum error
32
 *      of this polynomial approximation is bounded by 2**-59. In
33
 *      other words,
34
 *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
35
 *      (where z=r*r, and the values of P1 to P5 are listed below)
36
 *      and
37
 *          |                  5          |     -59
38
 *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
39
 *          |                             |
40
 *      The computation of exp(r) thus becomes
41
 *                             2*r
42
 *              exp(r) = 1 + -------
43
 *                            R - r
44
 *                                 r*R1(r)
45
 *                     = 1 + r + ----------- (for better accuracy)
46
 *                                2 - R1(r)
47
 *      where
48
 *                               2       4             10
49
 *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
50
 *
51
 *   3. Scale back to obtain exp(x):
52
 *      From step 1, we have
53
 *         exp(x) = 2^k * exp(r)
54
 *
55
 * Special cases:
56
 *      exp(INF) is INF, exp(NaN) is NaN;
57
 *      exp(-INF) is 0, and
58
 *      for finite argument, only exp(0)=1 is exact.
59
 *
60
 * Accuracy:
61
 *      according to an error analysis, the error is always less than
62
 *      1 ulp (unit in the last place).
63
 *
64
 * Misc. info.
65
 *      For IEEE double
66
 *          if x >  7.09782712893383973096e+02 then exp(x) overflow
67
 *          if x < -7.45133219101941108420e+02 then exp(x) underflow
68
 *
69
 * Constants:
70
 * The hexadecimal values are the intended ones for the following
71
 * constants. The decimal values may be used, provided that the
72
 * compiler will convert from decimal to binary accurately enough
73
 * to produce the hexadecimal values shown.
74
 */
75
 
76
#include "fdlibm.h"
77
 
78
#ifndef _DOUBLE_IS_32BITS
79
 
80
#ifdef __STDC__
81
static const double
82
#else
83
static double
84
#endif
85
one     = 1.0,
86
halF[2] = {0.5,-0.5,},
87
huge    = 1.0e+300,
88
twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
89
o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
90
u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
91
ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
92
             -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
93
ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
94
             -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
95
invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
96
P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
97
P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
98
P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
99
P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
100
P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
101
 
102
 
103
#ifdef __STDC__
104
        double __ieee754_exp(double x)  /* default IEEE double exp */
105
#else
106
        double __ieee754_exp(x) /* default IEEE double exp */
107
        double x;
108
#endif
109
{
110
        double y,hi,lo,c,t;
111
        int32_t k,xsb;
112
        uint32_t hx;
113
 
114
        GET_HIGH_WORD(hx,x);    /* high word of x */
115
        xsb = (hx>>31)&1;               /* sign bit of x */
116
        hx &= 0x7fffffff;               /* high word of |x| */
117
 
118
    /* filter out non-finite argument */
119
        if(hx >= 0x40862E42) {                  /* if |x|>=709.78... */
120
            if(hx>=0x7ff00000) {
121
                uint32_t lx;
122
                GET_LOW_WORD(lx,x);
123
                if(((hx&0xfffff)|lx)!=0)
124
                     return x+x;                /* NaN */
125
                else return (xsb==0)? x:0.0;     /* exp(+-inf)={inf,0} */
126
            }
127
            if(x > o_threshold) return huge*huge; /* overflow */
128
            if(x < u_threshold) return twom1000*twom1000; /* underflow */
129
        }
130
 
131
    /* argument reduction */
132
        if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
133
            if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
134
                hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
135
            } else {
136
                k  = (int32_t)(invln2*x+halF[xsb]);
137
                t  = k;
138
                hi = x - t*ln2HI[0];     /* t*ln2HI is exact here */
139
                lo = t*ln2LO[0];
140
            }
141
            x  = hi - lo;
142
        }
143
        else if(hx < 0x3e300000)  {     /* when |x|<2**-28 */
144
            if(huge+x>one) return one+x;/* trigger inexact */
145
        }
146
        else k = 0;
147
 
148
    /* x is now in primary range */
149
        t  = x*x;
150
        c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
151
        if(k==0)         return one-((x*c)/(c-2.0)-x);
152
        else            y = one-((lo-(x*c)/(2.0-c))-hi);
153
        if(k >= -1021) {
154
            uint32_t hy;
155
            GET_HIGH_WORD(hy, y);
156
            SET_HIGH_WORD(y, hy + (k<<20));     /* add k to y's exponent */
157
            return y;
158
        } else {
159
            uint32_t hy;
160
            GET_HIGH_WORD(hy, y);
161
            SET_HIGH_WORD(y, hy + ((k+1000)<<20));/* add k to y's exponent */
162
            return y*twom1000;
163
        }
164
}
165
#endif /* defined(_DOUBLE_IS_32BITS) */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.