OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [libstdc++-v3/] [include/] [bits/] [stl_algo.h] - Blame information for rev 17

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 17 jlechner
// Algorithm implementation -*- C++ -*-
2
 
3
// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
4
// Free Software Foundation, Inc.
5
//
6
// This file is part of the GNU ISO C++ Library.  This library is free
7
// software; you can redistribute it and/or modify it under the
8
// terms of the GNU General Public License as published by the
9
// Free Software Foundation; either version 2, or (at your option)
10
// any later version.
11
 
12
// This library is distributed in the hope that it will be useful,
13
// but WITHOUT ANY WARRANTY; without even the implied warranty of
14
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
// GNU General Public License for more details.
16
 
17
// You should have received a copy of the GNU General Public License along
18
// with this library; see the file COPYING.  If not, write to the Free
19
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20
// USA.
21
 
22
// As a special exception, you may use this file as part of a free software
23
// library without restriction.  Specifically, if other files instantiate
24
// templates or use macros or inline functions from this file, or you compile
25
// this file and link it with other files to produce an executable, this
26
// file does not by itself cause the resulting executable to be covered by
27
// the GNU General Public License.  This exception does not however
28
// invalidate any other reasons why the executable file might be covered by
29
// the GNU General Public License.
30
 
31
/*
32
 *
33
 * Copyright (c) 1994
34
 * Hewlett-Packard Company
35
 *
36
 * Permission to use, copy, modify, distribute and sell this software
37
 * and its documentation for any purpose is hereby granted without fee,
38
 * provided that the above copyright notice appear in all copies and
39
 * that both that copyright notice and this permission notice appear
40
 * in supporting documentation.  Hewlett-Packard Company makes no
41
 * representations about the suitability of this software for any
42
 * purpose.  It is provided "as is" without express or implied warranty.
43
 *
44
 *
45
 * Copyright (c) 1996
46
 * Silicon Graphics Computer Systems, Inc.
47
 *
48
 * Permission to use, copy, modify, distribute and sell this software
49
 * and its documentation for any purpose is hereby granted without fee,
50
 * provided that the above copyright notice appear in all copies and
51
 * that both that copyright notice and this permission notice appear
52
 * in supporting documentation.  Silicon Graphics makes no
53
 * representations about the suitability of this software for any
54
 * purpose.  It is provided "as is" without express or implied warranty.
55
 */
56
 
57
/** @file stl_algo.h
58
 *  This is an internal header file, included by other library headers.
59
 *  You should not attempt to use it directly.
60
 */
61
 
62
#ifndef _ALGO_H
63
#define _ALGO_H 1
64
 
65
#include <bits/stl_heap.h>
66
#include <bits/stl_tempbuf.h>     // for _Temporary_buffer
67
#include <debug/debug.h>
68
 
69
// See concept_check.h for the __glibcxx_*_requires macros.
70
 
71
namespace std
72
{
73
  /**
74
   *  @brief Find the median of three values.
75
   *  @param  a  A value.
76
   *  @param  b  A value.
77
   *  @param  c  A value.
78
   *  @return One of @p a, @p b or @p c.
79
   *
80
   *  If @c {l,m,n} is some convolution of @p {a,b,c} such that @c l<=m<=n
81
   *  then the value returned will be @c m.
82
   *  This is an SGI extension.
83
   *  @ingroup SGIextensions
84
  */
85
  template<typename _Tp>
86
    inline const _Tp&
87
    __median(const _Tp& __a, const _Tp& __b, const _Tp& __c)
88
    {
89
      // concept requirements
90
      __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
91
      if (__a < __b)
92
        if (__b < __c)
93
          return __b;
94
        else if (__a < __c)
95
          return __c;
96
        else
97
          return __a;
98
      else if (__a < __c)
99
        return __a;
100
      else if (__b < __c)
101
        return __c;
102
      else
103
        return __b;
104
    }
105
 
106
  /**
107
   *  @brief Find the median of three values using a predicate for comparison.
108
   *  @param  a     A value.
109
   *  @param  b     A value.
110
   *  @param  c     A value.
111
   *  @param  comp  A binary predicate.
112
   *  @return One of @p a, @p b or @p c.
113
   *
114
   *  If @c {l,m,n} is some convolution of @p {a,b,c} such that @p comp(l,m)
115
   *  and @p comp(m,n) are both true then the value returned will be @c m.
116
   *  This is an SGI extension.
117
   *  @ingroup SGIextensions
118
  */
119
  template<typename _Tp, typename _Compare>
120
    inline const _Tp&
121
    __median(const _Tp& __a, const _Tp& __b, const _Tp& __c, _Compare __comp)
122
    {
123
      // concept requirements
124
      __glibcxx_function_requires(_BinaryFunctionConcept<_Compare,bool,_Tp,_Tp>)
125
      if (__comp(__a, __b))
126
        if (__comp(__b, __c))
127
          return __b;
128
        else if (__comp(__a, __c))
129
          return __c;
130
        else
131
          return __a;
132
      else if (__comp(__a, __c))
133
        return __a;
134
      else if (__comp(__b, __c))
135
        return __c;
136
      else
137
        return __b;
138
    }
139
 
140
  /**
141
   *  @brief Apply a function to every element of a sequence.
142
   *  @param  first  An input iterator.
143
   *  @param  last   An input iterator.
144
   *  @param  f      A unary function object.
145
   *  @return   @p f.
146
   *
147
   *  Applies the function object @p f to each element in the range
148
   *  @p [first,last).  @p f must not modify the order of the sequence.
149
   *  If @p f has a return value it is ignored.
150
  */
151
  template<typename _InputIterator, typename _Function>
152
    _Function
153
    for_each(_InputIterator __first, _InputIterator __last, _Function __f)
154
    {
155
      // concept requirements
156
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
157
      __glibcxx_requires_valid_range(__first, __last);
158
      for ( ; __first != __last; ++__first)
159
        __f(*__first);
160
      return __f;
161
    }
162
 
163
  /**
164
   *  @if maint
165
   *  This is an overload used by find() for the Input Iterator case.
166
   *  @endif
167
  */
168
  template<typename _InputIterator, typename _Tp>
169
    inline _InputIterator
170
    __find(_InputIterator __first, _InputIterator __last,
171
           const _Tp& __val, input_iterator_tag)
172
    {
173
      while (__first != __last && !(*__first == __val))
174
        ++__first;
175
      return __first;
176
    }
177
 
178
  /**
179
   *  @if maint
180
   *  This is an overload used by find_if() for the Input Iterator case.
181
   *  @endif
182
  */
183
  template<typename _InputIterator, typename _Predicate>
184
    inline _InputIterator
185
    __find_if(_InputIterator __first, _InputIterator __last,
186
              _Predicate __pred, input_iterator_tag)
187
    {
188
      while (__first != __last && !__pred(*__first))
189
        ++__first;
190
      return __first;
191
    }
192
 
193
  /**
194
   *  @if maint
195
   *  This is an overload used by find() for the RAI case.
196
   *  @endif
197
  */
198
  template<typename _RandomAccessIterator, typename _Tp>
199
    _RandomAccessIterator
200
    __find(_RandomAccessIterator __first, _RandomAccessIterator __last,
201
           const _Tp& __val, random_access_iterator_tag)
202
    {
203
      typename iterator_traits<_RandomAccessIterator>::difference_type
204
        __trip_count = (__last - __first) >> 2;
205
 
206
      for ( ; __trip_count > 0 ; --__trip_count)
207
        {
208
          if (*__first == __val)
209
            return __first;
210
          ++__first;
211
 
212
          if (*__first == __val)
213
            return __first;
214
          ++__first;
215
 
216
          if (*__first == __val)
217
            return __first;
218
          ++__first;
219
 
220
          if (*__first == __val)
221
            return __first;
222
          ++__first;
223
        }
224
 
225
      switch (__last - __first)
226
        {
227
        case 3:
228
          if (*__first == __val)
229
            return __first;
230
          ++__first;
231
        case 2:
232
          if (*__first == __val)
233
            return __first;
234
          ++__first;
235
        case 1:
236
          if (*__first == __val)
237
            return __first;
238
          ++__first;
239
        case 0:
240
        default:
241
          return __last;
242
        }
243
    }
244
 
245
  /**
246
   *  @if maint
247
   *  This is an overload used by find_if() for the RAI case.
248
   *  @endif
249
  */
250
  template<typename _RandomAccessIterator, typename _Predicate>
251
    _RandomAccessIterator
252
    __find_if(_RandomAccessIterator __first, _RandomAccessIterator __last,
253
              _Predicate __pred, random_access_iterator_tag)
254
    {
255
      typename iterator_traits<_RandomAccessIterator>::difference_type
256
        __trip_count = (__last - __first) >> 2;
257
 
258
      for ( ; __trip_count > 0 ; --__trip_count)
259
        {
260
          if (__pred(*__first))
261
            return __first;
262
          ++__first;
263
 
264
          if (__pred(*__first))
265
            return __first;
266
          ++__first;
267
 
268
          if (__pred(*__first))
269
            return __first;
270
          ++__first;
271
 
272
          if (__pred(*__first))
273
            return __first;
274
          ++__first;
275
        }
276
 
277
      switch (__last - __first)
278
        {
279
        case 3:
280
          if (__pred(*__first))
281
            return __first;
282
          ++__first;
283
        case 2:
284
          if (__pred(*__first))
285
            return __first;
286
          ++__first;
287
        case 1:
288
          if (__pred(*__first))
289
            return __first;
290
          ++__first;
291
        case 0:
292
        default:
293
          return __last;
294
        }
295
    }
296
 
297
  /**
298
   *  @brief Find the first occurrence of a value in a sequence.
299
   *  @param  first  An input iterator.
300
   *  @param  last   An input iterator.
301
   *  @param  val    The value to find.
302
   *  @return   The first iterator @c i in the range @p [first,last)
303
   *  such that @c *i == @p val, or @p last if no such iterator exists.
304
  */
305
  template<typename _InputIterator, typename _Tp>
306
    inline _InputIterator
307
    find(_InputIterator __first, _InputIterator __last,
308
         const _Tp& __val)
309
    {
310
      // concept requirements
311
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
312
      __glibcxx_function_requires(_EqualOpConcept<
313
                typename iterator_traits<_InputIterator>::value_type, _Tp>)
314
      __glibcxx_requires_valid_range(__first, __last);
315
      return std::__find(__first, __last, __val,
316
                         std::__iterator_category(__first));
317
    }
318
 
319
  /**
320
   *  @brief Find the first element in a sequence for which a predicate is true.
321
   *  @param  first  An input iterator.
322
   *  @param  last   An input iterator.
323
   *  @param  pred   A predicate.
324
   *  @return   The first iterator @c i in the range @p [first,last)
325
   *  such that @p pred(*i) is true, or @p last if no such iterator exists.
326
  */
327
  template<typename _InputIterator, typename _Predicate>
328
    inline _InputIterator
329
    find_if(_InputIterator __first, _InputIterator __last,
330
            _Predicate __pred)
331
    {
332
      // concept requirements
333
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
334
      __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
335
              typename iterator_traits<_InputIterator>::value_type>)
336
      __glibcxx_requires_valid_range(__first, __last);
337
      return std::__find_if(__first, __last, __pred,
338
                            std::__iterator_category(__first));
339
    }
340
 
341
  /**
342
   *  @brief Find two adjacent values in a sequence that are equal.
343
   *  @param  first  A forward iterator.
344
   *  @param  last   A forward iterator.
345
   *  @return   The first iterator @c i such that @c i and @c i+1 are both
346
   *  valid iterators in @p [first,last) and such that @c *i == @c *(i+1),
347
   *  or @p last if no such iterator exists.
348
  */
349
  template<typename _ForwardIterator>
350
    _ForwardIterator
351
    adjacent_find(_ForwardIterator __first, _ForwardIterator __last)
352
    {
353
      // concept requirements
354
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
355
      __glibcxx_function_requires(_EqualityComparableConcept<
356
            typename iterator_traits<_ForwardIterator>::value_type>)
357
      __glibcxx_requires_valid_range(__first, __last);
358
      if (__first == __last)
359
        return __last;
360
      _ForwardIterator __next = __first;
361
      while(++__next != __last)
362
        {
363
          if (*__first == *__next)
364
            return __first;
365
          __first = __next;
366
        }
367
      return __last;
368
    }
369
 
370
  /**
371
   *  @brief Find two adjacent values in a sequence using a predicate.
372
   *  @param  first         A forward iterator.
373
   *  @param  last          A forward iterator.
374
   *  @param  binary_pred   A binary predicate.
375
   *  @return   The first iterator @c i such that @c i and @c i+1 are both
376
   *  valid iterators in @p [first,last) and such that
377
   *  @p binary_pred(*i,*(i+1)) is true, or @p last if no such iterator
378
   *  exists.
379
  */
380
  template<typename _ForwardIterator, typename _BinaryPredicate>
381
    _ForwardIterator
382
    adjacent_find(_ForwardIterator __first, _ForwardIterator __last,
383
                  _BinaryPredicate __binary_pred)
384
    {
385
      // concept requirements
386
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
387
      __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
388
            typename iterator_traits<_ForwardIterator>::value_type,
389
            typename iterator_traits<_ForwardIterator>::value_type>)
390
      __glibcxx_requires_valid_range(__first, __last);
391
      if (__first == __last)
392
        return __last;
393
      _ForwardIterator __next = __first;
394
      while(++__next != __last)
395
        {
396
          if (__binary_pred(*__first, *__next))
397
            return __first;
398
          __first = __next;
399
        }
400
      return __last;
401
    }
402
 
403
  /**
404
   *  @brief Count the number of copies of a value in a sequence.
405
   *  @param  first  An input iterator.
406
   *  @param  last   An input iterator.
407
   *  @param  value  The value to be counted.
408
   *  @return   The number of iterators @c i in the range @p [first,last)
409
   *  for which @c *i == @p value
410
  */
411
  template<typename _InputIterator, typename _Tp>
412
    typename iterator_traits<_InputIterator>::difference_type
413
    count(_InputIterator __first, _InputIterator __last, const _Tp& __value)
414
    {
415
      // concept requirements
416
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
417
      __glibcxx_function_requires(_EqualOpConcept<
418
        typename iterator_traits<_InputIterator>::value_type, _Tp>)
419
      __glibcxx_requires_valid_range(__first, __last);
420
      typename iterator_traits<_InputIterator>::difference_type __n = 0;
421
      for ( ; __first != __last; ++__first)
422
        if (*__first == __value)
423
          ++__n;
424
      return __n;
425
    }
426
 
427
  /**
428
   *  @brief Count the elements of a sequence for which a predicate is true.
429
   *  @param  first  An input iterator.
430
   *  @param  last   An input iterator.
431
   *  @param  pred   A predicate.
432
   *  @return   The number of iterators @c i in the range @p [first,last)
433
   *  for which @p pred(*i) is true.
434
  */
435
  template<typename _InputIterator, typename _Predicate>
436
    typename iterator_traits<_InputIterator>::difference_type
437
    count_if(_InputIterator __first, _InputIterator __last, _Predicate __pred)
438
    {
439
      // concept requirements
440
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
441
      __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
442
            typename iterator_traits<_InputIterator>::value_type>)
443
      __glibcxx_requires_valid_range(__first, __last);
444
      typename iterator_traits<_InputIterator>::difference_type __n = 0;
445
      for ( ; __first != __last; ++__first)
446
        if (__pred(*__first))
447
          ++__n;
448
      return __n;
449
    }
450
 
451
  /**
452
   *  @brief Search a sequence for a matching sub-sequence.
453
   *  @param  first1  A forward iterator.
454
   *  @param  last1   A forward iterator.
455
   *  @param  first2  A forward iterator.
456
   *  @param  last2   A forward iterator.
457
   *  @return   The first iterator @c i in the range
458
   *  @p [first1,last1-(last2-first2)) such that @c *(i+N) == @p *(first2+N)
459
   *  for each @c N in the range @p [0,last2-first2), or @p last1 if no
460
   *  such iterator exists.
461
   *
462
   *  Searches the range @p [first1,last1) for a sub-sequence that compares
463
   *  equal value-by-value with the sequence given by @p [first2,last2) and
464
   *  returns an iterator to the first element of the sub-sequence, or
465
   *  @p last1 if the sub-sequence is not found.
466
   *
467
   *  Because the sub-sequence must lie completely within the range
468
   *  @p [first1,last1) it must start at a position less than
469
   *  @p last1-(last2-first2) where @p last2-first2 is the length of the
470
   *  sub-sequence.
471
   *  This means that the returned iterator @c i will be in the range
472
   *  @p [first1,last1-(last2-first2))
473
  */
474
  template<typename _ForwardIterator1, typename _ForwardIterator2>
475
    _ForwardIterator1
476
    search(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
477
           _ForwardIterator2 __first2, _ForwardIterator2 __last2)
478
    {
479
      // concept requirements
480
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>)
481
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>)
482
      __glibcxx_function_requires(_EqualOpConcept<
483
            typename iterator_traits<_ForwardIterator1>::value_type,
484
            typename iterator_traits<_ForwardIterator2>::value_type>)
485
      __glibcxx_requires_valid_range(__first1, __last1);
486
      __glibcxx_requires_valid_range(__first2, __last2);
487
      // Test for empty ranges
488
      if (__first1 == __last1 || __first2 == __last2)
489
        return __first1;
490
 
491
      // Test for a pattern of length 1.
492
      _ForwardIterator2 __tmp(__first2);
493
      ++__tmp;
494
      if (__tmp == __last2)
495
        return std::find(__first1, __last1, *__first2);
496
 
497
      // General case.
498
      _ForwardIterator2 __p1, __p;
499
      __p1 = __first2; ++__p1;
500
      _ForwardIterator1 __current = __first1;
501
 
502
      while (__first1 != __last1)
503
        {
504
          __first1 = std::find(__first1, __last1, *__first2);
505
          if (__first1 == __last1)
506
            return __last1;
507
 
508
          __p = __p1;
509
          __current = __first1;
510
          if (++__current == __last1)
511
            return __last1;
512
 
513
          while (*__current == *__p)
514
            {
515
              if (++__p == __last2)
516
                return __first1;
517
              if (++__current == __last1)
518
                return __last1;
519
            }
520
          ++__first1;
521
        }
522
      return __first1;
523
    }
524
 
525
  /**
526
   *  @brief Search a sequence for a matching sub-sequence using a predicate.
527
   *  @param  first1     A forward iterator.
528
   *  @param  last1      A forward iterator.
529
   *  @param  first2     A forward iterator.
530
   *  @param  last2      A forward iterator.
531
   *  @param  predicate  A binary predicate.
532
   *  @return   The first iterator @c i in the range
533
   *  @p [first1,last1-(last2-first2)) such that
534
   *  @p predicate(*(i+N),*(first2+N)) is true for each @c N in the range
535
   *  @p [0,last2-first2), or @p last1 if no such iterator exists.
536
   *
537
   *  Searches the range @p [first1,last1) for a sub-sequence that compares
538
   *  equal value-by-value with the sequence given by @p [first2,last2),
539
   *  using @p predicate to determine equality, and returns an iterator
540
   *  to the first element of the sub-sequence, or @p last1 if no such
541
   *  iterator exists.
542
   *
543
   *  @see search(_ForwardIter1, _ForwardIter1, _ForwardIter2, _ForwardIter2)
544
  */
545
  template<typename _ForwardIterator1, typename _ForwardIterator2,
546
           typename _BinaryPredicate>
547
    _ForwardIterator1
548
    search(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
549
           _ForwardIterator2 __first2, _ForwardIterator2 __last2,
550
           _BinaryPredicate  __predicate)
551
    {
552
      // concept requirements
553
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>)
554
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>)
555
      __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
556
            typename iterator_traits<_ForwardIterator1>::value_type,
557
            typename iterator_traits<_ForwardIterator2>::value_type>)
558
      __glibcxx_requires_valid_range(__first1, __last1);
559
      __glibcxx_requires_valid_range(__first2, __last2);
560
 
561
      // Test for empty ranges
562
      if (__first1 == __last1 || __first2 == __last2)
563
        return __first1;
564
 
565
      // Test for a pattern of length 1.
566
      _ForwardIterator2 __tmp(__first2);
567
      ++__tmp;
568
      if (__tmp == __last2)
569
        {
570
          while (__first1 != __last1 && !__predicate(*__first1, *__first2))
571
            ++__first1;
572
          return __first1;
573
        }
574
 
575
      // General case.
576
      _ForwardIterator2 __p1, __p;
577
      __p1 = __first2; ++__p1;
578
      _ForwardIterator1 __current = __first1;
579
 
580
      while (__first1 != __last1)
581
        {
582
          while (__first1 != __last1)
583
            {
584
              if (__predicate(*__first1, *__first2))
585
                break;
586
              ++__first1;
587
            }
588
          while (__first1 != __last1 && !__predicate(*__first1, *__first2))
589
            ++__first1;
590
          if (__first1 == __last1)
591
            return __last1;
592
 
593
          __p = __p1;
594
          __current = __first1;
595
          if (++__current == __last1)
596
            return __last1;
597
 
598
          while (__predicate(*__current, *__p))
599
            {
600
              if (++__p == __last2)
601
                return __first1;
602
              if (++__current == __last1)
603
                return __last1;
604
            }
605
          ++__first1;
606
        }
607
      return __first1;
608
    }
609
 
610
  /**
611
   *  @if maint
612
   *  This is an uglified
613
   *  search_n(_ForwardIterator, _ForwardIterator, _Integer, const _Tp&)
614
   *  overloaded for forward iterators.
615
   *  @endif
616
  */
617
  template<typename _ForwardIterator, typename _Integer, typename _Tp>
618
    _ForwardIterator
619
    __search_n(_ForwardIterator __first, _ForwardIterator __last,
620
               _Integer __count, const _Tp& __val,
621
               std::forward_iterator_tag)
622
    {
623
      __first = std::find(__first, __last, __val);
624
      while (__first != __last)
625
        {
626
          typename iterator_traits<_ForwardIterator>::difference_type
627
            __n = __count;
628
          _ForwardIterator __i = __first;
629
          ++__i;
630
          while (__i != __last && __n != 1 && *__i == __val)
631
            {
632
              ++__i;
633
              --__n;
634
            }
635
          if (__n == 1)
636
            return __first;
637
          if (__i == __last)
638
            return __last;
639
          __first = std::find(++__i, __last, __val);
640
        }
641
      return __last;
642
    }
643
 
644
  /**
645
   *  @if maint
646
   *  This is an uglified
647
   *  search_n(_ForwardIterator, _ForwardIterator, _Integer, const _Tp&)
648
   *  overloaded for random access iterators.
649
   *  @endif
650
  */
651
  template<typename _RandomAccessIter, typename _Integer, typename _Tp>
652
    _RandomAccessIter
653
    __search_n(_RandomAccessIter __first, _RandomAccessIter __last,
654
               _Integer __count, const _Tp& __val,
655
               std::random_access_iterator_tag)
656
    {
657
 
658
      typedef typename std::iterator_traits<_RandomAccessIter>::difference_type
659
        _DistanceType;
660
 
661
      _DistanceType __tailSize = __last - __first;
662
      const _DistanceType __pattSize = __count;
663
 
664
      if (__tailSize < __pattSize)
665
        return __last;
666
 
667
      const _DistanceType __skipOffset = __pattSize - 1;
668
      _RandomAccessIter __lookAhead = __first + __skipOffset;
669
      __tailSize -= __pattSize;
670
 
671
      while (1) // the main loop...
672
        {
673
          // __lookAhead here is always pointing to the last element of next 
674
          // possible match.
675
          while (!(*__lookAhead == __val)) // the skip loop...
676
            {
677
              if (__tailSize < __pattSize)
678
                return __last;  // Failure
679
              __lookAhead += __pattSize;
680
              __tailSize -= __pattSize;
681
            }
682
          _DistanceType __remainder = __skipOffset;
683
          for (_RandomAccessIter __backTrack = __lookAhead - 1;
684
               *__backTrack == __val; --__backTrack)
685
            {
686
              if (--__remainder == 0)
687
                return (__lookAhead - __skipOffset); // Success
688
            }
689
          if (__remainder > __tailSize)
690
            return __last; // Failure
691
          __lookAhead += __remainder;
692
          __tailSize -= __remainder;
693
        }
694
    }
695
 
696
  /**
697
   *  @brief Search a sequence for a number of consecutive values.
698
   *  @param  first  A forward iterator.
699
   *  @param  last   A forward iterator.
700
   *  @param  count  The number of consecutive values.
701
   *  @param  val    The value to find.
702
   *  @return   The first iterator @c i in the range @p [first,last-count)
703
   *  such that @c *(i+N) == @p val for each @c N in the range @p [0,count),
704
   *  or @p last if no such iterator exists.
705
   *
706
   *  Searches the range @p [first,last) for @p count consecutive elements
707
   *  equal to @p val.
708
  */
709
  template<typename _ForwardIterator, typename _Integer, typename _Tp>
710
    _ForwardIterator
711
    search_n(_ForwardIterator __first, _ForwardIterator __last,
712
             _Integer __count, const _Tp& __val)
713
    {
714
      // concept requirements
715
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
716
      __glibcxx_function_requires(_EqualOpConcept<
717
        typename iterator_traits<_ForwardIterator>::value_type, _Tp>)
718
      __glibcxx_requires_valid_range(__first, __last);
719
 
720
      if (__count <= 0)
721
        return __first;
722
      if (__count == 1)
723
        return std::find(__first, __last, __val);
724
      return std::__search_n(__first, __last, __count, __val,
725
                             std::__iterator_category(__first));
726
    }
727
 
728
  /**
729
   *  @if maint
730
   *  This is an uglified
731
   *  search_n(_ForwardIterator, _ForwardIterator, _Integer, const _Tp&,
732
   *           _BinaryPredicate)
733
   *  overloaded for forward iterators.
734
   *  @endif
735
  */
736
  template<typename _ForwardIterator, typename _Integer, typename _Tp,
737
           typename _BinaryPredicate>
738
    _ForwardIterator
739
    __search_n(_ForwardIterator __first, _ForwardIterator __last,
740
               _Integer __count, const _Tp& __val,
741
               _BinaryPredicate __binary_pred, std::forward_iterator_tag)
742
    {
743
      while (__first != __last && !__binary_pred(*__first, __val))
744
        ++__first;
745
 
746
      while (__first != __last)
747
        {
748
          typename iterator_traits<_ForwardIterator>::difference_type
749
            __n = __count;
750
          _ForwardIterator __i = __first;
751
          ++__i;
752
          while (__i != __last && __n != 1 && __binary_pred(*__i, __val))
753
            {
754
              ++__i;
755
              --__n;
756
            }
757
          if (__n == 1)
758
            return __first;
759
          if (__i == __last)
760
            return __last;
761
          __first = ++__i;
762
          while (__first != __last && !__binary_pred(*__first, __val))
763
            ++__first;
764
        }
765
      return __last;
766
    }
767
 
768
  /**
769
   *  @if maint
770
   *  This is an uglified
771
   *  search_n(_ForwardIterator, _ForwardIterator, _Integer, const _Tp&,
772
   *           _BinaryPredicate)
773
   *  overloaded for random access iterators.
774
   *  @endif
775
  */
776
  template<typename _RandomAccessIter, typename _Integer, typename _Tp,
777
           typename _BinaryPredicate>
778
    _RandomAccessIter
779
    __search_n(_RandomAccessIter __first, _RandomAccessIter __last,
780
               _Integer __count, const _Tp& __val,
781
               _BinaryPredicate __binary_pred, std::random_access_iterator_tag)
782
    {
783
 
784
      typedef typename std::iterator_traits<_RandomAccessIter>::difference_type
785
        _DistanceType;
786
 
787
      _DistanceType __tailSize = __last - __first;
788
      const _DistanceType __pattSize = __count;
789
 
790
      if (__tailSize < __pattSize)
791
        return __last;
792
 
793
      const _DistanceType __skipOffset = __pattSize - 1;
794
      _RandomAccessIter __lookAhead = __first + __skipOffset;
795
      __tailSize -= __pattSize;
796
 
797
      while (1) // the main loop...
798
        {
799
          // __lookAhead here is always pointing to the last element of next 
800
          // possible match.
801
          while (!__binary_pred(*__lookAhead, __val)) // the skip loop...
802
            {
803
              if (__tailSize < __pattSize)
804
                return __last;  // Failure
805
              __lookAhead += __pattSize;
806
              __tailSize -= __pattSize;
807
            }
808
          _DistanceType __remainder = __skipOffset;
809
          for (_RandomAccessIter __backTrack = __lookAhead - 1;
810
               __binary_pred(*__backTrack, __val); --__backTrack)
811
            {
812
              if (--__remainder == 0)
813
                return (__lookAhead - __skipOffset); // Success
814
            }
815
          if (__remainder > __tailSize)
816
            return __last; // Failure
817
          __lookAhead += __remainder;
818
          __tailSize -= __remainder;
819
        }
820
    }
821
 
822
  /**
823
   *  @brief Search a sequence for a number of consecutive values using a
824
   *         predicate.
825
   *  @param  first        A forward iterator.
826
   *  @param  last         A forward iterator.
827
   *  @param  count        The number of consecutive values.
828
   *  @param  val          The value to find.
829
   *  @param  binary_pred  A binary predicate.
830
   *  @return   The first iterator @c i in the range @p [first,last-count)
831
   *  such that @p binary_pred(*(i+N),val) is true for each @c N in the
832
   *  range @p [0,count), or @p last if no such iterator exists.
833
   *
834
   *  Searches the range @p [first,last) for @p count consecutive elements
835
   *  for which the predicate returns true.
836
  */
837
  template<typename _ForwardIterator, typename _Integer, typename _Tp,
838
           typename _BinaryPredicate>
839
    _ForwardIterator
840
    search_n(_ForwardIterator __first, _ForwardIterator __last,
841
             _Integer __count, const _Tp& __val,
842
             _BinaryPredicate __binary_pred)
843
    {
844
      // concept requirements
845
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
846
      __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
847
            typename iterator_traits<_ForwardIterator>::value_type, _Tp>)
848
      __glibcxx_requires_valid_range(__first, __last);
849
 
850
      if (__count <= 0)
851
        return __first;
852
      if (__count == 1)
853
        {
854
          while (__first != __last && !__binary_pred(*__first, __val))
855
            ++__first;
856
          return __first;
857
        }
858
      return std::__search_n(__first, __last, __count, __val, __binary_pred,
859
                             std::__iterator_category(__first));
860
    }
861
 
862
  /**
863
   *  @brief Swap the elements of two sequences.
864
   *  @param  first1  A forward iterator.
865
   *  @param  last1   A forward iterator.
866
   *  @param  first2  A forward iterator.
867
   *  @return   An iterator equal to @p first2+(last1-first1).
868
   *
869
   *  Swaps each element in the range @p [first1,last1) with the
870
   *  corresponding element in the range @p [first2,(last1-first1)).
871
   *  The ranges must not overlap.
872
  */
873
  template<typename _ForwardIterator1, typename _ForwardIterator2>
874
    _ForwardIterator2
875
    swap_ranges(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
876
                _ForwardIterator2 __first2)
877
    {
878
      // concept requirements
879
      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
880
                                  _ForwardIterator1>)
881
      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
882
                                  _ForwardIterator2>)
883
      __glibcxx_function_requires(_ConvertibleConcept<
884
            typename iterator_traits<_ForwardIterator1>::value_type,
885
            typename iterator_traits<_ForwardIterator2>::value_type>)
886
      __glibcxx_function_requires(_ConvertibleConcept<
887
            typename iterator_traits<_ForwardIterator2>::value_type,
888
            typename iterator_traits<_ForwardIterator1>::value_type>)
889
      __glibcxx_requires_valid_range(__first1, __last1);
890
 
891
      for ( ; __first1 != __last1; ++__first1, ++__first2)
892
        std::iter_swap(__first1, __first2);
893
      return __first2;
894
    }
895
 
896
  /**
897
   *  @brief Perform an operation on a sequence.
898
   *  @param  first     An input iterator.
899
   *  @param  last      An input iterator.
900
   *  @param  result    An output iterator.
901
   *  @param  unary_op  A unary operator.
902
   *  @return   An output iterator equal to @p result+(last-first).
903
   *
904
   *  Applies the operator to each element in the input range and assigns
905
   *  the results to successive elements of the output sequence.
906
   *  Evaluates @p *(result+N)=unary_op(*(first+N)) for each @c N in the
907
   *  range @p [0,last-first).
908
   *
909
   *  @p unary_op must not alter its argument.
910
  */
911
  template<typename _InputIterator, typename _OutputIterator,
912
           typename _UnaryOperation>
913
    _OutputIterator
914
    transform(_InputIterator __first, _InputIterator __last,
915
              _OutputIterator __result, _UnaryOperation __unary_op)
916
    {
917
      // concept requirements
918
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
919
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
920
            // "the type returned by a _UnaryOperation"
921
            __typeof__(__unary_op(*__first))>)
922
      __glibcxx_requires_valid_range(__first, __last);
923
 
924
      for ( ; __first != __last; ++__first, ++__result)
925
        *__result = __unary_op(*__first);
926
      return __result;
927
    }
928
 
929
  /**
930
   *  @brief Perform an operation on corresponding elements of two sequences.
931
   *  @param  first1     An input iterator.
932
   *  @param  last1      An input iterator.
933
   *  @param  first2     An input iterator.
934
   *  @param  result     An output iterator.
935
   *  @param  binary_op  A binary operator.
936
   *  @return   An output iterator equal to @p result+(last-first).
937
   *
938
   *  Applies the operator to the corresponding elements in the two
939
   *  input ranges and assigns the results to successive elements of the
940
   *  output sequence.
941
   *  Evaluates @p *(result+N)=binary_op(*(first1+N),*(first2+N)) for each
942
   *  @c N in the range @p [0,last1-first1).
943
   *
944
   *  @p binary_op must not alter either of its arguments.
945
  */
946
  template<typename _InputIterator1, typename _InputIterator2,
947
           typename _OutputIterator, typename _BinaryOperation>
948
    _OutputIterator
949
    transform(_InputIterator1 __first1, _InputIterator1 __last1,
950
              _InputIterator2 __first2, _OutputIterator __result,
951
              _BinaryOperation __binary_op)
952
    {
953
      // concept requirements
954
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
955
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
956
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
957
            // "the type returned by a _BinaryOperation"
958
            __typeof__(__binary_op(*__first1,*__first2))>)
959
      __glibcxx_requires_valid_range(__first1, __last1);
960
 
961
      for ( ; __first1 != __last1; ++__first1, ++__first2, ++__result)
962
        *__result = __binary_op(*__first1, *__first2);
963
      return __result;
964
    }
965
 
966
  /**
967
   *  @brief Replace each occurrence of one value in a sequence with another
968
   *         value.
969
   *  @param  first      A forward iterator.
970
   *  @param  last       A forward iterator.
971
   *  @param  old_value  The value to be replaced.
972
   *  @param  new_value  The replacement value.
973
   *  @return   replace() returns no value.
974
   *
975
   *  For each iterator @c i in the range @p [first,last) if @c *i ==
976
   *  @p old_value then the assignment @c *i = @p new_value is performed.
977
  */
978
  template<typename _ForwardIterator, typename _Tp>
979
    void
980
    replace(_ForwardIterator __first, _ForwardIterator __last,
981
            const _Tp& __old_value, const _Tp& __new_value)
982
    {
983
      // concept requirements
984
      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
985
                                  _ForwardIterator>)
986
      __glibcxx_function_requires(_EqualOpConcept<
987
            typename iterator_traits<_ForwardIterator>::value_type, _Tp>)
988
      __glibcxx_function_requires(_ConvertibleConcept<_Tp,
989
            typename iterator_traits<_ForwardIterator>::value_type>)
990
      __glibcxx_requires_valid_range(__first, __last);
991
 
992
      for ( ; __first != __last; ++__first)
993
        if (*__first == __old_value)
994
          *__first = __new_value;
995
    }
996
 
997
  /**
998
   *  @brief Replace each value in a sequence for which a predicate returns
999
   *         true with another value.
1000
   *  @param  first      A forward iterator.
1001
   *  @param  last       A forward iterator.
1002
   *  @param  pred       A predicate.
1003
   *  @param  new_value  The replacement value.
1004
   *  @return   replace_if() returns no value.
1005
   *
1006
   *  For each iterator @c i in the range @p [first,last) if @p pred(*i)
1007
   *  is true then the assignment @c *i = @p new_value is performed.
1008
  */
1009
  template<typename _ForwardIterator, typename _Predicate, typename _Tp>
1010
    void
1011
    replace_if(_ForwardIterator __first, _ForwardIterator __last,
1012
               _Predicate __pred, const _Tp& __new_value)
1013
    {
1014
      // concept requirements
1015
      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
1016
                                  _ForwardIterator>)
1017
      __glibcxx_function_requires(_ConvertibleConcept<_Tp,
1018
            typename iterator_traits<_ForwardIterator>::value_type>)
1019
      __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
1020
            typename iterator_traits<_ForwardIterator>::value_type>)
1021
      __glibcxx_requires_valid_range(__first, __last);
1022
 
1023
      for ( ; __first != __last; ++__first)
1024
        if (__pred(*__first))
1025
          *__first = __new_value;
1026
    }
1027
 
1028
  /**
1029
   *  @brief Copy a sequence, replacing each element of one value with another
1030
   *         value.
1031
   *  @param  first      An input iterator.
1032
   *  @param  last       An input iterator.
1033
   *  @param  result     An output iterator.
1034
   *  @param  old_value  The value to be replaced.
1035
   *  @param  new_value  The replacement value.
1036
   *  @return   The end of the output sequence, @p result+(last-first).
1037
   *
1038
   *  Copies each element in the input range @p [first,last) to the
1039
   *  output range @p [result,result+(last-first)) replacing elements
1040
   *  equal to @p old_value with @p new_value.
1041
  */
1042
  template<typename _InputIterator, typename _OutputIterator, typename _Tp>
1043
    _OutputIterator
1044
    replace_copy(_InputIterator __first, _InputIterator __last,
1045
                 _OutputIterator __result,
1046
                 const _Tp& __old_value, const _Tp& __new_value)
1047
    {
1048
      // concept requirements
1049
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
1050
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
1051
            typename iterator_traits<_InputIterator>::value_type>)
1052
      __glibcxx_function_requires(_EqualOpConcept<
1053
            typename iterator_traits<_InputIterator>::value_type, _Tp>)
1054
      __glibcxx_requires_valid_range(__first, __last);
1055
 
1056
      for ( ; __first != __last; ++__first, ++__result)
1057
        if (*__first == __old_value)
1058
          *__result = __new_value;
1059
        else
1060
          *__result = *__first;
1061
      return __result;
1062
    }
1063
 
1064
  /**
1065
   *  @brief Copy a sequence, replacing each value for which a predicate
1066
   *         returns true with another value.
1067
   *  @param  first      An input iterator.
1068
   *  @param  last       An input iterator.
1069
   *  @param  result     An output iterator.
1070
   *  @param  pred       A predicate.
1071
   *  @param  new_value  The replacement value.
1072
   *  @return   The end of the output sequence, @p result+(last-first).
1073
   *
1074
   *  Copies each element in the range @p [first,last) to the range
1075
   *  @p [result,result+(last-first)) replacing elements for which
1076
   *  @p pred returns true with @p new_value.
1077
  */
1078
  template<typename _InputIterator, typename _OutputIterator,
1079
           typename _Predicate, typename _Tp>
1080
    _OutputIterator
1081
    replace_copy_if(_InputIterator __first, _InputIterator __last,
1082
                    _OutputIterator __result,
1083
                    _Predicate __pred, const _Tp& __new_value)
1084
    {
1085
      // concept requirements
1086
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
1087
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
1088
            typename iterator_traits<_InputIterator>::value_type>)
1089
      __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
1090
            typename iterator_traits<_InputIterator>::value_type>)
1091
      __glibcxx_requires_valid_range(__first, __last);
1092
 
1093
      for ( ; __first != __last; ++__first, ++__result)
1094
        if (__pred(*__first))
1095
          *__result = __new_value;
1096
        else
1097
          *__result = *__first;
1098
      return __result;
1099
    }
1100
 
1101
  /**
1102
   *  @brief Assign the result of a function object to each value in a
1103
   *         sequence.
1104
   *  @param  first  A forward iterator.
1105
   *  @param  last   A forward iterator.
1106
   *  @param  gen    A function object taking no arguments.
1107
   *  @return   generate() returns no value.
1108
   *
1109
   *  Performs the assignment @c *i = @p gen() for each @c i in the range
1110
   *  @p [first,last).
1111
  */
1112
  template<typename _ForwardIterator, typename _Generator>
1113
    void
1114
    generate(_ForwardIterator __first, _ForwardIterator __last,
1115
             _Generator __gen)
1116
    {
1117
      // concept requirements
1118
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1119
      __glibcxx_function_requires(_GeneratorConcept<_Generator,
1120
            typename iterator_traits<_ForwardIterator>::value_type>)
1121
      __glibcxx_requires_valid_range(__first, __last);
1122
 
1123
      for ( ; __first != __last; ++__first)
1124
        *__first = __gen();
1125
    }
1126
 
1127
  /**
1128
   *  @brief Assign the result of a function object to each value in a
1129
   *         sequence.
1130
   *  @param  first  A forward iterator.
1131
   *  @param  n      The length of the sequence.
1132
   *  @param  gen    A function object taking no arguments.
1133
   *  @return   The end of the sequence, @p first+n
1134
   *
1135
   *  Performs the assignment @c *i = @p gen() for each @c i in the range
1136
   *  @p [first,first+n).
1137
  */
1138
  template<typename _OutputIterator, typename _Size, typename _Generator>
1139
    _OutputIterator
1140
    generate_n(_OutputIterator __first, _Size __n, _Generator __gen)
1141
    {
1142
      // concept requirements
1143
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
1144
            // "the type returned by a _Generator"
1145
            __typeof__(__gen())>)
1146
 
1147
      for ( ; __n > 0; --__n, ++__first)
1148
        *__first = __gen();
1149
      return __first;
1150
    }
1151
 
1152
  /**
1153
   *  @brief Copy a sequence, removing elements of a given value.
1154
   *  @param  first   An input iterator.
1155
   *  @param  last    An input iterator.
1156
   *  @param  result  An output iterator.
1157
   *  @param  value   The value to be removed.
1158
   *  @return   An iterator designating the end of the resulting sequence.
1159
   *
1160
   *  Copies each element in the range @p [first,last) not equal to @p value
1161
   *  to the range beginning at @p result.
1162
   *  remove_copy() is stable, so the relative order of elements that are
1163
   *  copied is unchanged.
1164
  */
1165
  template<typename _InputIterator, typename _OutputIterator, typename _Tp>
1166
    _OutputIterator
1167
    remove_copy(_InputIterator __first, _InputIterator __last,
1168
                _OutputIterator __result, const _Tp& __value)
1169
    {
1170
      // concept requirements
1171
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
1172
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
1173
            typename iterator_traits<_InputIterator>::value_type>)
1174
      __glibcxx_function_requires(_EqualOpConcept<
1175
            typename iterator_traits<_InputIterator>::value_type, _Tp>)
1176
      __glibcxx_requires_valid_range(__first, __last);
1177
 
1178
      for ( ; __first != __last; ++__first)
1179
        if (!(*__first == __value))
1180
          {
1181
            *__result = *__first;
1182
            ++__result;
1183
          }
1184
      return __result;
1185
    }
1186
 
1187
  /**
1188
   *  @brief Copy a sequence, removing elements for which a predicate is true.
1189
   *  @param  first   An input iterator.
1190
   *  @param  last    An input iterator.
1191
   *  @param  result  An output iterator.
1192
   *  @param  pred    A predicate.
1193
   *  @return   An iterator designating the end of the resulting sequence.
1194
   *
1195
   *  Copies each element in the range @p [first,last) for which
1196
   *  @p pred returns true to the range beginning at @p result.
1197
   *
1198
   *  remove_copy_if() is stable, so the relative order of elements that are
1199
   *  copied is unchanged.
1200
  */
1201
  template<typename _InputIterator, typename _OutputIterator,
1202
           typename _Predicate>
1203
    _OutputIterator
1204
    remove_copy_if(_InputIterator __first, _InputIterator __last,
1205
                   _OutputIterator __result, _Predicate __pred)
1206
    {
1207
      // concept requirements
1208
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
1209
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
1210
            typename iterator_traits<_InputIterator>::value_type>)
1211
      __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
1212
            typename iterator_traits<_InputIterator>::value_type>)
1213
      __glibcxx_requires_valid_range(__first, __last);
1214
 
1215
      for ( ; __first != __last; ++__first)
1216
        if (!__pred(*__first))
1217
          {
1218
            *__result = *__first;
1219
            ++__result;
1220
          }
1221
      return __result;
1222
    }
1223
 
1224
  /**
1225
   *  @brief Remove elements from a sequence.
1226
   *  @param  first  An input iterator.
1227
   *  @param  last   An input iterator.
1228
   *  @param  value  The value to be removed.
1229
   *  @return   An iterator designating the end of the resulting sequence.
1230
   *
1231
   *  All elements equal to @p value are removed from the range
1232
   *  @p [first,last).
1233
   *
1234
   *  remove() is stable, so the relative order of elements that are
1235
   *  not removed is unchanged.
1236
   *
1237
   *  Elements between the end of the resulting sequence and @p last
1238
   *  are still present, but their value is unspecified.
1239
  */
1240
  template<typename _ForwardIterator, typename _Tp>
1241
    _ForwardIterator
1242
    remove(_ForwardIterator __first, _ForwardIterator __last,
1243
           const _Tp& __value)
1244
    {
1245
      // concept requirements
1246
      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
1247
                                  _ForwardIterator>)
1248
      __glibcxx_function_requires(_EqualOpConcept<
1249
            typename iterator_traits<_ForwardIterator>::value_type, _Tp>)
1250
      __glibcxx_requires_valid_range(__first, __last);
1251
 
1252
      __first = std::find(__first, __last, __value);
1253
      _ForwardIterator __i = __first;
1254
      return __first == __last ? __first
1255
                               : std::remove_copy(++__i, __last,
1256
                                                  __first, __value);
1257
    }
1258
 
1259
  /**
1260
   *  @brief Remove elements from a sequence using a predicate.
1261
   *  @param  first  A forward iterator.
1262
   *  @param  last   A forward iterator.
1263
   *  @param  pred   A predicate.
1264
   *  @return   An iterator designating the end of the resulting sequence.
1265
   *
1266
   *  All elements for which @p pred returns true are removed from the range
1267
   *  @p [first,last).
1268
   *
1269
   *  remove_if() is stable, so the relative order of elements that are
1270
   *  not removed is unchanged.
1271
   *
1272
   *  Elements between the end of the resulting sequence and @p last
1273
   *  are still present, but their value is unspecified.
1274
  */
1275
  template<typename _ForwardIterator, typename _Predicate>
1276
    _ForwardIterator
1277
    remove_if(_ForwardIterator __first, _ForwardIterator __last,
1278
              _Predicate __pred)
1279
    {
1280
      // concept requirements
1281
      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
1282
                                  _ForwardIterator>)
1283
      __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
1284
            typename iterator_traits<_ForwardIterator>::value_type>)
1285
      __glibcxx_requires_valid_range(__first, __last);
1286
 
1287
      __first = std::find_if(__first, __last, __pred);
1288
      _ForwardIterator __i = __first;
1289
      return __first == __last ? __first
1290
                               : std::remove_copy_if(++__i, __last,
1291
                                                     __first, __pred);
1292
    }
1293
 
1294
  /**
1295
   *  @if maint
1296
   *  This is an uglified unique_copy(_InputIterator, _InputIterator,
1297
   *                                  _OutputIterator)
1298
   *  overloaded for output iterators.
1299
   *  @endif
1300
  */
1301
  template<typename _InputIterator, typename _OutputIterator>
1302
    _OutputIterator
1303
    __unique_copy(_InputIterator __first, _InputIterator __last,
1304
                  _OutputIterator __result,
1305
                  output_iterator_tag)
1306
    {
1307
      // concept requirements -- taken care of in dispatching function
1308
      typename iterator_traits<_InputIterator>::value_type __value = *__first;
1309
      *__result = __value;
1310
      while (++__first != __last)
1311
        if (!(__value == *__first))
1312
          {
1313
            __value = *__first;
1314
            *++__result = __value;
1315
          }
1316
      return ++__result;
1317
    }
1318
 
1319
  /**
1320
   *  @if maint
1321
   *  This is an uglified unique_copy(_InputIterator, _InputIterator,
1322
   *                                  _OutputIterator)
1323
   *  overloaded for forward iterators.
1324
   *  @endif
1325
  */
1326
  template<typename _InputIterator, typename _ForwardIterator>
1327
    _ForwardIterator
1328
    __unique_copy(_InputIterator __first, _InputIterator __last,
1329
                  _ForwardIterator __result,
1330
                  forward_iterator_tag)
1331
    {
1332
      // concept requirements -- taken care of in dispatching function
1333
      *__result = *__first;
1334
      while (++__first != __last)
1335
        if (!(*__result == *__first))
1336
          *++__result = *__first;
1337
      return ++__result;
1338
    }
1339
 
1340
  /**
1341
   *  @if maint
1342
   *  This is an uglified
1343
   *  unique_copy(_InputIterator, _InputIterator, _OutputIterator,
1344
   *              _BinaryPredicate)
1345
   *  overloaded for output iterators.
1346
   *  @endif
1347
  */
1348
  template<typename _InputIterator, typename _OutputIterator,
1349
           typename _BinaryPredicate>
1350
    _OutputIterator
1351
    __unique_copy(_InputIterator __first, _InputIterator __last,
1352
                  _OutputIterator __result,
1353
                  _BinaryPredicate __binary_pred,
1354
                  output_iterator_tag)
1355
    {
1356
      // concept requirements -- iterators already checked
1357
      __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
1358
          typename iterator_traits<_InputIterator>::value_type,
1359
          typename iterator_traits<_InputIterator>::value_type>)
1360
 
1361
      typename iterator_traits<_InputIterator>::value_type __value = *__first;
1362
      *__result = __value;
1363
      while (++__first != __last)
1364
        if (!__binary_pred(__value, *__first))
1365
          {
1366
            __value = *__first;
1367
            *++__result = __value;
1368
          }
1369
      return ++__result;
1370
    }
1371
 
1372
  /**
1373
   *  @if maint
1374
   *  This is an uglified
1375
   *  unique_copy(_InputIterator, _InputIterator, _OutputIterator,
1376
   *              _BinaryPredicate)
1377
   *  overloaded for forward iterators.
1378
   *  @endif
1379
  */
1380
  template<typename _InputIterator, typename _ForwardIterator,
1381
           typename _BinaryPredicate>
1382
    _ForwardIterator
1383
    __unique_copy(_InputIterator __first, _InputIterator __last,
1384
                  _ForwardIterator __result,
1385
                  _BinaryPredicate __binary_pred,
1386
                  forward_iterator_tag)
1387
    {
1388
      // concept requirements -- iterators already checked
1389
      __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
1390
            typename iterator_traits<_ForwardIterator>::value_type,
1391
            typename iterator_traits<_InputIterator>::value_type>)
1392
 
1393
      *__result = *__first;
1394
      while (++__first != __last)
1395
        if (!__binary_pred(*__result, *__first)) *++__result = *__first;
1396
      return ++__result;
1397
    }
1398
 
1399
  /**
1400
   *  @brief Copy a sequence, removing consecutive duplicate values.
1401
   *  @param  first   An input iterator.
1402
   *  @param  last    An input iterator.
1403
   *  @param  result  An output iterator.
1404
   *  @return   An iterator designating the end of the resulting sequence.
1405
   *
1406
   *  Copies each element in the range @p [first,last) to the range
1407
   *  beginning at @p result, except that only the first element is copied
1408
   *  from groups of consecutive elements that compare equal.
1409
   *  unique_copy() is stable, so the relative order of elements that are
1410
   *  copied is unchanged.
1411
  */
1412
  template<typename _InputIterator, typename _OutputIterator>
1413
    inline _OutputIterator
1414
    unique_copy(_InputIterator __first, _InputIterator __last,
1415
                _OutputIterator __result)
1416
    {
1417
      // concept requirements
1418
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
1419
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
1420
            typename iterator_traits<_InputIterator>::value_type>)
1421
      __glibcxx_function_requires(_EqualityComparableConcept<
1422
            typename iterator_traits<_InputIterator>::value_type>)
1423
      __glibcxx_requires_valid_range(__first, __last);
1424
 
1425
      typedef typename iterator_traits<_OutputIterator>::iterator_category
1426
        _IterType;
1427
 
1428
      if (__first == __last) return __result;
1429
      return std::__unique_copy(__first, __last, __result, _IterType());
1430
    }
1431
 
1432
  /**
1433
   *  @brief Copy a sequence, removing consecutive values using a predicate.
1434
   *  @param  first        An input iterator.
1435
   *  @param  last         An input iterator.
1436
   *  @param  result       An output iterator.
1437
   *  @param  binary_pred  A binary predicate.
1438
   *  @return   An iterator designating the end of the resulting sequence.
1439
   *
1440
   *  Copies each element in the range @p [first,last) to the range
1441
   *  beginning at @p result, except that only the first element is copied
1442
   *  from groups of consecutive elements for which @p binary_pred returns
1443
   *  true.
1444
   *  unique_copy() is stable, so the relative order of elements that are
1445
   *  copied is unchanged.
1446
  */
1447
  template<typename _InputIterator, typename _OutputIterator,
1448
           typename _BinaryPredicate>
1449
    inline _OutputIterator
1450
    unique_copy(_InputIterator __first, _InputIterator __last,
1451
                _OutputIterator __result,
1452
                _BinaryPredicate __binary_pred)
1453
    {
1454
      // concept requirements -- predicates checked later
1455
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
1456
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
1457
            typename iterator_traits<_InputIterator>::value_type>)
1458
      __glibcxx_requires_valid_range(__first, __last);
1459
 
1460
      typedef typename iterator_traits<_OutputIterator>::iterator_category
1461
        _IterType;
1462
 
1463
      if (__first == __last) return __result;
1464
      return std::__unique_copy(__first, __last, __result,
1465
                                __binary_pred, _IterType());
1466
    }
1467
 
1468
  /**
1469
   *  @brief Remove consecutive duplicate values from a sequence.
1470
   *  @param  first  A forward iterator.
1471
   *  @param  last   A forward iterator.
1472
   *  @return  An iterator designating the end of the resulting sequence.
1473
   *
1474
   *  Removes all but the first element from each group of consecutive
1475
   *  values that compare equal.
1476
   *  unique() is stable, so the relative order of elements that are
1477
   *  not removed is unchanged.
1478
   *  Elements between the end of the resulting sequence and @p last
1479
   *  are still present, but their value is unspecified.
1480
  */
1481
  template<typename _ForwardIterator>
1482
    _ForwardIterator
1483
    unique(_ForwardIterator __first, _ForwardIterator __last)
1484
    {
1485
      // concept requirements
1486
      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
1487
                                  _ForwardIterator>)
1488
      __glibcxx_function_requires(_EqualityComparableConcept<
1489
                     typename iterator_traits<_ForwardIterator>::value_type>)
1490
      __glibcxx_requires_valid_range(__first, __last);
1491
 
1492
      // Skip the beginning, if already unique.
1493
      __first = std::adjacent_find(__first, __last);
1494
      if (__first == __last)
1495
        return __last;
1496
 
1497
      // Do the real copy work.
1498
      _ForwardIterator __dest = __first;
1499
      ++__first;
1500
      while (++__first != __last)
1501
        if (!(*__dest == *__first))
1502
          *++__dest = *__first;
1503
      return ++__dest;
1504
    }
1505
 
1506
  /**
1507
   *  @brief Remove consecutive values from a sequence using a predicate.
1508
   *  @param  first        A forward iterator.
1509
   *  @param  last         A forward iterator.
1510
   *  @param  binary_pred  A binary predicate.
1511
   *  @return  An iterator designating the end of the resulting sequence.
1512
   *
1513
   *  Removes all but the first element from each group of consecutive
1514
   *  values for which @p binary_pred returns true.
1515
   *  unique() is stable, so the relative order of elements that are
1516
   *  not removed is unchanged.
1517
   *  Elements between the end of the resulting sequence and @p last
1518
   *  are still present, but their value is unspecified.
1519
  */
1520
  template<typename _ForwardIterator, typename _BinaryPredicate>
1521
    _ForwardIterator
1522
    unique(_ForwardIterator __first, _ForwardIterator __last,
1523
           _BinaryPredicate __binary_pred)
1524
    {
1525
      // concept requirements
1526
      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
1527
                                  _ForwardIterator>)
1528
      __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
1529
                typename iterator_traits<_ForwardIterator>::value_type,
1530
                typename iterator_traits<_ForwardIterator>::value_type>)
1531
      __glibcxx_requires_valid_range(__first, __last);
1532
 
1533
      // Skip the beginning, if already unique.
1534
      __first = std::adjacent_find(__first, __last, __binary_pred);
1535
      if (__first == __last)
1536
        return __last;
1537
 
1538
      // Do the real copy work.
1539
      _ForwardIterator __dest = __first;
1540
      ++__first;
1541
      while (++__first != __last)
1542
        if (!__binary_pred(*__dest, *__first))
1543
          *++__dest = *__first;
1544
      return ++__dest;
1545
    }
1546
 
1547
  /**
1548
   *  @if maint
1549
   *  This is an uglified reverse(_BidirectionalIterator,
1550
   *                              _BidirectionalIterator)
1551
   *  overloaded for bidirectional iterators.
1552
   *  @endif
1553
  */
1554
  template<typename _BidirectionalIterator>
1555
    void
1556
    __reverse(_BidirectionalIterator __first, _BidirectionalIterator __last,
1557
              bidirectional_iterator_tag)
1558
    {
1559
      while (true)
1560
        if (__first == __last || __first == --__last)
1561
          return;
1562
        else
1563
          {
1564
            std::iter_swap(__first, __last);
1565
            ++__first;
1566
          }
1567
    }
1568
 
1569
  /**
1570
   *  @if maint
1571
   *  This is an uglified reverse(_BidirectionalIterator,
1572
   *                              _BidirectionalIterator)
1573
   *  overloaded for random access iterators.
1574
   *  @endif
1575
  */
1576
  template<typename _RandomAccessIterator>
1577
    void
1578
    __reverse(_RandomAccessIterator __first, _RandomAccessIterator __last,
1579
              random_access_iterator_tag)
1580
    {
1581
      if (__first == __last)
1582
        return;
1583
      --__last;
1584
      while (__first < __last)
1585
        {
1586
          std::iter_swap(__first, __last);
1587
          ++__first;
1588
          --__last;
1589
        }
1590
    }
1591
 
1592
  /**
1593
   *  @brief Reverse a sequence.
1594
   *  @param  first  A bidirectional iterator.
1595
   *  @param  last   A bidirectional iterator.
1596
   *  @return   reverse() returns no value.
1597
   *
1598
   *  Reverses the order of the elements in the range @p [first,last),
1599
   *  so that the first element becomes the last etc.
1600
   *  For every @c i such that @p 0<=i<=(last-first)/2), @p reverse()
1601
   *  swaps @p *(first+i) and @p *(last-(i+1))
1602
  */
1603
  template<typename _BidirectionalIterator>
1604
    inline void
1605
    reverse(_BidirectionalIterator __first, _BidirectionalIterator __last)
1606
    {
1607
      // concept requirements
1608
      __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<
1609
                                  _BidirectionalIterator>)
1610
      __glibcxx_requires_valid_range(__first, __last);
1611
      std::__reverse(__first, __last, std::__iterator_category(__first));
1612
    }
1613
 
1614
  /**
1615
   *  @brief Copy a sequence, reversing its elements.
1616
   *  @param  first   A bidirectional iterator.
1617
   *  @param  last    A bidirectional iterator.
1618
   *  @param  result  An output iterator.
1619
   *  @return  An iterator designating the end of the resulting sequence.
1620
   *
1621
   *  Copies the elements in the range @p [first,last) to the range
1622
   *  @p [result,result+(last-first)) such that the order of the
1623
   *  elements is reversed.
1624
   *  For every @c i such that @p 0<=i<=(last-first), @p reverse_copy()
1625
   *  performs the assignment @p *(result+(last-first)-i) = *(first+i).
1626
   *  The ranges @p [first,last) and @p [result,result+(last-first))
1627
   *  must not overlap.
1628
  */
1629
  template<typename _BidirectionalIterator, typename _OutputIterator>
1630
    _OutputIterator
1631
    reverse_copy(_BidirectionalIterator __first, _BidirectionalIterator __last,
1632
                             _OutputIterator __result)
1633
    {
1634
      // concept requirements
1635
      __glibcxx_function_requires(_BidirectionalIteratorConcept<
1636
                                  _BidirectionalIterator>)
1637
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
1638
                typename iterator_traits<_BidirectionalIterator>::value_type>)
1639
      __glibcxx_requires_valid_range(__first, __last);
1640
 
1641
      while (__first != __last)
1642
        {
1643
          --__last;
1644
          *__result = *__last;
1645
          ++__result;
1646
        }
1647
      return __result;
1648
    }
1649
 
1650
 
1651
  /**
1652
   *  @if maint
1653
   *  This is a helper function for the rotate algorithm specialized on RAIs.
1654
   *  It returns the greatest common divisor of two integer values.
1655
   *  @endif
1656
  */
1657
  template<typename _EuclideanRingElement>
1658
    _EuclideanRingElement
1659
    __gcd(_EuclideanRingElement __m, _EuclideanRingElement __n)
1660
    {
1661
      while (__n != 0)
1662
        {
1663
          _EuclideanRingElement __t = __m % __n;
1664
          __m = __n;
1665
          __n = __t;
1666
        }
1667
      return __m;
1668
    }
1669
 
1670
  /**
1671
   *  @if maint
1672
   *  This is a helper function for the rotate algorithm.
1673
   *  @endif
1674
  */
1675
  template<typename _ForwardIterator>
1676
    void
1677
    __rotate(_ForwardIterator __first,
1678
             _ForwardIterator __middle,
1679
             _ForwardIterator __last,
1680
             forward_iterator_tag)
1681
    {
1682
      if (__first == __middle || __last  == __middle)
1683
        return;
1684
 
1685
      _ForwardIterator __first2 = __middle;
1686
      do
1687
        {
1688
          swap(*__first, *__first2);
1689
          ++__first;
1690
          ++__first2;
1691
          if (__first == __middle)
1692
            __middle = __first2;
1693
        }
1694
      while (__first2 != __last);
1695
 
1696
      __first2 = __middle;
1697
 
1698
      while (__first2 != __last)
1699
        {
1700
          swap(*__first, *__first2);
1701
          ++__first;
1702
          ++__first2;
1703
          if (__first == __middle)
1704
            __middle = __first2;
1705
          else if (__first2 == __last)
1706
            __first2 = __middle;
1707
        }
1708
    }
1709
 
1710
  /**
1711
   *  @if maint
1712
   *  This is a helper function for the rotate algorithm.
1713
   *  @endif
1714
  */
1715
  template<typename _BidirectionalIterator>
1716
    void
1717
    __rotate(_BidirectionalIterator __first,
1718
             _BidirectionalIterator __middle,
1719
             _BidirectionalIterator __last,
1720
              bidirectional_iterator_tag)
1721
    {
1722
      // concept requirements
1723
      __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<
1724
                                  _BidirectionalIterator>)
1725
 
1726
      if (__first == __middle || __last  == __middle)
1727
        return;
1728
 
1729
      std::__reverse(__first,  __middle, bidirectional_iterator_tag());
1730
      std::__reverse(__middle, __last,   bidirectional_iterator_tag());
1731
 
1732
      while (__first != __middle && __middle != __last)
1733
        {
1734
          swap(*__first, *--__last);
1735
          ++__first;
1736
        }
1737
 
1738
      if (__first == __middle)
1739
        std::__reverse(__middle, __last,   bidirectional_iterator_tag());
1740
      else
1741
        std::__reverse(__first,  __middle, bidirectional_iterator_tag());
1742
    }
1743
 
1744
  /**
1745
   *  @if maint
1746
   *  This is a helper function for the rotate algorithm.
1747
   *  @endif
1748
  */
1749
  template<typename _RandomAccessIterator>
1750
    void
1751
    __rotate(_RandomAccessIterator __first,
1752
             _RandomAccessIterator __middle,
1753
             _RandomAccessIterator __last,
1754
             random_access_iterator_tag)
1755
    {
1756
      // concept requirements
1757
      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
1758
                                  _RandomAccessIterator>)
1759
 
1760
      if (__first == __middle || __last  == __middle)
1761
        return;
1762
 
1763
      typedef typename iterator_traits<_RandomAccessIterator>::difference_type
1764
        _Distance;
1765
      typedef typename iterator_traits<_RandomAccessIterator>::value_type
1766
        _ValueType;
1767
 
1768
      const _Distance __n = __last   - __first;
1769
      const _Distance __k = __middle - __first;
1770
      const _Distance __l = __n - __k;
1771
 
1772
      if (__k == __l)
1773
        {
1774
          std::swap_ranges(__first, __middle, __middle);
1775
          return;
1776
        }
1777
 
1778
      const _Distance __d = __gcd(__n, __k);
1779
 
1780
      for (_Distance __i = 0; __i < __d; __i++)
1781
        {
1782
          _ValueType __tmp = *__first;
1783
          _RandomAccessIterator __p = __first;
1784
 
1785
          if (__k < __l)
1786
            {
1787
              for (_Distance __j = 0; __j < __l / __d; __j++)
1788
                {
1789
                  if (__p > __first + __l)
1790
                    {
1791
                      *__p = *(__p - __l);
1792
                      __p -= __l;
1793
                    }
1794
 
1795
                  *__p = *(__p + __k);
1796
                  __p += __k;
1797
                }
1798
            }
1799
          else
1800
            {
1801
              for (_Distance __j = 0; __j < __k / __d - 1; __j ++)
1802
                {
1803
                  if (__p < __last - __k)
1804
                    {
1805
                      *__p = *(__p + __k);
1806
                      __p += __k;
1807
                    }
1808
                  *__p = * (__p - __l);
1809
                  __p -= __l;
1810
                }
1811
            }
1812
 
1813
          *__p = __tmp;
1814
          ++__first;
1815
        }
1816
    }
1817
 
1818
  /**
1819
   *  @brief Rotate the elements of a sequence.
1820
   *  @param  first   A forward iterator.
1821
   *  @param  middle  A forward iterator.
1822
   *  @param  last    A forward iterator.
1823
   *  @return  Nothing.
1824
   *
1825
   *  Rotates the elements of the range @p [first,last) by @p (middle-first)
1826
   *  positions so that the element at @p middle is moved to @p first, the
1827
   *  element at @p middle+1 is moved to @first+1 and so on for each element
1828
   *  in the range @p [first,last).
1829
   *
1830
   *  This effectively swaps the ranges @p [first,middle) and
1831
   *  @p [middle,last).
1832
   *
1833
   *  Performs @p *(first+(n+(last-middle))%(last-first))=*(first+n) for
1834
   *  each @p n in the range @p [0,last-first).
1835
  */
1836
  template<typename _ForwardIterator>
1837
    inline void
1838
    rotate(_ForwardIterator __first, _ForwardIterator __middle,
1839
           _ForwardIterator __last)
1840
    {
1841
      // concept requirements
1842
      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
1843
                                  _ForwardIterator>)
1844
      __glibcxx_requires_valid_range(__first, __middle);
1845
      __glibcxx_requires_valid_range(__middle, __last);
1846
 
1847
      typedef typename iterator_traits<_ForwardIterator>::iterator_category
1848
        _IterType;
1849
      std::__rotate(__first, __middle, __last, _IterType());
1850
    }
1851
 
1852
  /**
1853
   *  @brief Copy a sequence, rotating its elements.
1854
   *  @param  first   A forward iterator.
1855
   *  @param  middle  A forward iterator.
1856
   *  @param  last    A forward iterator.
1857
   *  @param  result  An output iterator.
1858
   *  @return   An iterator designating the end of the resulting sequence.
1859
   *
1860
   *  Copies the elements of the range @p [first,last) to the range
1861
   *  beginning at @result, rotating the copied elements by @p (middle-first)
1862
   *  positions so that the element at @p middle is moved to @p result, the
1863
   *  element at @p middle+1 is moved to @result+1 and so on for each element
1864
   *  in the range @p [first,last).
1865
   *
1866
   *  Performs @p *(result+(n+(last-middle))%(last-first))=*(first+n) for
1867
   *  each @p n in the range @p [0,last-first).
1868
  */
1869
  template<typename _ForwardIterator, typename _OutputIterator>
1870
    _OutputIterator
1871
    rotate_copy(_ForwardIterator __first, _ForwardIterator __middle,
1872
                _ForwardIterator __last, _OutputIterator __result)
1873
    {
1874
      // concept requirements
1875
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1876
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
1877
                typename iterator_traits<_ForwardIterator>::value_type>)
1878
      __glibcxx_requires_valid_range(__first, __middle);
1879
      __glibcxx_requires_valid_range(__middle, __last);
1880
 
1881
      return std::copy(__first, __middle,
1882
                       std::copy(__middle, __last, __result));
1883
    }
1884
 
1885
  /**
1886
   *  @brief Randomly shuffle the elements of a sequence.
1887
   *  @param  first   A forward iterator.
1888
   *  @param  last    A forward iterator.
1889
   *  @return  Nothing.
1890
   *
1891
   *  Reorder the elements in the range @p [first,last) using a random
1892
   *  distribution, so that every possible ordering of the sequence is
1893
   *  equally likely.
1894
  */
1895
  template<typename _RandomAccessIterator>
1896
    inline void
1897
    random_shuffle(_RandomAccessIterator __first, _RandomAccessIterator __last)
1898
    {
1899
      // concept requirements
1900
      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
1901
            _RandomAccessIterator>)
1902
      __glibcxx_requires_valid_range(__first, __last);
1903
 
1904
      if (__first != __last)
1905
        for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i)
1906
          std::iter_swap(__i, __first + (std::rand() % ((__i - __first) + 1)));
1907
    }
1908
 
1909
  /**
1910
   *  @brief Shuffle the elements of a sequence using a random number
1911
   *         generator.
1912
   *  @param  first   A forward iterator.
1913
   *  @param  last    A forward iterator.
1914
   *  @param  rand    The RNG functor or function.
1915
   *  @return  Nothing.
1916
   *
1917
   *  Reorders the elements in the range @p [first,last) using @p rand to
1918
   *  provide a random distribution. Calling @p rand(N) for a positive
1919
   *  integer @p N should return a randomly chosen integer from the
1920
   *  range [0,N).
1921
  */
1922
  template<typename _RandomAccessIterator, typename _RandomNumberGenerator>
1923
    void
1924
    random_shuffle(_RandomAccessIterator __first, _RandomAccessIterator __last,
1925
                   _RandomNumberGenerator& __rand)
1926
    {
1927
      // concept requirements
1928
      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
1929
            _RandomAccessIterator>)
1930
      __glibcxx_requires_valid_range(__first, __last);
1931
 
1932
      if (__first == __last)
1933
        return;
1934
      for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i)
1935
        std::iter_swap(__i, __first + __rand((__i - __first) + 1));
1936
    }
1937
 
1938
 
1939
  /**
1940
   *  @if maint
1941
   *  This is a helper function...
1942
   *  @endif
1943
  */
1944
  template<typename _ForwardIterator, typename _Predicate>
1945
    _ForwardIterator
1946
    __partition(_ForwardIterator __first, _ForwardIterator __last,
1947
                _Predicate __pred,
1948
                forward_iterator_tag)
1949
    {
1950
      if (__first == __last)
1951
        return __first;
1952
 
1953
      while (__pred(*__first))
1954
        if (++__first == __last)
1955
          return __first;
1956
 
1957
      _ForwardIterator __next = __first;
1958
 
1959
      while (++__next != __last)
1960
        if (__pred(*__next))
1961
          {
1962
            swap(*__first, *__next);
1963
            ++__first;
1964
          }
1965
 
1966
      return __first;
1967
    }
1968
 
1969
  /**
1970
   *  @if maint
1971
   *  This is a helper function...
1972
   *  @endif
1973
  */
1974
  template<typename _BidirectionalIterator, typename _Predicate>
1975
    _BidirectionalIterator
1976
    __partition(_BidirectionalIterator __first, _BidirectionalIterator __last,
1977
                _Predicate __pred,
1978
                bidirectional_iterator_tag)
1979
    {
1980
      while (true)
1981
        {
1982
          while (true)
1983
            if (__first == __last)
1984
              return __first;
1985
            else if (__pred(*__first))
1986
              ++__first;
1987
            else
1988
              break;
1989
          --__last;
1990
          while (true)
1991
            if (__first == __last)
1992
              return __first;
1993
            else if (!__pred(*__last))
1994
              --__last;
1995
            else
1996
              break;
1997
          std::iter_swap(__first, __last);
1998
          ++__first;
1999
        }
2000
    }
2001
 
2002
  /**
2003
   *  @brief Move elements for which a predicate is true to the beginning
2004
   *         of a sequence.
2005
   *  @param  first   A forward iterator.
2006
   *  @param  last    A forward iterator.
2007
   *  @param  pred    A predicate functor.
2008
   *  @return  An iterator @p middle such that @p pred(i) is true for each
2009
   *  iterator @p i in the range @p [first,middle) and false for each @p i
2010
   *  in the range @p [middle,last).
2011
   *
2012
   *  @p pred must not modify its operand. @p partition() does not preserve
2013
   *  the relative ordering of elements in each group, use
2014
   *  @p stable_partition() if this is needed.
2015
  */
2016
  template<typename _ForwardIterator, typename _Predicate>
2017
    inline _ForwardIterator
2018
    partition(_ForwardIterator __first, _ForwardIterator __last,
2019
              _Predicate   __pred)
2020
    {
2021
      // concept requirements
2022
      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
2023
                                  _ForwardIterator>)
2024
      __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
2025
            typename iterator_traits<_ForwardIterator>::value_type>)
2026
      __glibcxx_requires_valid_range(__first, __last);
2027
 
2028
      return std::__partition(__first, __last, __pred,
2029
                              std::__iterator_category(__first));
2030
    }
2031
 
2032
 
2033
  /**
2034
   *  @if maint
2035
   *  This is a helper function...
2036
   *  @endif
2037
  */
2038
  template<typename _ForwardIterator, typename _Predicate, typename _Distance>
2039
    _ForwardIterator
2040
    __inplace_stable_partition(_ForwardIterator __first,
2041
                               _ForwardIterator __last,
2042
                               _Predicate __pred, _Distance __len)
2043
    {
2044
      if (__len == 1)
2045
        return __pred(*__first) ? __last : __first;
2046
      _ForwardIterator __middle = __first;
2047
      std::advance(__middle, __len / 2);
2048
      _ForwardIterator __begin = std::__inplace_stable_partition(__first,
2049
                                                                 __middle,
2050
                                                                 __pred,
2051
                                                                 __len / 2);
2052
      _ForwardIterator __end = std::__inplace_stable_partition(__middle, __last,
2053
                                                               __pred,
2054
                                                               __len
2055
                                                               - __len / 2);
2056
      std::rotate(__begin, __middle, __end);
2057
      std::advance(__begin, std::distance(__middle, __end));
2058
      return __begin;
2059
    }
2060
 
2061
  /**
2062
   *  @if maint
2063
   *  This is a helper function...
2064
   *  @endif
2065
  */
2066
  template<typename _ForwardIterator, typename _Pointer, typename _Predicate,
2067
           typename _Distance>
2068
    _ForwardIterator
2069
    __stable_partition_adaptive(_ForwardIterator __first,
2070
                                _ForwardIterator __last,
2071
                                _Predicate __pred, _Distance __len,
2072
                                _Pointer __buffer,
2073
                                _Distance __buffer_size)
2074
    {
2075
      if (__len <= __buffer_size)
2076
        {
2077
          _ForwardIterator __result1 = __first;
2078
          _Pointer __result2 = __buffer;
2079
          for ( ; __first != __last ; ++__first)
2080
            if (__pred(*__first))
2081
              {
2082
                *__result1 = *__first;
2083
                ++__result1;
2084
              }
2085
            else
2086
              {
2087
                *__result2 = *__first;
2088
                ++__result2;
2089
              }
2090
          std::copy(__buffer, __result2, __result1);
2091
          return __result1;
2092
        }
2093
      else
2094
        {
2095
          _ForwardIterator __middle = __first;
2096
          std::advance(__middle, __len / 2);
2097
          _ForwardIterator __begin =
2098
            std::__stable_partition_adaptive(__first, __middle, __pred,
2099
                                             __len / 2, __buffer,
2100
                                             __buffer_size);
2101
          _ForwardIterator __end =
2102
            std::__stable_partition_adaptive(__middle, __last, __pred,
2103
                                             __len - __len / 2,
2104
                                             __buffer, __buffer_size);
2105
          std::rotate(__begin, __middle, __end);
2106
          std::advance(__begin, std::distance(__middle, __end));
2107
          return __begin;
2108
        }
2109
    }
2110
 
2111
  /**
2112
   *  @brief Move elements for which a predicate is true to the beginning
2113
   *         of a sequence, preserving relative ordering.
2114
   *  @param  first   A forward iterator.
2115
   *  @param  last    A forward iterator.
2116
   *  @param  pred    A predicate functor.
2117
   *  @return  An iterator @p middle such that @p pred(i) is true for each
2118
   *  iterator @p i in the range @p [first,middle) and false for each @p i
2119
   *  in the range @p [middle,last).
2120
   *
2121
   *  Performs the same function as @p partition() with the additional
2122
   *  guarantee that the relative ordering of elements in each group is
2123
   *  preserved, so any two elements @p x and @p y in the range
2124
   *  @p [first,last) such that @p pred(x)==pred(y) will have the same
2125
   *  relative ordering after calling @p stable_partition().
2126
  */
2127
  template<typename _ForwardIterator, typename _Predicate>
2128
    _ForwardIterator
2129
    stable_partition(_ForwardIterator __first, _ForwardIterator __last,
2130
                     _Predicate __pred)
2131
    {
2132
      // concept requirements
2133
      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
2134
                                  _ForwardIterator>)
2135
      __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
2136
            typename iterator_traits<_ForwardIterator>::value_type>)
2137
      __glibcxx_requires_valid_range(__first, __last);
2138
 
2139
      if (__first == __last)
2140
        return __first;
2141
      else
2142
        {
2143
          typedef typename iterator_traits<_ForwardIterator>::value_type
2144
            _ValueType;
2145
          typedef typename iterator_traits<_ForwardIterator>::difference_type
2146
            _DistanceType;
2147
 
2148
          _Temporary_buffer<_ForwardIterator, _ValueType> __buf(__first,
2149
                                                                __last);
2150
        if (__buf.size() > 0)
2151
          return
2152
            std::__stable_partition_adaptive(__first, __last, __pred,
2153
                                          _DistanceType(__buf.requested_size()),
2154
                                          __buf.begin(), __buf.size());
2155
        else
2156
          return
2157
            std::__inplace_stable_partition(__first, __last, __pred,
2158
                                         _DistanceType(__buf.requested_size()));
2159
        }
2160
    }
2161
 
2162
  /**
2163
   *  @if maint
2164
   *  This is a helper function...
2165
   *  @endif
2166
  */
2167
  template<typename _RandomAccessIterator, typename _Tp>
2168
    _RandomAccessIterator
2169
    __unguarded_partition(_RandomAccessIterator __first,
2170
                          _RandomAccessIterator __last, _Tp __pivot)
2171
    {
2172
      while (true)
2173
        {
2174
          while (*__first < __pivot)
2175
            ++__first;
2176
          --__last;
2177
          while (__pivot < *__last)
2178
            --__last;
2179
          if (!(__first < __last))
2180
            return __first;
2181
          std::iter_swap(__first, __last);
2182
          ++__first;
2183
        }
2184
    }
2185
 
2186
  /**
2187
   *  @if maint
2188
   *  This is a helper function...
2189
   *  @endif
2190
  */
2191
  template<typename _RandomAccessIterator, typename _Tp, typename _Compare>
2192
    _RandomAccessIterator
2193
    __unguarded_partition(_RandomAccessIterator __first,
2194
                          _RandomAccessIterator __last,
2195
                          _Tp __pivot, _Compare __comp)
2196
    {
2197
      while (true)
2198
        {
2199
          while (__comp(*__first, __pivot))
2200
            ++__first;
2201
          --__last;
2202
          while (__comp(__pivot, *__last))
2203
            --__last;
2204
          if (!(__first < __last))
2205
            return __first;
2206
          std::iter_swap(__first, __last);
2207
          ++__first;
2208
        }
2209
    }
2210
 
2211
  /**
2212
   *  @if maint
2213
   *  @doctodo
2214
   *  This controls some aspect of the sort routines.
2215
   *  @endif
2216
  */
2217
  enum { _S_threshold = 16 };
2218
 
2219
  /**
2220
   *  @if maint
2221
   *  This is a helper function for the sort routine.
2222
   *  @endif
2223
  */
2224
  template<typename _RandomAccessIterator, typename _Tp>
2225
    void
2226
    __unguarded_linear_insert(_RandomAccessIterator __last, _Tp __val)
2227
    {
2228
      _RandomAccessIterator __next = __last;
2229
      --__next;
2230
      while (__val < *__next)
2231
        {
2232
          *__last = *__next;
2233
          __last = __next;
2234
          --__next;
2235
        }
2236
      *__last = __val;
2237
    }
2238
 
2239
  /**
2240
   *  @if maint
2241
   *  This is a helper function for the sort routine.
2242
   *  @endif
2243
  */
2244
  template<typename _RandomAccessIterator, typename _Tp, typename _Compare>
2245
    void
2246
    __unguarded_linear_insert(_RandomAccessIterator __last, _Tp __val,
2247
                              _Compare __comp)
2248
    {
2249
      _RandomAccessIterator __next = __last;
2250
      --__next;
2251
      while (__comp(__val, *__next))
2252
        {
2253
          *__last = *__next;
2254
          __last = __next;
2255
          --__next;
2256
        }
2257
      *__last = __val;
2258
    }
2259
 
2260
  /**
2261
   *  @if maint
2262
   *  This is a helper function for the sort routine.
2263
   *  @endif
2264
  */
2265
  template<typename _RandomAccessIterator>
2266
    void
2267
    __insertion_sort(_RandomAccessIterator __first,
2268
                     _RandomAccessIterator __last)
2269
    {
2270
      if (__first == __last)
2271
        return;
2272
 
2273
      for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i)
2274
        {
2275
          typename iterator_traits<_RandomAccessIterator>::value_type
2276
            __val = *__i;
2277
          if (__val < *__first)
2278
            {
2279
              std::copy_backward(__first, __i, __i + 1);
2280
              *__first = __val;
2281
            }
2282
          else
2283
            std::__unguarded_linear_insert(__i, __val);
2284
        }
2285
    }
2286
 
2287
  /**
2288
   *  @if maint
2289
   *  This is a helper function for the sort routine.
2290
   *  @endif
2291
  */
2292
  template<typename _RandomAccessIterator, typename _Compare>
2293
    void
2294
    __insertion_sort(_RandomAccessIterator __first,
2295
                     _RandomAccessIterator __last, _Compare __comp)
2296
    {
2297
      if (__first == __last) return;
2298
 
2299
      for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i)
2300
        {
2301
          typename iterator_traits<_RandomAccessIterator>::value_type
2302
            __val = *__i;
2303
          if (__comp(__val, *__first))
2304
            {
2305
              std::copy_backward(__first, __i, __i + 1);
2306
              *__first = __val;
2307
            }
2308
          else
2309
            std::__unguarded_linear_insert(__i, __val, __comp);
2310
        }
2311
    }
2312
 
2313
  /**
2314
   *  @if maint
2315
   *  This is a helper function for the sort routine.
2316
   *  @endif
2317
  */
2318
  template<typename _RandomAccessIterator>
2319
    inline void
2320
    __unguarded_insertion_sort(_RandomAccessIterator __first,
2321
                               _RandomAccessIterator __last)
2322
    {
2323
      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2324
        _ValueType;
2325
 
2326
      for (_RandomAccessIterator __i = __first; __i != __last; ++__i)
2327
        std::__unguarded_linear_insert(__i, _ValueType(*__i));
2328
    }
2329
 
2330
  /**
2331
   *  @if maint
2332
   *  This is a helper function for the sort routine.
2333
   *  @endif
2334
  */
2335
  template<typename _RandomAccessIterator, typename _Compare>
2336
    inline void
2337
    __unguarded_insertion_sort(_RandomAccessIterator __first,
2338
                               _RandomAccessIterator __last, _Compare __comp)
2339
    {
2340
      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2341
        _ValueType;
2342
 
2343
      for (_RandomAccessIterator __i = __first; __i != __last; ++__i)
2344
        std::__unguarded_linear_insert(__i, _ValueType(*__i), __comp);
2345
    }
2346
 
2347
  /**
2348
   *  @if maint
2349
   *  This is a helper function for the sort routine.
2350
   *  @endif
2351
  */
2352
  template<typename _RandomAccessIterator>
2353
    void
2354
    __final_insertion_sort(_RandomAccessIterator __first,
2355
                           _RandomAccessIterator __last)
2356
    {
2357
      if (__last - __first > int(_S_threshold))
2358
        {
2359
          std::__insertion_sort(__first, __first + int(_S_threshold));
2360
          std::__unguarded_insertion_sort(__first + int(_S_threshold), __last);
2361
        }
2362
      else
2363
        std::__insertion_sort(__first, __last);
2364
    }
2365
 
2366
  /**
2367
   *  @if maint
2368
   *  This is a helper function for the sort routine.
2369
   *  @endif
2370
  */
2371
  template<typename _RandomAccessIterator, typename _Compare>
2372
    void
2373
    __final_insertion_sort(_RandomAccessIterator __first,
2374
                           _RandomAccessIterator __last, _Compare __comp)
2375
    {
2376
      if (__last - __first > int(_S_threshold))
2377
        {
2378
          std::__insertion_sort(__first, __first + int(_S_threshold), __comp);
2379
          std::__unguarded_insertion_sort(__first + int(_S_threshold), __last,
2380
                                          __comp);
2381
        }
2382
      else
2383
        std::__insertion_sort(__first, __last, __comp);
2384
    }
2385
 
2386
  /**
2387
   *  @if maint
2388
   *  This is a helper function for the sort routine.
2389
   *  @endif
2390
  */
2391
  template<typename _Size>
2392
    inline _Size
2393
    __lg(_Size __n)
2394
    {
2395
      _Size __k;
2396
      for (__k = 0; __n != 1; __n >>= 1)
2397
        ++__k;
2398
      return __k;
2399
    }
2400
 
2401
  /**
2402
   *  @brief Sort the smallest elements of a sequence.
2403
   *  @param  first   An iterator.
2404
   *  @param  middle  Another iterator.
2405
   *  @param  last    Another iterator.
2406
   *  @return  Nothing.
2407
   *
2408
   *  Sorts the smallest @p (middle-first) elements in the range
2409
   *  @p [first,last) and moves them to the range @p [first,middle). The
2410
   *  order of the remaining elements in the range @p [middle,last) is
2411
   *  undefined.
2412
   *  After the sort if @p i and @j are iterators in the range
2413
   *  @p [first,middle) such that @i precedes @j and @k is an iterator in
2414
   *  the range @p [middle,last) then @p *j<*i and @p *k<*i are both false.
2415
  */
2416
  template<typename _RandomAccessIterator>
2417
    void
2418
    partial_sort(_RandomAccessIterator __first,
2419
                 _RandomAccessIterator __middle,
2420
                 _RandomAccessIterator __last)
2421
    {
2422
      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2423
        _ValueType;
2424
 
2425
      // concept requirements
2426
      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
2427
            _RandomAccessIterator>)
2428
      __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>)
2429
      __glibcxx_requires_valid_range(__first, __middle);
2430
      __glibcxx_requires_valid_range(__middle, __last);
2431
 
2432
      std::make_heap(__first, __middle);
2433
      for (_RandomAccessIterator __i = __middle; __i < __last; ++__i)
2434
        if (*__i < *__first)
2435
          std::__pop_heap(__first, __middle, __i, _ValueType(*__i));
2436
      std::sort_heap(__first, __middle);
2437
    }
2438
 
2439
  /**
2440
   *  @brief Sort the smallest elements of a sequence using a predicate
2441
   *         for comparison.
2442
   *  @param  first   An iterator.
2443
   *  @param  middle  Another iterator.
2444
   *  @param  last    Another iterator.
2445
   *  @param  comp    A comparison functor.
2446
   *  @return  Nothing.
2447
   *
2448
   *  Sorts the smallest @p (middle-first) elements in the range
2449
   *  @p [first,last) and moves them to the range @p [first,middle). The
2450
   *  order of the remaining elements in the range @p [middle,last) is
2451
   *  undefined.
2452
   *  After the sort if @p i and @j are iterators in the range
2453
   *  @p [first,middle) such that @i precedes @j and @k is an iterator in
2454
   *  the range @p [middle,last) then @p *comp(j,*i) and @p comp(*k,*i)
2455
   *  are both false.
2456
  */
2457
  template<typename _RandomAccessIterator, typename _Compare>
2458
    void
2459
    partial_sort(_RandomAccessIterator __first,
2460
                 _RandomAccessIterator __middle,
2461
                 _RandomAccessIterator __last,
2462
                 _Compare __comp)
2463
    {
2464
      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2465
        _ValueType;
2466
 
2467
      // concept requirements
2468
      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
2469
            _RandomAccessIterator>)
2470
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
2471
                                  _ValueType, _ValueType>)
2472
      __glibcxx_requires_valid_range(__first, __middle);
2473
      __glibcxx_requires_valid_range(__middle, __last);
2474
 
2475
      std::make_heap(__first, __middle, __comp);
2476
      for (_RandomAccessIterator __i = __middle; __i < __last; ++__i)
2477
        if (__comp(*__i, *__first))
2478
          std::__pop_heap(__first, __middle, __i, _ValueType(*__i), __comp);
2479
      std::sort_heap(__first, __middle, __comp);
2480
    }
2481
 
2482
  /**
2483
   *  @brief Copy the smallest elements of a sequence.
2484
   *  @param  first   An iterator.
2485
   *  @param  last    Another iterator.
2486
   *  @param  result_first   A random-access iterator.
2487
   *  @param  result_last    Another random-access iterator.
2488
   *  @return   An iterator indicating the end of the resulting sequence.
2489
   *
2490
   *  Copies and sorts the smallest N values from the range @p [first,last)
2491
   *  to the range beginning at @p result_first, where the number of
2492
   *  elements to be copied, @p N, is the smaller of @p (last-first) and
2493
   *  @p (result_last-result_first).
2494
   *  After the sort if @p i and @j are iterators in the range
2495
   *  @p [result_first,result_first+N) such that @i precedes @j then
2496
   *  @p *j<*i is false.
2497
   *  The value returned is @p result_first+N.
2498
  */
2499
  template<typename _InputIterator, typename _RandomAccessIterator>
2500
    _RandomAccessIterator
2501
    partial_sort_copy(_InputIterator __first, _InputIterator __last,
2502
                      _RandomAccessIterator __result_first,
2503
                      _RandomAccessIterator __result_last)
2504
    {
2505
      typedef typename iterator_traits<_InputIterator>::value_type
2506
        _InputValueType;
2507
      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2508
        _OutputValueType;
2509
      typedef typename iterator_traits<_RandomAccessIterator>::difference_type
2510
        _DistanceType;
2511
 
2512
      // concept requirements
2513
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
2514
      __glibcxx_function_requires(_ConvertibleConcept<_InputValueType,
2515
                                  _OutputValueType>)
2516
      __glibcxx_function_requires(_LessThanComparableConcept<_OutputValueType>)
2517
      __glibcxx_function_requires(_LessThanComparableConcept<_InputValueType>)
2518
      __glibcxx_requires_valid_range(__first, __last);
2519
      __glibcxx_requires_valid_range(__result_first, __result_last);
2520
 
2521
      if (__result_first == __result_last)
2522
        return __result_last;
2523
      _RandomAccessIterator __result_real_last = __result_first;
2524
      while(__first != __last && __result_real_last != __result_last)
2525
        {
2526
          *__result_real_last = *__first;
2527
          ++__result_real_last;
2528
          ++__first;
2529
        }
2530
      std::make_heap(__result_first, __result_real_last);
2531
      while (__first != __last)
2532
        {
2533
          if (*__first < *__result_first)
2534
            std::__adjust_heap(__result_first, _DistanceType(0),
2535
                               _DistanceType(__result_real_last
2536
                                             - __result_first),
2537
                               _InputValueType(*__first));
2538
          ++__first;
2539
        }
2540
      std::sort_heap(__result_first, __result_real_last);
2541
      return __result_real_last;
2542
    }
2543
 
2544
  /**
2545
   *  @brief Copy the smallest elements of a sequence using a predicate for
2546
   *         comparison.
2547
   *  @param  first   An input iterator.
2548
   *  @param  last    Another input iterator.
2549
   *  @param  result_first   A random-access iterator.
2550
   *  @param  result_last    Another random-access iterator.
2551
   *  @param  comp    A comparison functor.
2552
   *  @return   An iterator indicating the end of the resulting sequence.
2553
   *
2554
   *  Copies and sorts the smallest N values from the range @p [first,last)
2555
   *  to the range beginning at @p result_first, where the number of
2556
   *  elements to be copied, @p N, is the smaller of @p (last-first) and
2557
   *  @p (result_last-result_first).
2558
   *  After the sort if @p i and @j are iterators in the range
2559
   *  @p [result_first,result_first+N) such that @i precedes @j then
2560
   *  @p comp(*j,*i) is false.
2561
   *  The value returned is @p result_first+N.
2562
  */
2563
  template<typename _InputIterator, typename _RandomAccessIterator, typename _Compare>
2564
    _RandomAccessIterator
2565
    partial_sort_copy(_InputIterator __first, _InputIterator __last,
2566
                      _RandomAccessIterator __result_first,
2567
                      _RandomAccessIterator __result_last,
2568
                      _Compare __comp)
2569
    {
2570
      typedef typename iterator_traits<_InputIterator>::value_type
2571
        _InputValueType;
2572
      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2573
        _OutputValueType;
2574
      typedef typename iterator_traits<_RandomAccessIterator>::difference_type
2575
        _DistanceType;
2576
 
2577
      // concept requirements
2578
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
2579
      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
2580
                                  _RandomAccessIterator>)
2581
      __glibcxx_function_requires(_ConvertibleConcept<_InputValueType,
2582
                                  _OutputValueType>)
2583
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
2584
                                  _OutputValueType, _OutputValueType>)
2585
      __glibcxx_requires_valid_range(__first, __last);
2586
      __glibcxx_requires_valid_range(__result_first, __result_last);
2587
 
2588
      if (__result_first == __result_last)
2589
        return __result_last;
2590
      _RandomAccessIterator __result_real_last = __result_first;
2591
      while(__first != __last && __result_real_last != __result_last)
2592
        {
2593
          *__result_real_last = *__first;
2594
          ++__result_real_last;
2595
          ++__first;
2596
        }
2597
      std::make_heap(__result_first, __result_real_last, __comp);
2598
      while (__first != __last)
2599
        {
2600
          if (__comp(*__first, *__result_first))
2601
            std::__adjust_heap(__result_first, _DistanceType(0),
2602
                               _DistanceType(__result_real_last
2603
                                             - __result_first),
2604
                               _InputValueType(*__first),
2605
                               __comp);
2606
          ++__first;
2607
        }
2608
      std::sort_heap(__result_first, __result_real_last, __comp);
2609
      return __result_real_last;
2610
    }
2611
 
2612
  /**
2613
   *  @if maint
2614
   *  This is a helper function for the sort routine.
2615
   *  @endif
2616
  */
2617
  template<typename _RandomAccessIterator, typename _Size>
2618
    void
2619
    __introsort_loop(_RandomAccessIterator __first,
2620
                     _RandomAccessIterator __last,
2621
                     _Size __depth_limit)
2622
    {
2623
      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2624
        _ValueType;
2625
 
2626
      while (__last - __first > int(_S_threshold))
2627
        {
2628
          if (__depth_limit == 0)
2629
            {
2630
              std::partial_sort(__first, __last, __last);
2631
              return;
2632
            }
2633
          --__depth_limit;
2634
          _RandomAccessIterator __cut =
2635
            std::__unguarded_partition(__first, __last,
2636
                                       _ValueType(std::__median(*__first,
2637
                                                                *(__first
2638
                                                                  + (__last
2639
                                                                     - __first)
2640
                                                                  / 2),
2641
                                                                *(__last
2642
                                                                  - 1))));
2643
          std::__introsort_loop(__cut, __last, __depth_limit);
2644
          __last = __cut;
2645
        }
2646
    }
2647
 
2648
  /**
2649
   *  @if maint
2650
   *  This is a helper function for the sort routine.
2651
   *  @endif
2652
  */
2653
  template<typename _RandomAccessIterator, typename _Size, typename _Compare>
2654
    void
2655
    __introsort_loop(_RandomAccessIterator __first,
2656
                     _RandomAccessIterator __last,
2657
                     _Size __depth_limit, _Compare __comp)
2658
    {
2659
      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2660
        _ValueType;
2661
 
2662
      while (__last - __first > int(_S_threshold))
2663
        {
2664
          if (__depth_limit == 0)
2665
            {
2666
              std::partial_sort(__first, __last, __last, __comp);
2667
              return;
2668
            }
2669
          --__depth_limit;
2670
          _RandomAccessIterator __cut =
2671
            std::__unguarded_partition(__first, __last,
2672
                                       _ValueType(std::__median(*__first,
2673
                                                                *(__first
2674
                                                                  + (__last
2675
                                                                     - __first)
2676
                                                                  / 2),
2677
                                                                *(__last - 1),
2678
                                                                __comp)),
2679
                                       __comp);
2680
          std::__introsort_loop(__cut, __last, __depth_limit, __comp);
2681
          __last = __cut;
2682
        }
2683
    }
2684
 
2685
  /**
2686
   *  @brief Sort the elements of a sequence.
2687
   *  @param  first   An iterator.
2688
   *  @param  last    Another iterator.
2689
   *  @return  Nothing.
2690
   *
2691
   *  Sorts the elements in the range @p [first,last) in ascending order,
2692
   *  such that @p *(i+1)<*i is false for each iterator @p i in the range
2693
   *  @p [first,last-1).
2694
   *
2695
   *  The relative ordering of equivalent elements is not preserved, use
2696
   *  @p stable_sort() if this is needed.
2697
  */
2698
  template<typename _RandomAccessIterator>
2699
    inline void
2700
    sort(_RandomAccessIterator __first, _RandomAccessIterator __last)
2701
    {
2702
      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2703
        _ValueType;
2704
 
2705
      // concept requirements
2706
      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
2707
            _RandomAccessIterator>)
2708
      __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>)
2709
      __glibcxx_requires_valid_range(__first, __last);
2710
 
2711
      if (__first != __last)
2712
        {
2713
          std::__introsort_loop(__first, __last, __lg(__last - __first) * 2);
2714
          std::__final_insertion_sort(__first, __last);
2715
        }
2716
    }
2717
 
2718
  /**
2719
   *  @brief Sort the elements of a sequence using a predicate for comparison.
2720
   *  @param  first   An iterator.
2721
   *  @param  last    Another iterator.
2722
   *  @param  comp    A comparison functor.
2723
   *  @return  Nothing.
2724
   *
2725
   *  Sorts the elements in the range @p [first,last) in ascending order,
2726
   *  such that @p comp(*(i+1),*i) is false for every iterator @p i in the
2727
   *  range @p [first,last-1).
2728
   *
2729
   *  The relative ordering of equivalent elements is not preserved, use
2730
   *  @p stable_sort() if this is needed.
2731
  */
2732
  template<typename _RandomAccessIterator, typename _Compare>
2733
    inline void
2734
    sort(_RandomAccessIterator __first, _RandomAccessIterator __last,
2735
         _Compare __comp)
2736
    {
2737
      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2738
        _ValueType;
2739
 
2740
      // concept requirements
2741
      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
2742
            _RandomAccessIterator>)
2743
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType,
2744
                                  _ValueType>)
2745
      __glibcxx_requires_valid_range(__first, __last);
2746
 
2747
      if (__first != __last)
2748
        {
2749
          std::__introsort_loop(__first, __last, __lg(__last - __first) * 2,
2750
                                __comp);
2751
          std::__final_insertion_sort(__first, __last, __comp);
2752
        }
2753
    }
2754
 
2755
  /**
2756
   *  @brief Finds the first position in which @a val could be inserted
2757
   *         without changing the ordering.
2758
   *  @param  first   An iterator.
2759
   *  @param  last    Another iterator.
2760
   *  @param  val     The search term.
2761
   *  @return  An iterator pointing to the first element "not less than" @a val,
2762
   *           or end() if every element is less than @a val.
2763
   *  @ingroup binarysearch
2764
  */
2765
  template<typename _ForwardIterator, typename _Tp>
2766
    _ForwardIterator
2767
    lower_bound(_ForwardIterator __first, _ForwardIterator __last,
2768
                const _Tp& __val)
2769
    {
2770
      typedef typename iterator_traits<_ForwardIterator>::value_type
2771
        _ValueType;
2772
      typedef typename iterator_traits<_ForwardIterator>::difference_type
2773
        _DistanceType;
2774
 
2775
      // concept requirements
2776
      // Note that these are slightly stricter than those of the 4-argument
2777
      // version, defined next.  The difference is in the strictness of the
2778
      // comparison operations... so for looser checking, define your own
2779
      // comparison function, as was intended.
2780
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2781
      __glibcxx_function_requires(_SameTypeConcept<_Tp, _ValueType>)
2782
      __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
2783
      __glibcxx_requires_partitioned(__first, __last, __val);
2784
 
2785
      _DistanceType __len = std::distance(__first, __last);
2786
      _DistanceType __half;
2787
      _ForwardIterator __middle;
2788
 
2789
      while (__len > 0)
2790
        {
2791
          __half = __len >> 1;
2792
          __middle = __first;
2793
          std::advance(__middle, __half);
2794
          if (*__middle < __val)
2795
            {
2796
              __first = __middle;
2797
              ++__first;
2798
              __len = __len - __half - 1;
2799
            }
2800
          else
2801
            __len = __half;
2802
        }
2803
      return __first;
2804
    }
2805
 
2806
  /**
2807
   *  @brief Finds the first position in which @a val could be inserted
2808
   *         without changing the ordering.
2809
   *  @param  first   An iterator.
2810
   *  @param  last    Another iterator.
2811
   *  @param  val     The search term.
2812
   *  @param  comp    A functor to use for comparisons.
2813
   *  @return  An iterator pointing to the first element "not less than" @a val,
2814
   *           or end() if every element is less than @a val.
2815
   *  @ingroup binarysearch
2816
   *
2817
   *  The comparison function should have the same effects on ordering as
2818
   *  the function used for the initial sort.
2819
  */
2820
  template<typename _ForwardIterator, typename _Tp, typename _Compare>
2821
    _ForwardIterator
2822
    lower_bound(_ForwardIterator __first, _ForwardIterator __last,
2823
                const _Tp& __val, _Compare __comp)
2824
    {
2825
      typedef typename iterator_traits<_ForwardIterator>::value_type
2826
        _ValueType;
2827
      typedef typename iterator_traits<_ForwardIterator>::difference_type
2828
        _DistanceType;
2829
 
2830
      // concept requirements
2831
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2832
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
2833
                                  _ValueType, _Tp>)
2834
      __glibcxx_requires_partitioned_pred(__first, __last, __val, __comp);
2835
 
2836
      _DistanceType __len = std::distance(__first, __last);
2837
      _DistanceType __half;
2838
      _ForwardIterator __middle;
2839
 
2840
      while (__len > 0)
2841
        {
2842
          __half = __len >> 1;
2843
          __middle = __first;
2844
          std::advance(__middle, __half);
2845
          if (__comp(*__middle, __val))
2846
            {
2847
              __first = __middle;
2848
              ++__first;
2849
              __len = __len - __half - 1;
2850
            }
2851
          else
2852
            __len = __half;
2853
        }
2854
      return __first;
2855
    }
2856
 
2857
  /**
2858
   *  @brief Finds the last position in which @a val could be inserted
2859
   *         without changing the ordering.
2860
   *  @param  first   An iterator.
2861
   *  @param  last    Another iterator.
2862
   *  @param  val     The search term.
2863
   *  @return  An iterator pointing to the first element greater than @a val,
2864
   *           or end() if no elements are greater than @a val.
2865
   *  @ingroup binarysearch
2866
  */
2867
  template<typename _ForwardIterator, typename _Tp>
2868
    _ForwardIterator
2869
    upper_bound(_ForwardIterator __first, _ForwardIterator __last,
2870
                const _Tp& __val)
2871
    {
2872
      typedef typename iterator_traits<_ForwardIterator>::value_type
2873
        _ValueType;
2874
      typedef typename iterator_traits<_ForwardIterator>::difference_type
2875
        _DistanceType;
2876
 
2877
      // concept requirements
2878
      // See comments on lower_bound.
2879
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2880
      __glibcxx_function_requires(_SameTypeConcept<_Tp, _ValueType>)
2881
      __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
2882
      __glibcxx_requires_partitioned(__first, __last, __val);
2883
 
2884
      _DistanceType __len = std::distance(__first, __last);
2885
      _DistanceType __half;
2886
      _ForwardIterator __middle;
2887
 
2888
      while (__len > 0)
2889
        {
2890
          __half = __len >> 1;
2891
          __middle = __first;
2892
          std::advance(__middle, __half);
2893
          if (__val < *__middle)
2894
            __len = __half;
2895
          else
2896
            {
2897
              __first = __middle;
2898
              ++__first;
2899
              __len = __len - __half - 1;
2900
            }
2901
        }
2902
      return __first;
2903
    }
2904
 
2905
  /**
2906
   *  @brief Finds the last position in which @a val could be inserted
2907
   *         without changing the ordering.
2908
   *  @param  first   An iterator.
2909
   *  @param  last    Another iterator.
2910
   *  @param  val     The search term.
2911
   *  @param  comp    A functor to use for comparisons.
2912
   *  @return  An iterator pointing to the first element greater than @a val,
2913
   *           or end() if no elements are greater than @a val.
2914
   *  @ingroup binarysearch
2915
   *
2916
   *  The comparison function should have the same effects on ordering as
2917
   *  the function used for the initial sort.
2918
  */
2919
  template<typename _ForwardIterator, typename _Tp, typename _Compare>
2920
    _ForwardIterator
2921
    upper_bound(_ForwardIterator __first, _ForwardIterator __last,
2922
                const _Tp& __val, _Compare __comp)
2923
    {
2924
      typedef typename iterator_traits<_ForwardIterator>::value_type
2925
        _ValueType;
2926
      typedef typename iterator_traits<_ForwardIterator>::difference_type
2927
        _DistanceType;
2928
 
2929
      // concept requirements
2930
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2931
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
2932
                                  _Tp, _ValueType>)
2933
      __glibcxx_requires_partitioned_pred(__first, __last, __val, __comp);
2934
 
2935
      _DistanceType __len = std::distance(__first, __last);
2936
      _DistanceType __half;
2937
      _ForwardIterator __middle;
2938
 
2939
      while (__len > 0)
2940
        {
2941
          __half = __len >> 1;
2942
          __middle = __first;
2943
          std::advance(__middle, __half);
2944
          if (__comp(__val, *__middle))
2945
            __len = __half;
2946
          else
2947
            {
2948
              __first = __middle;
2949
              ++__first;
2950
              __len = __len - __half - 1;
2951
            }
2952
        }
2953
      return __first;
2954
    }
2955
 
2956
  /**
2957
   *  @if maint
2958
   *  This is a helper function for the merge routines.
2959
   *  @endif
2960
  */
2961
  template<typename _BidirectionalIterator, typename _Distance>
2962
    void
2963
    __merge_without_buffer(_BidirectionalIterator __first,
2964
                           _BidirectionalIterator __middle,
2965
                           _BidirectionalIterator __last,
2966
                           _Distance __len1, _Distance __len2)
2967
    {
2968
      if (__len1 == 0 || __len2 == 0)
2969
        return;
2970
      if (__len1 + __len2 == 2)
2971
        {
2972
          if (*__middle < *__first)
2973
            std::iter_swap(__first, __middle);
2974
          return;
2975
        }
2976
      _BidirectionalIterator __first_cut = __first;
2977
      _BidirectionalIterator __second_cut = __middle;
2978
      _Distance __len11 = 0;
2979
      _Distance __len22 = 0;
2980
      if (__len1 > __len2)
2981
        {
2982
          __len11 = __len1 / 2;
2983
          std::advance(__first_cut, __len11);
2984
          __second_cut = std::lower_bound(__middle, __last, *__first_cut);
2985
          __len22 = std::distance(__middle, __second_cut);
2986
        }
2987
      else
2988
        {
2989
          __len22 = __len2 / 2;
2990
          std::advance(__second_cut, __len22);
2991
          __first_cut = std::upper_bound(__first, __middle, *__second_cut);
2992
          __len11 = std::distance(__first, __first_cut);
2993
        }
2994
      std::rotate(__first_cut, __middle, __second_cut);
2995
      _BidirectionalIterator __new_middle = __first_cut;
2996
      std::advance(__new_middle, std::distance(__middle, __second_cut));
2997
      std::__merge_without_buffer(__first, __first_cut, __new_middle,
2998
                                  __len11, __len22);
2999
      std::__merge_without_buffer(__new_middle, __second_cut, __last,
3000
                                  __len1 - __len11, __len2 - __len22);
3001
    }
3002
 
3003
  /**
3004
   *  @if maint
3005
   *  This is a helper function for the merge routines.
3006
   *  @endif
3007
  */
3008
  template<typename _BidirectionalIterator, typename _Distance,
3009
           typename _Compare>
3010
    void
3011
    __merge_without_buffer(_BidirectionalIterator __first,
3012
                           _BidirectionalIterator __middle,
3013
                           _BidirectionalIterator __last,
3014
                           _Distance __len1, _Distance __len2,
3015
                           _Compare __comp)
3016
    {
3017
      if (__len1 == 0 || __len2 == 0)
3018
        return;
3019
      if (__len1 + __len2 == 2)
3020
        {
3021
          if (__comp(*__middle, *__first))
3022
            std::iter_swap(__first, __middle);
3023
          return;
3024
        }
3025
      _BidirectionalIterator __first_cut = __first;
3026
      _BidirectionalIterator __second_cut = __middle;
3027
      _Distance __len11 = 0;
3028
      _Distance __len22 = 0;
3029
      if (__len1 > __len2)
3030
        {
3031
          __len11 = __len1 / 2;
3032
          std::advance(__first_cut, __len11);
3033
          __second_cut = std::lower_bound(__middle, __last, *__first_cut,
3034
                                          __comp);
3035
          __len22 = std::distance(__middle, __second_cut);
3036
        }
3037
      else
3038
        {
3039
          __len22 = __len2 / 2;
3040
          std::advance(__second_cut, __len22);
3041
          __first_cut = std::upper_bound(__first, __middle, *__second_cut,
3042
                                         __comp);
3043
          __len11 = std::distance(__first, __first_cut);
3044
        }
3045
      std::rotate(__first_cut, __middle, __second_cut);
3046
      _BidirectionalIterator __new_middle = __first_cut;
3047
      std::advance(__new_middle, std::distance(__middle, __second_cut));
3048
      std::__merge_without_buffer(__first, __first_cut, __new_middle,
3049
                                  __len11, __len22, __comp);
3050
      std::__merge_without_buffer(__new_middle, __second_cut, __last,
3051
                                  __len1 - __len11, __len2 - __len22, __comp);
3052
    }
3053
 
3054
  /**
3055
   *  @if maint
3056
   *  This is a helper function for the stable sorting routines.
3057
   *  @endif
3058
  */
3059
  template<typename _RandomAccessIterator>
3060
    void
3061
    __inplace_stable_sort(_RandomAccessIterator __first,
3062
                          _RandomAccessIterator __last)
3063
    {
3064
      if (__last - __first < 15)
3065
        {
3066
          std::__insertion_sort(__first, __last);
3067
          return;
3068
        }
3069
      _RandomAccessIterator __middle = __first + (__last - __first) / 2;
3070
      std::__inplace_stable_sort(__first, __middle);
3071
      std::__inplace_stable_sort(__middle, __last);
3072
      std::__merge_without_buffer(__first, __middle, __last,
3073
                                  __middle - __first,
3074
                                  __last - __middle);
3075
    }
3076
 
3077
  /**
3078
   *  @if maint
3079
   *  This is a helper function for the stable sorting routines.
3080
   *  @endif
3081
  */
3082
  template<typename _RandomAccessIterator, typename _Compare>
3083
    void
3084
    __inplace_stable_sort(_RandomAccessIterator __first,
3085
                          _RandomAccessIterator __last, _Compare __comp)
3086
    {
3087
      if (__last - __first < 15)
3088
        {
3089
          std::__insertion_sort(__first, __last, __comp);
3090
          return;
3091
        }
3092
      _RandomAccessIterator __middle = __first + (__last - __first) / 2;
3093
      std::__inplace_stable_sort(__first, __middle, __comp);
3094
      std::__inplace_stable_sort(__middle, __last, __comp);
3095
      std::__merge_without_buffer(__first, __middle, __last,
3096
                                  __middle - __first,
3097
                                  __last - __middle,
3098
                                  __comp);
3099
    }
3100
 
3101
  /**
3102
   *  @brief Merges two sorted ranges.
3103
   *  @param  first1  An iterator.
3104
   *  @param  first2  Another iterator.
3105
   *  @param  last1   Another iterator.
3106
   *  @param  last2   Another iterator.
3107
   *  @param  result  An iterator pointing to the end of the merged range.
3108
   *  @return  An iterator pointing to the first element "not less than" @a val.
3109
   *
3110
   *  Merges the ranges [first1,last1) and [first2,last2) into the sorted range
3111
   *  [result, result + (last1-first1) + (last2-first2)).  Both input ranges
3112
   *  must be sorted, and the output range must not overlap with either of
3113
   *  the input ranges.  The sort is @e stable, that is, for equivalent
3114
   *  elements in the two ranges, elements from the first range will always
3115
   *  come before elements from the second.
3116
  */
3117
  template<typename _InputIterator1, typename _InputIterator2,
3118
           typename _OutputIterator>
3119
    _OutputIterator
3120
    merge(_InputIterator1 __first1, _InputIterator1 __last1,
3121
          _InputIterator2 __first2, _InputIterator2 __last2,
3122
          _OutputIterator __result)
3123
    {
3124
      // concept requirements
3125
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
3126
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
3127
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
3128
            typename iterator_traits<_InputIterator1>::value_type>)
3129
      __glibcxx_function_requires(_SameTypeConcept<
3130
            typename iterator_traits<_InputIterator1>::value_type,
3131
            typename iterator_traits<_InputIterator2>::value_type>)
3132
      __glibcxx_function_requires(_LessThanComparableConcept<
3133
            typename iterator_traits<_InputIterator1>::value_type>)
3134
      __glibcxx_requires_sorted(__first1, __last1);
3135
      __glibcxx_requires_sorted(__first2, __last2);
3136
 
3137
      while (__first1 != __last1 && __first2 != __last2)
3138
        {
3139
          if (*__first2 < *__first1)
3140
            {
3141
              *__result = *__first2;
3142
              ++__first2;
3143
            }
3144
          else
3145
            {
3146
              *__result = *__first1;
3147
              ++__first1;
3148
            }
3149
          ++__result;
3150
        }
3151
      return std::copy(__first2, __last2, std::copy(__first1, __last1,
3152
                                                    __result));
3153
    }
3154
 
3155
  /**
3156
   *  @brief Merges two sorted ranges.
3157
   *  @param  first1  An iterator.
3158
   *  @param  first2  Another iterator.
3159
   *  @param  last1   Another iterator.
3160
   *  @param  last2   Another iterator.
3161
   *  @param  result  An iterator pointing to the end of the merged range.
3162
   *  @param  comp    A functor to use for comparisons.
3163
   *  @return  An iterator pointing to the first element "not less than" @a val.
3164
   *
3165
   *  Merges the ranges [first1,last1) and [first2,last2) into the sorted range
3166
   *  [result, result + (last1-first1) + (last2-first2)).  Both input ranges
3167
   *  must be sorted, and the output range must not overlap with either of
3168
   *  the input ranges.  The sort is @e stable, that is, for equivalent
3169
   *  elements in the two ranges, elements from the first range will always
3170
   *  come before elements from the second.
3171
   *
3172
   *  The comparison function should have the same effects on ordering as
3173
   *  the function used for the initial sort.
3174
  */
3175
  template<typename _InputIterator1, typename _InputIterator2,
3176
           typename _OutputIterator, typename _Compare>
3177
    _OutputIterator
3178
    merge(_InputIterator1 __first1, _InputIterator1 __last1,
3179
          _InputIterator2 __first2, _InputIterator2 __last2,
3180
          _OutputIterator __result, _Compare __comp)
3181
    {
3182
      // concept requirements
3183
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
3184
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
3185
      __glibcxx_function_requires(_SameTypeConcept<
3186
            typename iterator_traits<_InputIterator1>::value_type,
3187
            typename iterator_traits<_InputIterator2>::value_type>)
3188
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
3189
            typename iterator_traits<_InputIterator1>::value_type>)
3190
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
3191
            typename iterator_traits<_InputIterator1>::value_type,
3192
            typename iterator_traits<_InputIterator2>::value_type>)
3193
      __glibcxx_requires_sorted_pred(__first1, __last1, __comp);
3194
      __glibcxx_requires_sorted_pred(__first2, __last2, __comp);
3195
 
3196
      while (__first1 != __last1 && __first2 != __last2)
3197
        {
3198
          if (__comp(*__first2, *__first1))
3199
            {
3200
              *__result = *__first2;
3201
              ++__first2;
3202
            }
3203
          else
3204
            {
3205
              *__result = *__first1;
3206
              ++__first1;
3207
            }
3208
          ++__result;
3209
        }
3210
      return std::copy(__first2, __last2, std::copy(__first1, __last1,
3211
                                                    __result));
3212
    }
3213
 
3214
  template<typename _RandomAccessIterator1, typename _RandomAccessIterator2,
3215
           typename _Distance>
3216
    void
3217
    __merge_sort_loop(_RandomAccessIterator1 __first,
3218
                      _RandomAccessIterator1 __last,
3219
                      _RandomAccessIterator2 __result,
3220
                      _Distance __step_size)
3221
    {
3222
      const _Distance __two_step = 2 * __step_size;
3223
 
3224
      while (__last - __first >= __two_step)
3225
        {
3226
          __result = std::merge(__first, __first + __step_size,
3227
                                __first + __step_size, __first + __two_step,
3228
                                __result);
3229
          __first += __two_step;
3230
        }
3231
 
3232
      __step_size = std::min(_Distance(__last - __first), __step_size);
3233
      std::merge(__first, __first + __step_size, __first + __step_size, __last,
3234
                 __result);
3235
    }
3236
 
3237
  template<typename _RandomAccessIterator1, typename _RandomAccessIterator2,
3238
           typename _Distance, typename _Compare>
3239
    void
3240
    __merge_sort_loop(_RandomAccessIterator1 __first,
3241
                      _RandomAccessIterator1 __last,
3242
                      _RandomAccessIterator2 __result, _Distance __step_size,
3243
                      _Compare __comp)
3244
    {
3245
      const _Distance __two_step = 2 * __step_size;
3246
 
3247
      while (__last - __first >= __two_step)
3248
        {
3249
          __result = std::merge(__first, __first + __step_size,
3250
                                __first + __step_size, __first + __two_step,
3251
                                __result,
3252
                                __comp);
3253
          __first += __two_step;
3254
        }
3255
      __step_size = std::min(_Distance(__last - __first), __step_size);
3256
 
3257
      std::merge(__first, __first + __step_size,
3258
                 __first + __step_size, __last,
3259
                 __result,
3260
                 __comp);
3261
    }
3262
 
3263
  enum { _S_chunk_size = 7 };
3264
 
3265
  template<typename _RandomAccessIterator, typename _Distance>
3266
    void
3267
    __chunk_insertion_sort(_RandomAccessIterator __first,
3268
                           _RandomAccessIterator __last,
3269
                           _Distance __chunk_size)
3270
    {
3271
      while (__last - __first >= __chunk_size)
3272
        {
3273
          std::__insertion_sort(__first, __first + __chunk_size);
3274
          __first += __chunk_size;
3275
        }
3276
      std::__insertion_sort(__first, __last);
3277
    }
3278
 
3279
  template<typename _RandomAccessIterator, typename _Distance, typename _Compare>
3280
    void
3281
    __chunk_insertion_sort(_RandomAccessIterator __first,
3282
                           _RandomAccessIterator __last,
3283
                           _Distance __chunk_size, _Compare __comp)
3284
    {
3285
      while (__last - __first >= __chunk_size)
3286
        {
3287
          std::__insertion_sort(__first, __first + __chunk_size, __comp);
3288
          __first += __chunk_size;
3289
        }
3290
      std::__insertion_sort(__first, __last, __comp);
3291
    }
3292
 
3293
  template<typename _RandomAccessIterator, typename _Pointer>
3294
    void
3295
    __merge_sort_with_buffer(_RandomAccessIterator __first,
3296
                             _RandomAccessIterator __last,
3297
                             _Pointer __buffer)
3298
    {
3299
      typedef typename iterator_traits<_RandomAccessIterator>::difference_type
3300
        _Distance;
3301
 
3302
      const _Distance __len = __last - __first;
3303
      const _Pointer __buffer_last = __buffer + __len;
3304
 
3305
      _Distance __step_size = _S_chunk_size;
3306
      std::__chunk_insertion_sort(__first, __last, __step_size);
3307
 
3308
      while (__step_size < __len)
3309
        {
3310
          std::__merge_sort_loop(__first, __last, __buffer, __step_size);
3311
          __step_size *= 2;
3312
          std::__merge_sort_loop(__buffer, __buffer_last, __first, __step_size);
3313
          __step_size *= 2;
3314
        }
3315
    }
3316
 
3317
  template<typename _RandomAccessIterator, typename _Pointer, typename _Compare>
3318
    void
3319
    __merge_sort_with_buffer(_RandomAccessIterator __first,
3320
                             _RandomAccessIterator __last,
3321
                             _Pointer __buffer, _Compare __comp)
3322
    {
3323
      typedef typename iterator_traits<_RandomAccessIterator>::difference_type
3324
        _Distance;
3325
 
3326
      const _Distance __len = __last - __first;
3327
      const _Pointer __buffer_last = __buffer + __len;
3328
 
3329
      _Distance __step_size = _S_chunk_size;
3330
      std::__chunk_insertion_sort(__first, __last, __step_size, __comp);
3331
 
3332
      while (__step_size < __len)
3333
        {
3334
          std::__merge_sort_loop(__first, __last, __buffer,
3335
                                 __step_size, __comp);
3336
          __step_size *= 2;
3337
          std::__merge_sort_loop(__buffer, __buffer_last, __first,
3338
                                 __step_size, __comp);
3339
          __step_size *= 2;
3340
        }
3341
    }
3342
 
3343
  /**
3344
   *  @if maint
3345
   *  This is a helper function for the merge routines.
3346
   *  @endif
3347
  */
3348
  template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
3349
           typename _BidirectionalIterator3>
3350
    _BidirectionalIterator3
3351
    __merge_backward(_BidirectionalIterator1 __first1,
3352
                     _BidirectionalIterator1 __last1,
3353
                     _BidirectionalIterator2 __first2,
3354
                     _BidirectionalIterator2 __last2,
3355
                     _BidirectionalIterator3 __result)
3356
    {
3357
      if (__first1 == __last1)
3358
        return std::copy_backward(__first2, __last2, __result);
3359
      if (__first2 == __last2)
3360
        return std::copy_backward(__first1, __last1, __result);
3361
      --__last1;
3362
      --__last2;
3363
      while (true)
3364
        {
3365
          if (*__last2 < *__last1)
3366
            {
3367
              *--__result = *__last1;
3368
              if (__first1 == __last1)
3369
                return std::copy_backward(__first2, ++__last2, __result);
3370
              --__last1;
3371
            }
3372
          else
3373
            {
3374
              *--__result = *__last2;
3375
              if (__first2 == __last2)
3376
                return std::copy_backward(__first1, ++__last1, __result);
3377
              --__last2;
3378
            }
3379
        }
3380
    }
3381
 
3382
  /**
3383
   *  @if maint
3384
   *  This is a helper function for the merge routines.
3385
   *  @endif
3386
  */
3387
  template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
3388
           typename _BidirectionalIterator3, typename _Compare>
3389
    _BidirectionalIterator3
3390
    __merge_backward(_BidirectionalIterator1 __first1,
3391
                     _BidirectionalIterator1 __last1,
3392
                     _BidirectionalIterator2 __first2,
3393
                     _BidirectionalIterator2 __last2,
3394
                     _BidirectionalIterator3 __result,
3395
                     _Compare __comp)
3396
    {
3397
      if (__first1 == __last1)
3398
        return std::copy_backward(__first2, __last2, __result);
3399
      if (__first2 == __last2)
3400
        return std::copy_backward(__first1, __last1, __result);
3401
      --__last1;
3402
      --__last2;
3403
      while (true)
3404
        {
3405
          if (__comp(*__last2, *__last1))
3406
            {
3407
              *--__result = *__last1;
3408
              if (__first1 == __last1)
3409
                return std::copy_backward(__first2, ++__last2, __result);
3410
              --__last1;
3411
            }
3412
          else
3413
            {
3414
              *--__result = *__last2;
3415
              if (__first2 == __last2)
3416
                return std::copy_backward(__first1, ++__last1, __result);
3417
              --__last2;
3418
            }
3419
        }
3420
    }
3421
 
3422
  /**
3423
   *  @if maint
3424
   *  This is a helper function for the merge routines.
3425
   *  @endif
3426
  */
3427
  template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
3428
           typename _Distance>
3429
    _BidirectionalIterator1
3430
    __rotate_adaptive(_BidirectionalIterator1 __first,
3431
                      _BidirectionalIterator1 __middle,
3432
                      _BidirectionalIterator1 __last,
3433
                      _Distance __len1, _Distance __len2,
3434
                      _BidirectionalIterator2 __buffer,
3435
                      _Distance __buffer_size)
3436
    {
3437
      _BidirectionalIterator2 __buffer_end;
3438
      if (__len1 > __len2 && __len2 <= __buffer_size)
3439
        {
3440
          __buffer_end = std::copy(__middle, __last, __buffer);
3441
          std::copy_backward(__first, __middle, __last);
3442
          return std::copy(__buffer, __buffer_end, __first);
3443
        }
3444
      else if (__len1 <= __buffer_size)
3445
        {
3446
          __buffer_end = std::copy(__first, __middle, __buffer);
3447
          std::copy(__middle, __last, __first);
3448
          return std::copy_backward(__buffer, __buffer_end, __last);
3449
        }
3450
      else
3451
        {
3452
          std::rotate(__first, __middle, __last);
3453
          std::advance(__first, std::distance(__middle, __last));
3454
          return __first;
3455
        }
3456
    }
3457
 
3458
  /**
3459
   *  @if maint
3460
   *  This is a helper function for the merge routines.
3461
   *  @endif
3462
  */
3463
  template<typename _BidirectionalIterator, typename _Distance,
3464
           typename _Pointer>
3465
    void
3466
    __merge_adaptive(_BidirectionalIterator __first,
3467
                     _BidirectionalIterator __middle,
3468
                     _BidirectionalIterator __last,
3469
                     _Distance __len1, _Distance __len2,
3470
                     _Pointer __buffer, _Distance __buffer_size)
3471
    {
3472
      if (__len1 <= __len2 && __len1 <= __buffer_size)
3473
        {
3474
          _Pointer __buffer_end = std::copy(__first, __middle, __buffer);
3475
          std::merge(__buffer, __buffer_end, __middle, __last, __first);
3476
        }
3477
      else if (__len2 <= __buffer_size)
3478
        {
3479
          _Pointer __buffer_end = std::copy(__middle, __last, __buffer);
3480
          std::__merge_backward(__first, __middle, __buffer,
3481
                                __buffer_end, __last);
3482
        }
3483
      else
3484
        {
3485
          _BidirectionalIterator __first_cut = __first;
3486
          _BidirectionalIterator __second_cut = __middle;
3487
          _Distance __len11 = 0;
3488
          _Distance __len22 = 0;
3489
          if (__len1 > __len2)
3490
            {
3491
              __len11 = __len1 / 2;
3492
              std::advance(__first_cut, __len11);
3493
              __second_cut = std::lower_bound(__middle, __last,
3494
                                              *__first_cut);
3495
              __len22 = std::distance(__middle, __second_cut);
3496
            }
3497
          else
3498
            {
3499
              __len22 = __len2 / 2;
3500
              std::advance(__second_cut, __len22);
3501
              __first_cut = std::upper_bound(__first, __middle,
3502
                                             *__second_cut);
3503
              __len11 = std::distance(__first, __first_cut);
3504
            }
3505
          _BidirectionalIterator __new_middle =
3506
            std::__rotate_adaptive(__first_cut, __middle, __second_cut,
3507
                                   __len1 - __len11, __len22, __buffer,
3508
                                   __buffer_size);
3509
          std::__merge_adaptive(__first, __first_cut, __new_middle, __len11,
3510
                                __len22, __buffer, __buffer_size);
3511
          std::__merge_adaptive(__new_middle, __second_cut, __last,
3512
                                __len1 - __len11,
3513
                                __len2 - __len22, __buffer, __buffer_size);
3514
        }
3515
    }
3516
 
3517
  /**
3518
   *  @if maint
3519
   *  This is a helper function for the merge routines.
3520
   *  @endif
3521
  */
3522
  template<typename _BidirectionalIterator, typename _Distance, typename _Pointer,
3523
           typename _Compare>
3524
    void
3525
    __merge_adaptive(_BidirectionalIterator __first,
3526
                     _BidirectionalIterator __middle,
3527
                     _BidirectionalIterator __last,
3528
                     _Distance __len1, _Distance __len2,
3529
                     _Pointer __buffer, _Distance __buffer_size,
3530
                     _Compare __comp)
3531
    {
3532
      if (__len1 <= __len2 && __len1 <= __buffer_size)
3533
        {
3534
          _Pointer __buffer_end = std::copy(__first, __middle, __buffer);
3535
          std::merge(__buffer, __buffer_end, __middle, __last, __first, __comp);
3536
        }
3537
      else if (__len2 <= __buffer_size)
3538
        {
3539
          _Pointer __buffer_end = std::copy(__middle, __last, __buffer);
3540
          std::__merge_backward(__first, __middle, __buffer, __buffer_end,
3541
                                __last, __comp);
3542
        }
3543
      else
3544
        {
3545
          _BidirectionalIterator __first_cut = __first;
3546
          _BidirectionalIterator __second_cut = __middle;
3547
          _Distance __len11 = 0;
3548
          _Distance __len22 = 0;
3549
          if (__len1 > __len2)
3550
            {
3551
              __len11 = __len1 / 2;
3552
              std::advance(__first_cut, __len11);
3553
              __second_cut = std::lower_bound(__middle, __last, *__first_cut,
3554
                                              __comp);
3555
              __len22 = std::distance(__middle, __second_cut);
3556
            }
3557
          else
3558
            {
3559
              __len22 = __len2 / 2;
3560
              std::advance(__second_cut, __len22);
3561
              __first_cut = std::upper_bound(__first, __middle, *__second_cut,
3562
                                             __comp);
3563
              __len11 = std::distance(__first, __first_cut);
3564
            }
3565
          _BidirectionalIterator __new_middle =
3566
            std::__rotate_adaptive(__first_cut, __middle, __second_cut,
3567
                                   __len1 - __len11, __len22, __buffer,
3568
                                   __buffer_size);
3569
          std::__merge_adaptive(__first, __first_cut, __new_middle, __len11,
3570
                                __len22, __buffer, __buffer_size, __comp);
3571
          std::__merge_adaptive(__new_middle, __second_cut, __last,
3572
                                __len1 - __len11,
3573
                                __len2 - __len22, __buffer,
3574
                                __buffer_size, __comp);
3575
        }
3576
    }
3577
 
3578
  /**
3579
   *  @brief Merges two sorted ranges in place.
3580
   *  @param  first   An iterator.
3581
   *  @param  middle  Another iterator.
3582
   *  @param  last    Another iterator.
3583
   *  @return  Nothing.
3584
   *
3585
   *  Merges two sorted and consecutive ranges, [first,middle) and
3586
   *  [middle,last), and puts the result in [first,last).  The output will
3587
   *  be sorted.  The sort is @e stable, that is, for equivalent
3588
   *  elements in the two ranges, elements from the first range will always
3589
   *  come before elements from the second.
3590
   *
3591
   *  If enough additional memory is available, this takes (last-first)-1
3592
   *  comparisons.  Otherwise an NlogN algorithm is used, where N is
3593
   *  distance(first,last).
3594
  */
3595
  template<typename _BidirectionalIterator>
3596
    void
3597
    inplace_merge(_BidirectionalIterator __first,
3598
                  _BidirectionalIterator __middle,
3599
                  _BidirectionalIterator __last)
3600
    {
3601
      typedef typename iterator_traits<_BidirectionalIterator>::value_type
3602
          _ValueType;
3603
      typedef typename iterator_traits<_BidirectionalIterator>::difference_type
3604
          _DistanceType;
3605
 
3606
      // concept requirements
3607
      __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<
3608
            _BidirectionalIterator>)
3609
      __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>)
3610
      __glibcxx_requires_sorted(__first, __middle);
3611
      __glibcxx_requires_sorted(__middle, __last);
3612
 
3613
      if (__first == __middle || __middle == __last)
3614
        return;
3615
 
3616
      _DistanceType __len1 = std::distance(__first, __middle);
3617
      _DistanceType __len2 = std::distance(__middle, __last);
3618
 
3619
      _Temporary_buffer<_BidirectionalIterator, _ValueType> __buf(__first,
3620
                                                                  __last);
3621
      if (__buf.begin() == 0)
3622
        std::__merge_without_buffer(__first, __middle, __last, __len1, __len2);
3623
      else
3624
        std::__merge_adaptive(__first, __middle, __last, __len1, __len2,
3625
                              __buf.begin(), _DistanceType(__buf.size()));
3626
    }
3627
 
3628
  /**
3629
   *  @brief Merges two sorted ranges in place.
3630
   *  @param  first   An iterator.
3631
   *  @param  middle  Another iterator.
3632
   *  @param  last    Another iterator.
3633
   *  @param  comp    A functor to use for comparisons.
3634
   *  @return  Nothing.
3635
   *
3636
   *  Merges two sorted and consecutive ranges, [first,middle) and
3637
   *  [middle,last), and puts the result in [first,last).  The output will
3638
   *  be sorted.  The sort is @e stable, that is, for equivalent
3639
   *  elements in the two ranges, elements from the first range will always
3640
   *  come before elements from the second.
3641
   *
3642
   *  If enough additional memory is available, this takes (last-first)-1
3643
   *  comparisons.  Otherwise an NlogN algorithm is used, where N is
3644
   *  distance(first,last).
3645
   *
3646
   *  The comparison function should have the same effects on ordering as
3647
   *  the function used for the initial sort.
3648
  */
3649
  template<typename _BidirectionalIterator, typename _Compare>
3650
    void
3651
    inplace_merge(_BidirectionalIterator __first,
3652
                  _BidirectionalIterator __middle,
3653
                  _BidirectionalIterator __last,
3654
                  _Compare __comp)
3655
    {
3656
      typedef typename iterator_traits<_BidirectionalIterator>::value_type
3657
          _ValueType;
3658
      typedef typename iterator_traits<_BidirectionalIterator>::difference_type
3659
          _DistanceType;
3660
 
3661
      // concept requirements
3662
      __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<
3663
            _BidirectionalIterator>)
3664
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
3665
            _ValueType, _ValueType>)
3666
      __glibcxx_requires_sorted_pred(__first, __middle, __comp);
3667
      __glibcxx_requires_sorted_pred(__middle, __last, __comp);
3668
 
3669
      if (__first == __middle || __middle == __last)
3670
        return;
3671
 
3672
      const _DistanceType __len1 = std::distance(__first, __middle);
3673
      const _DistanceType __len2 = std::distance(__middle, __last);
3674
 
3675
      _Temporary_buffer<_BidirectionalIterator, _ValueType> __buf(__first,
3676
                                                                  __last);
3677
      if (__buf.begin() == 0)
3678
        std::__merge_without_buffer(__first, __middle, __last, __len1,
3679
                                    __len2, __comp);
3680
      else
3681
        std::__merge_adaptive(__first, __middle, __last, __len1, __len2,
3682
                              __buf.begin(), _DistanceType(__buf.size()),
3683
                              __comp);
3684
    }
3685
 
3686
  template<typename _RandomAccessIterator, typename _Pointer,
3687
           typename _Distance>
3688
    void
3689
    __stable_sort_adaptive(_RandomAccessIterator __first,
3690
                           _RandomAccessIterator __last,
3691
                           _Pointer __buffer, _Distance __buffer_size)
3692
    {
3693
      const _Distance __len = (__last - __first + 1) / 2;
3694
      const _RandomAccessIterator __middle = __first + __len;
3695
      if (__len > __buffer_size)
3696
        {
3697
          std::__stable_sort_adaptive(__first, __middle,
3698
                                      __buffer, __buffer_size);
3699
          std::__stable_sort_adaptive(__middle, __last,
3700
                                      __buffer, __buffer_size);
3701
        }
3702
      else
3703
        {
3704
          std::__merge_sort_with_buffer(__first, __middle, __buffer);
3705
          std::__merge_sort_with_buffer(__middle, __last, __buffer);
3706
        }
3707
      std::__merge_adaptive(__first, __middle, __last,
3708
                            _Distance(__middle - __first),
3709
                            _Distance(__last - __middle),
3710
                            __buffer, __buffer_size);
3711
    }
3712
 
3713
  template<typename _RandomAccessIterator, typename _Pointer,
3714
           typename _Distance, typename _Compare>
3715
    void
3716
    __stable_sort_adaptive(_RandomAccessIterator __first,
3717
                           _RandomAccessIterator __last,
3718
                           _Pointer __buffer, _Distance __buffer_size,
3719
                           _Compare __comp)
3720
    {
3721
      const _Distance __len = (__last - __first + 1) / 2;
3722
      const _RandomAccessIterator __middle = __first + __len;
3723
      if (__len > __buffer_size)
3724
        {
3725
          std::__stable_sort_adaptive(__first, __middle, __buffer,
3726
                                      __buffer_size, __comp);
3727
          std::__stable_sort_adaptive(__middle, __last, __buffer,
3728
                                      __buffer_size, __comp);
3729
        }
3730
      else
3731
        {
3732
          std::__merge_sort_with_buffer(__first, __middle, __buffer, __comp);
3733
          std::__merge_sort_with_buffer(__middle, __last, __buffer, __comp);
3734
        }
3735
      std::__merge_adaptive(__first, __middle, __last,
3736
                            _Distance(__middle - __first),
3737
                            _Distance(__last - __middle),
3738
                            __buffer, __buffer_size,
3739
                            __comp);
3740
    }
3741
 
3742
  /**
3743
   *  @brief Sort the elements of a sequence, preserving the relative order
3744
   *         of equivalent elements.
3745
   *  @param  first   An iterator.
3746
   *  @param  last    Another iterator.
3747
   *  @return  Nothing.
3748
   *
3749
   *  Sorts the elements in the range @p [first,last) in ascending order,
3750
   *  such that @p *(i+1)<*i is false for each iterator @p i in the range
3751
   *  @p [first,last-1).
3752
   *
3753
   *  The relative ordering of equivalent elements is preserved, so any two
3754
   *  elements @p x and @p y in the range @p [first,last) such that
3755
   *  @p x<y is false and @p y<x is false will have the same relative
3756
   *  ordering after calling @p stable_sort().
3757
  */
3758
  template<typename _RandomAccessIterator>
3759
    inline void
3760
    stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last)
3761
    {
3762
      typedef typename iterator_traits<_RandomAccessIterator>::value_type
3763
        _ValueType;
3764
      typedef typename iterator_traits<_RandomAccessIterator>::difference_type
3765
        _DistanceType;
3766
 
3767
      // concept requirements
3768
      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
3769
            _RandomAccessIterator>)
3770
      __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>)
3771
      __glibcxx_requires_valid_range(__first, __last);
3772
 
3773
      _Temporary_buffer<_RandomAccessIterator, _ValueType>
3774
        buf(__first, __last);
3775
      if (buf.begin() == 0)
3776
        std::__inplace_stable_sort(__first, __last);
3777
      else
3778
        std::__stable_sort_adaptive(__first, __last, buf.begin(),
3779
                                    _DistanceType(buf.size()));
3780
    }
3781
 
3782
  /**
3783
   *  @brief Sort the elements of a sequence using a predicate for comparison,
3784
   *         preserving the relative order of equivalent elements.
3785
   *  @param  first   An iterator.
3786
   *  @param  last    Another iterator.
3787
   *  @param  comp    A comparison functor.
3788
   *  @return  Nothing.
3789
   *
3790
   *  Sorts the elements in the range @p [first,last) in ascending order,
3791
   *  such that @p comp(*(i+1),*i) is false for each iterator @p i in the
3792
   *  range @p [first,last-1).
3793
   *
3794
   *  The relative ordering of equivalent elements is preserved, so any two
3795
   *  elements @p x and @p y in the range @p [first,last) such that
3796
   *  @p comp(x,y) is false and @p comp(y,x) is false will have the same
3797
   *  relative ordering after calling @p stable_sort().
3798
  */
3799
  template<typename _RandomAccessIterator, typename _Compare>
3800
    inline void
3801
    stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last,
3802
                _Compare __comp)
3803
    {
3804
      typedef typename iterator_traits<_RandomAccessIterator>::value_type
3805
        _ValueType;
3806
      typedef typename iterator_traits<_RandomAccessIterator>::difference_type
3807
        _DistanceType;
3808
 
3809
      // concept requirements
3810
      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
3811
            _RandomAccessIterator>)
3812
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
3813
                                  _ValueType,
3814
                                  _ValueType>)
3815
      __glibcxx_requires_valid_range(__first, __last);
3816
 
3817
      _Temporary_buffer<_RandomAccessIterator, _ValueType> buf(__first, __last);
3818
      if (buf.begin() == 0)
3819
        std::__inplace_stable_sort(__first, __last, __comp);
3820
      else
3821
        std::__stable_sort_adaptive(__first, __last, buf.begin(),
3822
                                    _DistanceType(buf.size()), __comp);
3823
    }
3824
 
3825
  /**
3826
   *  @brief Sort a sequence just enough to find a particular position.
3827
   *  @param  first   An iterator.
3828
   *  @param  nth     Another iterator.
3829
   *  @param  last    Another iterator.
3830
   *  @return  Nothing.
3831
   *
3832
   *  Rearranges the elements in the range @p [first,last) so that @p *nth
3833
   *  is the same element that would have been in that position had the
3834
   *  whole sequence been sorted.
3835
   *  whole sequence been sorted. The elements either side of @p *nth are
3836
   *  not completely sorted, but for any iterator @i in the range
3837
   *  @p [first,nth) and any iterator @j in the range @p [nth,last) it
3838
   *  holds that @p *j<*i is false.
3839
  */
3840
  template<typename _RandomAccessIterator>
3841
    void
3842
    nth_element(_RandomAccessIterator __first,
3843
                _RandomAccessIterator __nth,
3844
                _RandomAccessIterator __last)
3845
    {
3846
      typedef typename iterator_traits<_RandomAccessIterator>::value_type
3847
        _ValueType;
3848
 
3849
      // concept requirements
3850
      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
3851
                                  _RandomAccessIterator>)
3852
      __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>)
3853
      __glibcxx_requires_valid_range(__first, __nth);
3854
      __glibcxx_requires_valid_range(__nth, __last);
3855
 
3856
      while (__last - __first > 3)
3857
        {
3858
          _RandomAccessIterator __cut =
3859
            std::__unguarded_partition(__first, __last,
3860
                                       _ValueType(std::__median(*__first,
3861
                                                                *(__first
3862
                                                                  + (__last
3863
                                                                     - __first)
3864
                                                                  / 2),
3865
                                                                *(__last
3866
                                                                  - 1))));
3867
          if (__cut <= __nth)
3868
            __first = __cut;
3869
          else
3870
            __last = __cut;
3871
        }
3872
      std::__insertion_sort(__first, __last);
3873
    }
3874
 
3875
  /**
3876
   *  @brief Sort a sequence just enough to find a particular position
3877
   *         using a predicate for comparison.
3878
   *  @param  first   An iterator.
3879
   *  @param  nth     Another iterator.
3880
   *  @param  last    Another iterator.
3881
   *  @param  comp    A comparison functor.
3882
   *  @return  Nothing.
3883
   *
3884
   *  Rearranges the elements in the range @p [first,last) so that @p *nth
3885
   *  is the same element that would have been in that position had the
3886
   *  whole sequence been sorted. The elements either side of @p *nth are
3887
   *  not completely sorted, but for any iterator @i in the range
3888
   *  @p [first,nth) and any iterator @j in the range @p [nth,last) it
3889
   *  holds that @p comp(*j,*i) is false.
3890
  */
3891
  template<typename _RandomAccessIterator, typename _Compare>
3892
    void
3893
    nth_element(_RandomAccessIterator __first,
3894
                _RandomAccessIterator __nth,
3895
                _RandomAccessIterator __last,
3896
                            _Compare __comp)
3897
    {
3898
      typedef typename iterator_traits<_RandomAccessIterator>::value_type
3899
        _ValueType;
3900
 
3901
      // concept requirements
3902
      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
3903
                                  _RandomAccessIterator>)
3904
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
3905
                                  _ValueType, _ValueType>)
3906
      __glibcxx_requires_valid_range(__first, __nth);
3907
      __glibcxx_requires_valid_range(__nth, __last);
3908
 
3909
      while (__last - __first > 3)
3910
        {
3911
          _RandomAccessIterator __cut =
3912
            std::__unguarded_partition(__first, __last,
3913
                                       _ValueType(std::__median(*__first,
3914
                                                                *(__first
3915
                                                                  + (__last
3916
                                                                     - __first)
3917
                                                                  / 2),
3918
                                                                *(__last - 1),
3919
                                                              __comp)), __comp);
3920
          if (__cut <= __nth)
3921
            __first = __cut;
3922
          else
3923
            __last = __cut;
3924
        }
3925
      std::__insertion_sort(__first, __last, __comp);
3926
    }
3927
 
3928
  /**
3929
   *  @brief Finds the largest subrange in which @a val could be inserted
3930
   *         at any place in it without changing the ordering.
3931
   *  @param  first   An iterator.
3932
   *  @param  last    Another iterator.
3933
   *  @param  val     The search term.
3934
   *  @return  An pair of iterators defining the subrange.
3935
   *  @ingroup binarysearch
3936
   *
3937
   *  This is equivalent to
3938
   *  @code
3939
   *    std::make_pair(lower_bound(first, last, val),
3940
   *                   upper_bound(first, last, val))
3941
   *  @endcode
3942
   *  but does not actually call those functions.
3943
  */
3944
  template<typename _ForwardIterator, typename _Tp>
3945
    pair<_ForwardIterator, _ForwardIterator>
3946
    equal_range(_ForwardIterator __first, _ForwardIterator __last,
3947
                const _Tp& __val)
3948
    {
3949
      typedef typename iterator_traits<_ForwardIterator>::value_type
3950
        _ValueType;
3951
      typedef typename iterator_traits<_ForwardIterator>::difference_type
3952
        _DistanceType;
3953
 
3954
      // concept requirements
3955
      // See comments on lower_bound.
3956
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
3957
      __glibcxx_function_requires(_SameTypeConcept<_Tp, _ValueType>)
3958
      __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
3959
      __glibcxx_requires_partitioned(__first, __last, __val);
3960
 
3961
      _DistanceType __len = std::distance(__first, __last);
3962
      _DistanceType __half;
3963
      _ForwardIterator __middle, __left, __right;
3964
 
3965
      while (__len > 0)
3966
        {
3967
          __half = __len >> 1;
3968
          __middle = __first;
3969
          std::advance(__middle, __half);
3970
          if (*__middle < __val)
3971
            {
3972
              __first = __middle;
3973
              ++__first;
3974
              __len = __len - __half - 1;
3975
            }
3976
          else if (__val < *__middle)
3977
            __len = __half;
3978
          else
3979
            {
3980
              __left = std::lower_bound(__first, __middle, __val);
3981
              std::advance(__first, __len);
3982
              __right = std::upper_bound(++__middle, __first, __val);
3983
              return pair<_ForwardIterator, _ForwardIterator>(__left, __right);
3984
            }
3985
        }
3986
      return pair<_ForwardIterator, _ForwardIterator>(__first, __first);
3987
    }
3988
 
3989
  /**
3990
   *  @brief Finds the largest subrange in which @a val could be inserted
3991
   *         at any place in it without changing the ordering.
3992
   *  @param  first   An iterator.
3993
   *  @param  last    Another iterator.
3994
   *  @param  val     The search term.
3995
   *  @param  comp    A functor to use for comparisons.
3996
   *  @return  An pair of iterators defining the subrange.
3997
   *  @ingroup binarysearch
3998
   *
3999
   *  This is equivalent to
4000
   *  @code
4001
   *    std::make_pair(lower_bound(first, last, val, comp),
4002
   *                   upper_bound(first, last, val, comp))
4003
   *  @endcode
4004
   *  but does not actually call those functions.
4005
  */
4006
  template<typename _ForwardIterator, typename _Tp, typename _Compare>
4007
    pair<_ForwardIterator, _ForwardIterator>
4008
    equal_range(_ForwardIterator __first, _ForwardIterator __last,
4009
                const _Tp& __val,
4010
                _Compare __comp)
4011
    {
4012
      typedef typename iterator_traits<_ForwardIterator>::value_type
4013
        _ValueType;
4014
      typedef typename iterator_traits<_ForwardIterator>::difference_type
4015
        _DistanceType;
4016
 
4017
      // concept requirements
4018
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
4019
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4020
                                  _ValueType, _Tp>)
4021
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4022
                                  _Tp, _ValueType>)
4023
      __glibcxx_requires_partitioned_pred(__first, __last, __val, __comp);
4024
 
4025
      _DistanceType __len = std::distance(__first, __last);
4026
      _DistanceType __half;
4027
      _ForwardIterator __middle, __left, __right;
4028
 
4029
      while (__len > 0)
4030
        {
4031
          __half = __len >> 1;
4032
          __middle = __first;
4033
          std::advance(__middle, __half);
4034
          if (__comp(*__middle, __val))
4035
            {
4036
              __first = __middle;
4037
              ++__first;
4038
              __len = __len - __half - 1;
4039
            }
4040
          else if (__comp(__val, *__middle))
4041
            __len = __half;
4042
          else
4043
            {
4044
              __left = std::lower_bound(__first, __middle, __val, __comp);
4045
              std::advance(__first, __len);
4046
              __right = std::upper_bound(++__middle, __first, __val, __comp);
4047
              return pair<_ForwardIterator, _ForwardIterator>(__left, __right);
4048
            }
4049
        }
4050
      return pair<_ForwardIterator, _ForwardIterator>(__first, __first);
4051
    }
4052
 
4053
  /**
4054
   *  @brief Determines whether an element exists in a range.
4055
   *  @param  first   An iterator.
4056
   *  @param  last    Another iterator.
4057
   *  @param  val     The search term.
4058
   *  @return  True if @a val (or its equivelent) is in [@a first,@a last ].
4059
   *  @ingroup binarysearch
4060
   *
4061
   *  Note that this does not actually return an iterator to @a val.  For
4062
   *  that, use std::find or a container's specialized find member functions.
4063
  */
4064
  template<typename _ForwardIterator, typename _Tp>
4065
    bool
4066
    binary_search(_ForwardIterator __first, _ForwardIterator __last,
4067
                  const _Tp& __val)
4068
    {
4069
      // concept requirements
4070
      // See comments on lower_bound.
4071
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
4072
      __glibcxx_function_requires(_SameTypeConcept<_Tp,
4073
                typename iterator_traits<_ForwardIterator>::value_type>)
4074
      __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
4075
      __glibcxx_requires_partitioned(__first, __last, __val);
4076
 
4077
      _ForwardIterator __i = std::lower_bound(__first, __last, __val);
4078
      return __i != __last && !(__val < *__i);
4079
    }
4080
 
4081
  /**
4082
   *  @brief Determines whether an element exists in a range.
4083
   *  @param  first   An iterator.
4084
   *  @param  last    Another iterator.
4085
   *  @param  val     The search term.
4086
   *  @param  comp    A functor to use for comparisons.
4087
   *  @return  True if @a val (or its equivelent) is in [@a first,@a last ].
4088
   *  @ingroup binarysearch
4089
   *
4090
   *  Note that this does not actually return an iterator to @a val.  For
4091
   *  that, use std::find or a container's specialized find member functions.
4092
   *
4093
   *  The comparison function should have the same effects on ordering as
4094
   *  the function used for the initial sort.
4095
  */
4096
  template<typename _ForwardIterator, typename _Tp, typename _Compare>
4097
    bool
4098
    binary_search(_ForwardIterator __first, _ForwardIterator __last,
4099
                  const _Tp& __val, _Compare __comp)
4100
    {
4101
      // concept requirements
4102
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
4103
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4104
                typename iterator_traits<_ForwardIterator>::value_type, _Tp>)
4105
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _Tp,
4106
                typename iterator_traits<_ForwardIterator>::value_type>)
4107
      __glibcxx_requires_partitioned_pred(__first, __last, __val, __comp);
4108
 
4109
      _ForwardIterator __i = std::lower_bound(__first, __last, __val, __comp);
4110
      return __i != __last && !__comp(__val, *__i);
4111
    }
4112
 
4113
  // Set algorithms: includes, set_union, set_intersection, set_difference,
4114
  // set_symmetric_difference.  All of these algorithms have the precondition
4115
  // that their input ranges are sorted and the postcondition that their output
4116
  // ranges are sorted.
4117
 
4118
  /**
4119
   *  @brief Determines whether all elements of a sequence exists in a range.
4120
   *  @param  first1  Start of search range.
4121
   *  @param  last1   End of search range.
4122
   *  @param  first2  Start of sequence
4123
   *  @param  last2   End of sequence.
4124
   *  @return  True if each element in [first2,last2) is contained in order
4125
   *  within [first1,last1).  False otherwise.
4126
   *  @ingroup setoperations
4127
   *
4128
   *  This operation expects both [first1,last1) and [first2,last2) to be
4129
   *  sorted.  Searches for the presence of each element in [first2,last2)
4130
   *  within [first1,last1).  The iterators over each range only move forward,
4131
   *  so this is a linear algorithm.  If an element in [first2,last2) is not
4132
   *  found before the search iterator reaches @a last2, false is returned.
4133
  */
4134
  template<typename _InputIterator1, typename _InputIterator2>
4135
    bool
4136
    includes(_InputIterator1 __first1, _InputIterator1 __last1,
4137
             _InputIterator2 __first2, _InputIterator2 __last2)
4138
    {
4139
      // concept requirements
4140
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4141
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4142
      __glibcxx_function_requires(_SameTypeConcept<
4143
            typename iterator_traits<_InputIterator1>::value_type,
4144
            typename iterator_traits<_InputIterator2>::value_type>)
4145
      __glibcxx_function_requires(_LessThanComparableConcept<
4146
            typename iterator_traits<_InputIterator1>::value_type>)
4147
      __glibcxx_requires_sorted(__first1, __last1);
4148
      __glibcxx_requires_sorted(__first2, __last2);
4149
 
4150
      while (__first1 != __last1 && __first2 != __last2)
4151
        if (*__first2 < *__first1)
4152
          return false;
4153
        else if(*__first1 < *__first2)
4154
          ++__first1;
4155
        else
4156
          ++__first1, ++__first2;
4157
 
4158
      return __first2 == __last2;
4159
    }
4160
 
4161
  /**
4162
   *  @brief Determines whether all elements of a sequence exists in a range
4163
   *  using comparison.
4164
   *  @param  first1  Start of search range.
4165
   *  @param  last1   End of search range.
4166
   *  @param  first2  Start of sequence
4167
   *  @param  last2   End of sequence.
4168
   *  @param  comp    Comparison function to use.
4169
   *  @return  True if each element in [first2,last2) is contained in order
4170
   *  within [first1,last1) according to comp.  False otherwise.
4171
   *  @ingroup setoperations
4172
   *
4173
   *  This operation expects both [first1,last1) and [first2,last2) to be
4174
   *  sorted.  Searches for the presence of each element in [first2,last2)
4175
   *  within [first1,last1), using comp to decide.  The iterators over each
4176
   *  range only move forward, so this is a linear algorithm.  If an element
4177
   *  in [first2,last2) is not found before the search iterator reaches @a
4178
   *  last2, false is returned.
4179
  */
4180
  template<typename _InputIterator1, typename _InputIterator2,
4181
           typename _Compare>
4182
    bool
4183
    includes(_InputIterator1 __first1, _InputIterator1 __last1,
4184
             _InputIterator2 __first2, _InputIterator2 __last2, _Compare __comp)
4185
    {
4186
      // concept requirements
4187
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4188
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4189
      __glibcxx_function_requires(_SameTypeConcept<
4190
            typename iterator_traits<_InputIterator1>::value_type,
4191
            typename iterator_traits<_InputIterator2>::value_type>)
4192
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4193
            typename iterator_traits<_InputIterator1>::value_type,
4194
            typename iterator_traits<_InputIterator2>::value_type>)
4195
      __glibcxx_requires_sorted_pred(__first1, __last1, __comp);
4196
      __glibcxx_requires_sorted_pred(__first2, __last2, __comp);
4197
 
4198
      while (__first1 != __last1 && __first2 != __last2)
4199
        if (__comp(*__first2, *__first1))
4200
          return false;
4201
        else if(__comp(*__first1, *__first2))
4202
          ++__first1;
4203
        else
4204
          ++__first1, ++__first2;
4205
 
4206
      return __first2 == __last2;
4207
    }
4208
 
4209
  /**
4210
   *  @brief Return the union of two sorted ranges.
4211
   *  @param  first1  Start of first range.
4212
   *  @param  last1   End of first range.
4213
   *  @param  first2  Start of second range.
4214
   *  @param  last2   End of second range.
4215
   *  @return  End of the output range.
4216
   *  @ingroup setoperations
4217
   *
4218
   *  This operation iterates over both ranges, copying elements present in
4219
   *  each range in order to the output range.  Iterators increment for each
4220
   *  range.  When the current element of one range is less than the other,
4221
   *  that element is copied and the iterator advanced.  If an element is
4222
   *  contained in both ranges, the element from the first range is copied and
4223
   *  both ranges advance.  The output range may not overlap either input
4224
   *  range.
4225
  */
4226
  template<typename _InputIterator1, typename _InputIterator2,
4227
           typename _OutputIterator>
4228
    _OutputIterator
4229
    set_union(_InputIterator1 __first1, _InputIterator1 __last1,
4230
              _InputIterator2 __first2, _InputIterator2 __last2,
4231
              _OutputIterator __result)
4232
    {
4233
      // concept requirements
4234
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4235
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4236
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
4237
            typename iterator_traits<_InputIterator1>::value_type>)
4238
      __glibcxx_function_requires(_SameTypeConcept<
4239
            typename iterator_traits<_InputIterator1>::value_type,
4240
            typename iterator_traits<_InputIterator2>::value_type>)
4241
      __glibcxx_function_requires(_LessThanComparableConcept<
4242
            typename iterator_traits<_InputIterator1>::value_type>)
4243
      __glibcxx_requires_sorted(__first1, __last1);
4244
      __glibcxx_requires_sorted(__first2, __last2);
4245
 
4246
      while (__first1 != __last1 && __first2 != __last2)
4247
        {
4248
          if (*__first1 < *__first2)
4249
            {
4250
              *__result = *__first1;
4251
              ++__first1;
4252
            }
4253
          else if (*__first2 < *__first1)
4254
            {
4255
              *__result = *__first2;
4256
              ++__first2;
4257
            }
4258
          else
4259
            {
4260
              *__result = *__first1;
4261
              ++__first1;
4262
              ++__first2;
4263
            }
4264
          ++__result;
4265
        }
4266
      return std::copy(__first2, __last2, std::copy(__first1, __last1,
4267
                                                    __result));
4268
    }
4269
 
4270
  /**
4271
   *  @brief Return the union of two sorted ranges using a comparison functor.
4272
   *  @param  first1  Start of first range.
4273
   *  @param  last1   End of first range.
4274
   *  @param  first2  Start of second range.
4275
   *  @param  last2   End of second range.
4276
   *  @param  comp    The comparison functor.
4277
   *  @return  End of the output range.
4278
   *  @ingroup setoperations
4279
   *
4280
   *  This operation iterates over both ranges, copying elements present in
4281
   *  each range in order to the output range.  Iterators increment for each
4282
   *  range.  When the current element of one range is less than the other
4283
   *  according to @a comp, that element is copied and the iterator advanced.
4284
   *  If an equivalent element according to @a comp is contained in both
4285
   *  ranges, the element from the first range is copied and both ranges
4286
   *  advance.  The output range may not overlap either input range.
4287
  */
4288
  template<typename _InputIterator1, typename _InputIterator2,
4289
           typename _OutputIterator, typename _Compare>
4290
    _OutputIterator
4291
    set_union(_InputIterator1 __first1, _InputIterator1 __last1,
4292
              _InputIterator2 __first2, _InputIterator2 __last2,
4293
              _OutputIterator __result, _Compare __comp)
4294
    {
4295
      // concept requirements
4296
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4297
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4298
      __glibcxx_function_requires(_SameTypeConcept<
4299
            typename iterator_traits<_InputIterator1>::value_type,
4300
            typename iterator_traits<_InputIterator2>::value_type>)
4301
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
4302
            typename iterator_traits<_InputIterator1>::value_type>)
4303
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4304
            typename iterator_traits<_InputIterator1>::value_type,
4305
            typename iterator_traits<_InputIterator2>::value_type>)
4306
      __glibcxx_requires_sorted_pred(__first1, __last1, __comp);
4307
      __glibcxx_requires_sorted_pred(__first2, __last2, __comp);
4308
 
4309
      while (__first1 != __last1 && __first2 != __last2)
4310
        {
4311
          if (__comp(*__first1, *__first2))
4312
            {
4313
              *__result = *__first1;
4314
              ++__first1;
4315
            }
4316
          else if (__comp(*__first2, *__first1))
4317
            {
4318
              *__result = *__first2;
4319
              ++__first2;
4320
            }
4321
          else
4322
            {
4323
              *__result = *__first1;
4324
              ++__first1;
4325
              ++__first2;
4326
            }
4327
          ++__result;
4328
        }
4329
      return std::copy(__first2, __last2, std::copy(__first1, __last1,
4330
                                                    __result));
4331
    }
4332
 
4333
  /**
4334
   *  @brief Return the intersection of two sorted ranges.
4335
   *  @param  first1  Start of first range.
4336
   *  @param  last1   End of first range.
4337
   *  @param  first2  Start of second range.
4338
   *  @param  last2   End of second range.
4339
   *  @return  End of the output range.
4340
   *  @ingroup setoperations
4341
   *
4342
   *  This operation iterates over both ranges, copying elements present in
4343
   *  both ranges in order to the output range.  Iterators increment for each
4344
   *  range.  When the current element of one range is less than the other,
4345
   *  that iterator advances.  If an element is contained in both ranges, the
4346
   *  element from the first range is copied and both ranges advance.  The
4347
   *  output range may not overlap either input range.
4348
  */
4349
  template<typename _InputIterator1, typename _InputIterator2,
4350
           typename _OutputIterator>
4351
    _OutputIterator
4352
    set_intersection(_InputIterator1 __first1, _InputIterator1 __last1,
4353
                     _InputIterator2 __first2, _InputIterator2 __last2,
4354
                     _OutputIterator __result)
4355
    {
4356
      // concept requirements
4357
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4358
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4359
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
4360
            typename iterator_traits<_InputIterator1>::value_type>)
4361
      __glibcxx_function_requires(_SameTypeConcept<
4362
            typename iterator_traits<_InputIterator1>::value_type,
4363
            typename iterator_traits<_InputIterator2>::value_type>)
4364
      __glibcxx_function_requires(_LessThanComparableConcept<
4365
            typename iterator_traits<_InputIterator1>::value_type>)
4366
      __glibcxx_requires_sorted(__first1, __last1);
4367
      __glibcxx_requires_sorted(__first2, __last2);
4368
 
4369
      while (__first1 != __last1 && __first2 != __last2)
4370
        if (*__first1 < *__first2)
4371
          ++__first1;
4372
        else if (*__first2 < *__first1)
4373
          ++__first2;
4374
        else
4375
          {
4376
            *__result = *__first1;
4377
            ++__first1;
4378
            ++__first2;
4379
            ++__result;
4380
          }
4381
      return __result;
4382
    }
4383
 
4384
  /**
4385
   *  @brief Return the intersection of two sorted ranges using comparison
4386
   *  functor.
4387
   *  @param  first1  Start of first range.
4388
   *  @param  last1   End of first range.
4389
   *  @param  first2  Start of second range.
4390
   *  @param  last2   End of second range.
4391
   *  @param  comp    The comparison functor.
4392
   *  @return  End of the output range.
4393
   *  @ingroup setoperations
4394
   *
4395
   *  This operation iterates over both ranges, copying elements present in
4396
   *  both ranges in order to the output range.  Iterators increment for each
4397
   *  range.  When the current element of one range is less than the other
4398
   *  according to @a comp, that iterator advances.  If an element is
4399
   *  contained in both ranges according to @a comp, the element from the
4400
   *  first range is copied and both ranges advance.  The output range may not
4401
   *  overlap either input range.
4402
  */
4403
  template<typename _InputIterator1, typename _InputIterator2,
4404
           typename _OutputIterator, typename _Compare>
4405
    _OutputIterator
4406
    set_intersection(_InputIterator1 __first1, _InputIterator1 __last1,
4407
                     _InputIterator2 __first2, _InputIterator2 __last2,
4408
                     _OutputIterator __result, _Compare __comp)
4409
    {
4410
      // concept requirements
4411
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4412
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4413
      __glibcxx_function_requires(_SameTypeConcept<
4414
            typename iterator_traits<_InputIterator1>::value_type,
4415
            typename iterator_traits<_InputIterator2>::value_type>)
4416
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
4417
            typename iterator_traits<_InputIterator1>::value_type>)
4418
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4419
            typename iterator_traits<_InputIterator1>::value_type,
4420
            typename iterator_traits<_InputIterator2>::value_type>)
4421
      __glibcxx_requires_sorted_pred(__first1, __last1, __comp);
4422
      __glibcxx_requires_sorted_pred(__first2, __last2, __comp);
4423
 
4424
      while (__first1 != __last1 && __first2 != __last2)
4425
        if (__comp(*__first1, *__first2))
4426
          ++__first1;
4427
        else if (__comp(*__first2, *__first1))
4428
          ++__first2;
4429
        else
4430
          {
4431
            *__result = *__first1;
4432
            ++__first1;
4433
            ++__first2;
4434
            ++__result;
4435
          }
4436
      return __result;
4437
    }
4438
 
4439
  /**
4440
   *  @brief Return the difference of two sorted ranges.
4441
   *  @param  first1  Start of first range.
4442
   *  @param  last1   End of first range.
4443
   *  @param  first2  Start of second range.
4444
   *  @param  last2   End of second range.
4445
   *  @return  End of the output range.
4446
   *  @ingroup setoperations
4447
   *
4448
   *  This operation iterates over both ranges, copying elements present in
4449
   *  the first range but not the second in order to the output range.
4450
   *  Iterators increment for each range.  When the current element of the
4451
   *  first range is less than the second, that element is copied and the
4452
   *  iterator advances.  If the current element of the second range is less,
4453
   *  the iterator advances, but no element is copied.  If an element is
4454
   *  contained in both ranges, no elements are copied and both ranges
4455
   *  advance.  The output range may not overlap either input range.
4456
  */
4457
  template<typename _InputIterator1, typename _InputIterator2,
4458
           typename _OutputIterator>
4459
    _OutputIterator
4460
    set_difference(_InputIterator1 __first1, _InputIterator1 __last1,
4461
                   _InputIterator2 __first2, _InputIterator2 __last2,
4462
                   _OutputIterator __result)
4463
    {
4464
      // concept requirements
4465
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4466
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4467
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
4468
            typename iterator_traits<_InputIterator1>::value_type>)
4469
      __glibcxx_function_requires(_SameTypeConcept<
4470
            typename iterator_traits<_InputIterator1>::value_type,
4471
            typename iterator_traits<_InputIterator2>::value_type>)
4472
      __glibcxx_function_requires(_LessThanComparableConcept<
4473
            typename iterator_traits<_InputIterator1>::value_type>)
4474
      __glibcxx_requires_sorted(__first1, __last1);
4475
      __glibcxx_requires_sorted(__first2, __last2);
4476
 
4477
      while (__first1 != __last1 && __first2 != __last2)
4478
        if (*__first1 < *__first2)
4479
          {
4480
            *__result = *__first1;
4481
            ++__first1;
4482
            ++__result;
4483
          }
4484
        else if (*__first2 < *__first1)
4485
          ++__first2;
4486
        else
4487
          {
4488
            ++__first1;
4489
            ++__first2;
4490
          }
4491
      return std::copy(__first1, __last1, __result);
4492
    }
4493
 
4494
  /**
4495
   *  @brief  Return the difference of two sorted ranges using comparison
4496
   *  functor.
4497
   *  @param  first1  Start of first range.
4498
   *  @param  last1   End of first range.
4499
   *  @param  first2  Start of second range.
4500
   *  @param  last2   End of second range.
4501
   *  @param  comp    The comparison functor.
4502
   *  @return  End of the output range.
4503
   *  @ingroup setoperations
4504
   *
4505
   *  This operation iterates over both ranges, copying elements present in
4506
   *  the first range but not the second in order to the output range.
4507
   *  Iterators increment for each range.  When the current element of the
4508
   *  first range is less than the second according to @a comp, that element
4509
   *  is copied and the iterator advances.  If the current element of the
4510
   *  second range is less, no element is copied and the iterator advances.
4511
   *  If an element is contained in both ranges according to @a comp, no
4512
   *  elements are copied and both ranges advance.  The output range may not
4513
   *  overlap either input range.
4514
  */
4515
  template<typename _InputIterator1, typename _InputIterator2,
4516
           typename _OutputIterator, typename _Compare>
4517
    _OutputIterator
4518
    set_difference(_InputIterator1 __first1, _InputIterator1 __last1,
4519
                   _InputIterator2 __first2, _InputIterator2 __last2,
4520
                   _OutputIterator __result, _Compare __comp)
4521
    {
4522
      // concept requirements
4523
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4524
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4525
      __glibcxx_function_requires(_SameTypeConcept<
4526
            typename iterator_traits<_InputIterator1>::value_type,
4527
            typename iterator_traits<_InputIterator2>::value_type>)
4528
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
4529
            typename iterator_traits<_InputIterator1>::value_type>)
4530
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4531
            typename iterator_traits<_InputIterator1>::value_type,
4532
            typename iterator_traits<_InputIterator2>::value_type>)
4533
      __glibcxx_requires_sorted_pred(__first1, __last1, __comp);
4534
      __glibcxx_requires_sorted_pred(__first2, __last2, __comp);
4535
 
4536
      while (__first1 != __last1 && __first2 != __last2)
4537
        if (__comp(*__first1, *__first2))
4538
          {
4539
            *__result = *__first1;
4540
            ++__first1;
4541
            ++__result;
4542
          }
4543
        else if (__comp(*__first2, *__first1))
4544
          ++__first2;
4545
        else
4546
          {
4547
            ++__first1;
4548
            ++__first2;
4549
          }
4550
      return std::copy(__first1, __last1, __result);
4551
    }
4552
 
4553
  /**
4554
   *  @brief  Return the symmetric difference of two sorted ranges.
4555
   *  @param  first1  Start of first range.
4556
   *  @param  last1   End of first range.
4557
   *  @param  first2  Start of second range.
4558
   *  @param  last2   End of second range.
4559
   *  @return  End of the output range.
4560
   *  @ingroup setoperations
4561
   *
4562
   *  This operation iterates over both ranges, copying elements present in
4563
   *  one range but not the other in order to the output range.  Iterators
4564
   *  increment for each range.  When the current element of one range is less
4565
   *  than the other, that element is copied and the iterator advances.  If an
4566
   *  element is contained in both ranges, no elements are copied and both
4567
   *  ranges advance.  The output range may not overlap either input range.
4568
  */
4569
  template<typename _InputIterator1, typename _InputIterator2,
4570
           typename _OutputIterator>
4571
    _OutputIterator
4572
    set_symmetric_difference(_InputIterator1 __first1, _InputIterator1 __last1,
4573
                             _InputIterator2 __first2, _InputIterator2 __last2,
4574
                             _OutputIterator __result)
4575
    {
4576
      // concept requirements
4577
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4578
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4579
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
4580
            typename iterator_traits<_InputIterator1>::value_type>)
4581
      __glibcxx_function_requires(_SameTypeConcept<
4582
            typename iterator_traits<_InputIterator1>::value_type,
4583
            typename iterator_traits<_InputIterator2>::value_type>)
4584
      __glibcxx_function_requires(_LessThanComparableConcept<
4585
            typename iterator_traits<_InputIterator1>::value_type>)
4586
      __glibcxx_requires_sorted(__first1, __last1);
4587
      __glibcxx_requires_sorted(__first2, __last2);
4588
 
4589
      while (__first1 != __last1 && __first2 != __last2)
4590
        if (*__first1 < *__first2)
4591
          {
4592
            *__result = *__first1;
4593
            ++__first1;
4594
            ++__result;
4595
          }
4596
        else if (*__first2 < *__first1)
4597
          {
4598
            *__result = *__first2;
4599
            ++__first2;
4600
            ++__result;
4601
          }
4602
        else
4603
          {
4604
            ++__first1;
4605
            ++__first2;
4606
          }
4607
      return std::copy(__first2, __last2, std::copy(__first1,
4608
                                                    __last1, __result));
4609
    }
4610
 
4611
  /**
4612
   *  @brief  Return the symmetric difference of two sorted ranges using
4613
   *  comparison functor.
4614
   *  @param  first1  Start of first range.
4615
   *  @param  last1   End of first range.
4616
   *  @param  first2  Start of second range.
4617
   *  @param  last2   End of second range.
4618
   *  @param  comp    The comparison functor.
4619
   *  @return  End of the output range.
4620
   *  @ingroup setoperations
4621
   *
4622
   *  This operation iterates over both ranges, copying elements present in
4623
   *  one range but not the other in order to the output range.  Iterators
4624
   *  increment for each range.  When the current element of one range is less
4625
   *  than the other according to @a comp, that element is copied and the
4626
   *  iterator advances.  If an element is contained in both ranges according
4627
   *  to @a comp, no elements are copied and both ranges advance.  The output
4628
   *  range may not overlap either input range.
4629
  */
4630
  template<typename _InputIterator1, typename _InputIterator2,
4631
           typename _OutputIterator, typename _Compare>
4632
    _OutputIterator
4633
    set_symmetric_difference(_InputIterator1 __first1, _InputIterator1 __last1,
4634
                             _InputIterator2 __first2, _InputIterator2 __last2,
4635
                             _OutputIterator __result,
4636
                             _Compare __comp)
4637
    {
4638
      // concept requirements
4639
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4640
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4641
      __glibcxx_function_requires(_SameTypeConcept<
4642
            typename iterator_traits<_InputIterator1>::value_type,
4643
            typename iterator_traits<_InputIterator2>::value_type>)
4644
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
4645
            typename iterator_traits<_InputIterator1>::value_type>)
4646
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4647
            typename iterator_traits<_InputIterator1>::value_type,
4648
            typename iterator_traits<_InputIterator2>::value_type>)
4649
      __glibcxx_requires_sorted_pred(__first1, __last1, __comp);
4650
      __glibcxx_requires_sorted_pred(__first2, __last2, __comp);
4651
 
4652
      while (__first1 != __last1 && __first2 != __last2)
4653
        if (__comp(*__first1, *__first2))
4654
          {
4655
            *__result = *__first1;
4656
            ++__first1;
4657
            ++__result;
4658
          }
4659
        else if (__comp(*__first2, *__first1))
4660
          {
4661
            *__result = *__first2;
4662
            ++__first2;
4663
            ++__result;
4664
          }
4665
        else
4666
          {
4667
            ++__first1;
4668
            ++__first2;
4669
          }
4670
      return std::copy(__first2, __last2, std::copy(__first1,
4671
                                                    __last1, __result));
4672
    }
4673
 
4674
  // min_element and max_element, with and without an explicitly supplied
4675
  // comparison function.
4676
 
4677
  /**
4678
   *  @brief  Return the maximum element in a range.
4679
   *  @param  first  Start of range.
4680
   *  @param  last   End of range.
4681
   *  @return  Iterator referencing the first instance of the largest value.
4682
  */
4683
  template<typename _ForwardIterator>
4684
    _ForwardIterator
4685
    max_element(_ForwardIterator __first, _ForwardIterator __last)
4686
    {
4687
      // concept requirements
4688
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
4689
      __glibcxx_function_requires(_LessThanComparableConcept<
4690
            typename iterator_traits<_ForwardIterator>::value_type>)
4691
      __glibcxx_requires_valid_range(__first, __last);
4692
 
4693
      if (__first == __last)
4694
        return __first;
4695
      _ForwardIterator __result = __first;
4696
      while (++__first != __last)
4697
        if (*__result < *__first)
4698
          __result = __first;
4699
      return __result;
4700
    }
4701
 
4702
  /**
4703
   *  @brief  Return the maximum element in a range using comparison functor.
4704
   *  @param  first  Start of range.
4705
   *  @param  last   End of range.
4706
   *  @param  comp   Comparison functor.
4707
   *  @return  Iterator referencing the first instance of the largest value
4708
   *  according to comp.
4709
  */
4710
  template<typename _ForwardIterator, typename _Compare>
4711
    _ForwardIterator
4712
    max_element(_ForwardIterator __first, _ForwardIterator __last,
4713
                _Compare __comp)
4714
    {
4715
      // concept requirements
4716
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
4717
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4718
            typename iterator_traits<_ForwardIterator>::value_type,
4719
            typename iterator_traits<_ForwardIterator>::value_type>)
4720
      __glibcxx_requires_valid_range(__first, __last);
4721
 
4722
      if (__first == __last) return __first;
4723
      _ForwardIterator __result = __first;
4724
      while (++__first != __last)
4725
        if (__comp(*__result, *__first)) __result = __first;
4726
      return __result;
4727
    }
4728
 
4729
  /**
4730
   *  @brief  Return the minimum element in a range.
4731
   *  @param  first  Start of range.
4732
   *  @param  last   End of range.
4733
   *  @return  Iterator referencing the first instance of the smallest value.
4734
  */
4735
  template<typename _ForwardIterator>
4736
    _ForwardIterator
4737
    min_element(_ForwardIterator __first, _ForwardIterator __last)
4738
    {
4739
      // concept requirements
4740
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
4741
      __glibcxx_function_requires(_LessThanComparableConcept<
4742
            typename iterator_traits<_ForwardIterator>::value_type>)
4743
      __glibcxx_requires_valid_range(__first, __last);
4744
 
4745
      if (__first == __last)
4746
        return __first;
4747
      _ForwardIterator __result = __first;
4748
      while (++__first != __last)
4749
        if (*__first < *__result)
4750
          __result = __first;
4751
      return __result;
4752
    }
4753
 
4754
  /**
4755
   *  @brief  Return the minimum element in a range using comparison functor.
4756
   *  @param  first  Start of range.
4757
   *  @param  last   End of range.
4758
   *  @param  comp   Comparison functor.
4759
   *  @return  Iterator referencing the first instance of the smallest value
4760
   *  according to comp.
4761
  */
4762
  template<typename _ForwardIterator, typename _Compare>
4763
    _ForwardIterator
4764
    min_element(_ForwardIterator __first, _ForwardIterator __last,
4765
                _Compare __comp)
4766
    {
4767
      // concept requirements
4768
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
4769
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4770
            typename iterator_traits<_ForwardIterator>::value_type,
4771
            typename iterator_traits<_ForwardIterator>::value_type>)
4772
      __glibcxx_requires_valid_range(__first, __last);
4773
 
4774
      if (__first == __last)
4775
        return __first;
4776
      _ForwardIterator __result = __first;
4777
      while (++__first != __last)
4778
        if (__comp(*__first, *__result))
4779
          __result = __first;
4780
      return __result;
4781
    }
4782
 
4783
  // next_permutation and prev_permutation, with and without an explicitly
4784
  // supplied comparison function.
4785
 
4786
  /**
4787
   *  @brief  Permute range into the next "dictionary" ordering.
4788
   *  @param  first  Start of range.
4789
   *  @param  last   End of range.
4790
   *  @return  False if wrapped to first permutation, true otherwise.
4791
   *
4792
   *  Treats all permutations of the range as a set of "dictionary" sorted
4793
   *  sequences.  Permutes the current sequence into the next one of this set.
4794
   *  Returns true if there are more sequences to generate.  If the sequence
4795
   *  is the largest of the set, the smallest is generated and false returned.
4796
  */
4797
  template<typename _BidirectionalIterator>
4798
    bool
4799
    next_permutation(_BidirectionalIterator __first,
4800
                     _BidirectionalIterator __last)
4801
    {
4802
      // concept requirements
4803
      __glibcxx_function_requires(_BidirectionalIteratorConcept<
4804
                                  _BidirectionalIterator>)
4805
      __glibcxx_function_requires(_LessThanComparableConcept<
4806
            typename iterator_traits<_BidirectionalIterator>::value_type>)
4807
      __glibcxx_requires_valid_range(__first, __last);
4808
 
4809
      if (__first == __last)
4810
        return false;
4811
      _BidirectionalIterator __i = __first;
4812
      ++__i;
4813
      if (__i == __last)
4814
        return false;
4815
      __i = __last;
4816
      --__i;
4817
 
4818
      for(;;)
4819
        {
4820
          _BidirectionalIterator __ii = __i;
4821
          --__i;
4822
          if (*__i < *__ii)
4823
            {
4824
              _BidirectionalIterator __j = __last;
4825
              while (!(*__i < *--__j))
4826
                {}
4827
              std::iter_swap(__i, __j);
4828
              std::reverse(__ii, __last);
4829
              return true;
4830
            }
4831
          if (__i == __first)
4832
            {
4833
              std::reverse(__first, __last);
4834
              return false;
4835
            }
4836
        }
4837
    }
4838
 
4839
  /**
4840
   *  @brief  Permute range into the next "dictionary" ordering using
4841
   *  comparison functor.
4842
   *  @param  first  Start of range.
4843
   *  @param  last   End of range.
4844
   *  @param  comp
4845
   *  @return  False if wrapped to first permutation, true otherwise.
4846
   *
4847
   *  Treats all permutations of the range [first,last) as a set of
4848
   *  "dictionary" sorted sequences ordered by @a comp.  Permutes the current
4849
   *  sequence into the next one of this set.  Returns true if there are more
4850
   *  sequences to generate.  If the sequence is the largest of the set, the
4851
   *  smallest is generated and false returned.
4852
  */
4853
  template<typename _BidirectionalIterator, typename _Compare>
4854
    bool
4855
    next_permutation(_BidirectionalIterator __first,
4856
                     _BidirectionalIterator __last, _Compare __comp)
4857
    {
4858
      // concept requirements
4859
      __glibcxx_function_requires(_BidirectionalIteratorConcept<
4860
                                  _BidirectionalIterator>)
4861
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4862
            typename iterator_traits<_BidirectionalIterator>::value_type,
4863
            typename iterator_traits<_BidirectionalIterator>::value_type>)
4864
      __glibcxx_requires_valid_range(__first, __last);
4865
 
4866
      if (__first == __last)
4867
        return false;
4868
      _BidirectionalIterator __i = __first;
4869
      ++__i;
4870
      if (__i == __last)
4871
        return false;
4872
      __i = __last;
4873
      --__i;
4874
 
4875
      for(;;)
4876
        {
4877
          _BidirectionalIterator __ii = __i;
4878
          --__i;
4879
          if (__comp(*__i, *__ii))
4880
            {
4881
              _BidirectionalIterator __j = __last;
4882
              while (!__comp(*__i, *--__j))
4883
                {}
4884
              std::iter_swap(__i, __j);
4885
              std::reverse(__ii, __last);
4886
              return true;
4887
            }
4888
          if (__i == __first)
4889
            {
4890
              std::reverse(__first, __last);
4891
              return false;
4892
            }
4893
        }
4894
    }
4895
 
4896
  /**
4897
   *  @brief  Permute range into the previous "dictionary" ordering.
4898
   *  @param  first  Start of range.
4899
   *  @param  last   End of range.
4900
   *  @return  False if wrapped to last permutation, true otherwise.
4901
   *
4902
   *  Treats all permutations of the range as a set of "dictionary" sorted
4903
   *  sequences.  Permutes the current sequence into the previous one of this
4904
   *  set.  Returns true if there are more sequences to generate.  If the
4905
   *  sequence is the smallest of the set, the largest is generated and false
4906
   *  returned.
4907
  */
4908
  template<typename _BidirectionalIterator>
4909
    bool
4910
    prev_permutation(_BidirectionalIterator __first,
4911
                     _BidirectionalIterator __last)
4912
    {
4913
      // concept requirements
4914
      __glibcxx_function_requires(_BidirectionalIteratorConcept<
4915
                                  _BidirectionalIterator>)
4916
      __glibcxx_function_requires(_LessThanComparableConcept<
4917
            typename iterator_traits<_BidirectionalIterator>::value_type>)
4918
      __glibcxx_requires_valid_range(__first, __last);
4919
 
4920
      if (__first == __last)
4921
        return false;
4922
      _BidirectionalIterator __i = __first;
4923
      ++__i;
4924
      if (__i == __last)
4925
        return false;
4926
      __i = __last;
4927
      --__i;
4928
 
4929
      for(;;)
4930
        {
4931
          _BidirectionalIterator __ii = __i;
4932
          --__i;
4933
          if (*__ii < *__i)
4934
            {
4935
              _BidirectionalIterator __j = __last;
4936
              while (!(*--__j < *__i))
4937
                {}
4938
              std::iter_swap(__i, __j);
4939
              std::reverse(__ii, __last);
4940
              return true;
4941
            }
4942
          if (__i == __first)
4943
            {
4944
              std::reverse(__first, __last);
4945
              return false;
4946
            }
4947
        }
4948
    }
4949
 
4950
  /**
4951
   *  @brief  Permute range into the previous "dictionary" ordering using
4952
   *  comparison functor.
4953
   *  @param  first  Start of range.
4954
   *  @param  last   End of range.
4955
   *  @param  comp
4956
   *  @return  False if wrapped to last permutation, true otherwise.
4957
   *
4958
   *  Treats all permutations of the range [first,last) as a set of
4959
   *  "dictionary" sorted sequences ordered by @a comp.  Permutes the current
4960
   *  sequence into the previous one of this set.  Returns true if there are
4961
   *  more sequences to generate.  If the sequence is the smallest of the set,
4962
   *  the largest is generated and false returned.
4963
  */
4964
  template<typename _BidirectionalIterator, typename _Compare>
4965
    bool
4966
    prev_permutation(_BidirectionalIterator __first,
4967
                     _BidirectionalIterator __last, _Compare __comp)
4968
    {
4969
      // concept requirements
4970
      __glibcxx_function_requires(_BidirectionalIteratorConcept<
4971
                                  _BidirectionalIterator>)
4972
      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4973
            typename iterator_traits<_BidirectionalIterator>::value_type,
4974
            typename iterator_traits<_BidirectionalIterator>::value_type>)
4975
      __glibcxx_requires_valid_range(__first, __last);
4976
 
4977
      if (__first == __last)
4978
        return false;
4979
      _BidirectionalIterator __i = __first;
4980
      ++__i;
4981
      if (__i == __last)
4982
        return false;
4983
      __i = __last;
4984
      --__i;
4985
 
4986
      for(;;)
4987
        {
4988
          _BidirectionalIterator __ii = __i;
4989
          --__i;
4990
          if (__comp(*__ii, *__i))
4991
            {
4992
              _BidirectionalIterator __j = __last;
4993
              while (!__comp(*--__j, *__i))
4994
                {}
4995
              std::iter_swap(__i, __j);
4996
              std::reverse(__ii, __last);
4997
              return true;
4998
            }
4999
          if (__i == __first)
5000
            {
5001
              std::reverse(__first, __last);
5002
              return false;
5003
            }
5004
        }
5005
    }
5006
 
5007
  // find_first_of, with and without an explicitly supplied comparison function.
5008
 
5009
  /**
5010
   *  @brief  Find element from a set in a sequence.
5011
   *  @param  first1  Start of range to search.
5012
   *  @param  last1   End of range to search.
5013
   *  @param  first2  Start of match candidates.
5014
   *  @param  last2   End of match candidates.
5015
   *  @return   The first iterator @c i in the range
5016
   *  @p [first1,last1) such that @c *i == @p *(i2) such that i2 is an
5017
   *  interator in [first2,last2), or @p last1 if no such iterator exists.
5018
   *
5019
   *  Searches the range @p [first1,last1) for an element that is equal to
5020
   *  some element in the range [first2,last2).  If found, returns an iterator
5021
   *  in the range [first1,last1), otherwise returns @p last1.
5022
  */
5023
  template<typename _InputIterator, typename _ForwardIterator>
5024
    _InputIterator
5025
    find_first_of(_InputIterator __first1, _InputIterator __last1,
5026
                  _ForwardIterator __first2, _ForwardIterator __last2)
5027
    {
5028
      // concept requirements
5029
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
5030
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
5031
      __glibcxx_function_requires(_EqualOpConcept<
5032
            typename iterator_traits<_InputIterator>::value_type,
5033
            typename iterator_traits<_ForwardIterator>::value_type>)
5034
      __glibcxx_requires_valid_range(__first1, __last1);
5035
      __glibcxx_requires_valid_range(__first2, __last2);
5036
 
5037
      for ( ; __first1 != __last1; ++__first1)
5038
        for (_ForwardIterator __iter = __first2; __iter != __last2; ++__iter)
5039
          if (*__first1 == *__iter)
5040
            return __first1;
5041
      return __last1;
5042
    }
5043
 
5044
  /**
5045
   *  @brief  Find element from a set in a sequence using a predicate.
5046
   *  @param  first1  Start of range to search.
5047
   *  @param  last1   End of range to search.
5048
   *  @param  first2  Start of match candidates.
5049
   *  @param  last2   End of match candidates.
5050
   *  @param  comp    Predicate to use.
5051
   *  @return   The first iterator @c i in the range
5052
   *  @p [first1,last1) such that @c comp(*i, @p *(i2)) is true and i2 is an
5053
   *  interator in [first2,last2), or @p last1 if no such iterator exists.
5054
   *
5055
   *  Searches the range @p [first1,last1) for an element that is equal to
5056
   *  some element in the range [first2,last2).  If found, returns an iterator in
5057
   *  the range [first1,last1), otherwise returns @p last1.
5058
  */
5059
  template<typename _InputIterator, typename _ForwardIterator,
5060
           typename _BinaryPredicate>
5061
    _InputIterator
5062
    find_first_of(_InputIterator __first1, _InputIterator __last1,
5063
                  _ForwardIterator __first2, _ForwardIterator __last2,
5064
                  _BinaryPredicate __comp)
5065
    {
5066
      // concept requirements
5067
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
5068
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
5069
      __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
5070
            typename iterator_traits<_InputIterator>::value_type,
5071
            typename iterator_traits<_ForwardIterator>::value_type>)
5072
      __glibcxx_requires_valid_range(__first1, __last1);
5073
      __glibcxx_requires_valid_range(__first2, __last2);
5074
 
5075
      for ( ; __first1 != __last1; ++__first1)
5076
        for (_ForwardIterator __iter = __first2; __iter != __last2; ++__iter)
5077
          if (__comp(*__first1, *__iter))
5078
            return __first1;
5079
      return __last1;
5080
    }
5081
 
5082
 
5083
  // find_end, with and without an explicitly supplied comparison function.
5084
  // Search [first2, last2) as a subsequence in [first1, last1), and return
5085
  // the *last* possible match.  Note that find_end for bidirectional iterators
5086
  // is much faster than for forward iterators.
5087
 
5088
  // find_end for forward iterators.
5089
  template<typename _ForwardIterator1, typename _ForwardIterator2>
5090
    _ForwardIterator1
5091
    __find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
5092
               _ForwardIterator2 __first2, _ForwardIterator2 __last2,
5093
               forward_iterator_tag, forward_iterator_tag)
5094
    {
5095
      if (__first2 == __last2)
5096
        return __last1;
5097
      else
5098
        {
5099
          _ForwardIterator1 __result = __last1;
5100
          while (1)
5101
            {
5102
              _ForwardIterator1 __new_result
5103
                = std::search(__first1, __last1, __first2, __last2);
5104
              if (__new_result == __last1)
5105
                return __result;
5106
              else
5107
                {
5108
                  __result = __new_result;
5109
                  __first1 = __new_result;
5110
                  ++__first1;
5111
                }
5112
            }
5113
        }
5114
    }
5115
 
5116
  template<typename _ForwardIterator1, typename _ForwardIterator2,
5117
           typename _BinaryPredicate>
5118
    _ForwardIterator1
5119
    __find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
5120
               _ForwardIterator2 __first2, _ForwardIterator2 __last2,
5121
               forward_iterator_tag, forward_iterator_tag,
5122
               _BinaryPredicate __comp)
5123
    {
5124
      if (__first2 == __last2)
5125
        return __last1;
5126
      else
5127
        {
5128
          _ForwardIterator1 __result = __last1;
5129
          while (1)
5130
            {
5131
              _ForwardIterator1 __new_result
5132
                = std::search(__first1, __last1, __first2, __last2, __comp);
5133
              if (__new_result == __last1)
5134
                return __result;
5135
              else
5136
                {
5137
                  __result = __new_result;
5138
                  __first1 = __new_result;
5139
                  ++__first1;
5140
                }
5141
            }
5142
        }
5143
    }
5144
 
5145
  // find_end for bidirectional iterators.  Requires partial specialization.
5146
  template<typename _BidirectionalIterator1, typename _BidirectionalIterator2>
5147
    _BidirectionalIterator1
5148
    __find_end(_BidirectionalIterator1 __first1,
5149
               _BidirectionalIterator1 __last1,
5150
               _BidirectionalIterator2 __first2,
5151
               _BidirectionalIterator2 __last2,
5152
               bidirectional_iterator_tag, bidirectional_iterator_tag)
5153
    {
5154
      // concept requirements
5155
      __glibcxx_function_requires(_BidirectionalIteratorConcept<
5156
                                  _BidirectionalIterator1>)
5157
      __glibcxx_function_requires(_BidirectionalIteratorConcept<
5158
                                  _BidirectionalIterator2>)
5159
 
5160
      typedef reverse_iterator<_BidirectionalIterator1> _RevIterator1;
5161
      typedef reverse_iterator<_BidirectionalIterator2> _RevIterator2;
5162
 
5163
      _RevIterator1 __rlast1(__first1);
5164
      _RevIterator2 __rlast2(__first2);
5165
      _RevIterator1 __rresult = std::search(_RevIterator1(__last1), __rlast1,
5166
                                            _RevIterator2(__last2), __rlast2);
5167
 
5168
      if (__rresult == __rlast1)
5169
        return __last1;
5170
      else
5171
        {
5172
          _BidirectionalIterator1 __result = __rresult.base();
5173
          std::advance(__result, -std::distance(__first2, __last2));
5174
          return __result;
5175
        }
5176
    }
5177
 
5178
  template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
5179
           typename _BinaryPredicate>
5180
    _BidirectionalIterator1
5181
    __find_end(_BidirectionalIterator1 __first1,
5182
               _BidirectionalIterator1 __last1,
5183
               _BidirectionalIterator2 __first2,
5184
               _BidirectionalIterator2 __last2,
5185
               bidirectional_iterator_tag, bidirectional_iterator_tag,
5186
               _BinaryPredicate __comp)
5187
    {
5188
      // concept requirements
5189
      __glibcxx_function_requires(_BidirectionalIteratorConcept<
5190
                                  _BidirectionalIterator1>)
5191
      __glibcxx_function_requires(_BidirectionalIteratorConcept<
5192
                                  _BidirectionalIterator2>)
5193
 
5194
      typedef reverse_iterator<_BidirectionalIterator1> _RevIterator1;
5195
      typedef reverse_iterator<_BidirectionalIterator2> _RevIterator2;
5196
 
5197
      _RevIterator1 __rlast1(__first1);
5198
      _RevIterator2 __rlast2(__first2);
5199
      _RevIterator1 __rresult = std::search(_RevIterator1(__last1), __rlast1,
5200
                                            _RevIterator2(__last2), __rlast2,
5201
                                            __comp);
5202
 
5203
      if (__rresult == __rlast1)
5204
        return __last1;
5205
      else
5206
        {
5207
          _BidirectionalIterator1 __result = __rresult.base();
5208
          std::advance(__result, -std::distance(__first2, __last2));
5209
          return __result;
5210
        }
5211
    }
5212
 
5213
  // Dispatching functions for find_end.
5214
 
5215
  /**
5216
   *  @brief  Find last matching subsequence in a sequence.
5217
   *  @param  first1  Start of range to search.
5218
   *  @param  last1   End of range to search.
5219
   *  @param  first2  Start of sequence to match.
5220
   *  @param  last2   End of sequence to match.
5221
   *  @return   The last iterator @c i in the range
5222
   *  @p [first1,last1-(last2-first2)) such that @c *(i+N) == @p *(first2+N)
5223
   *  for each @c N in the range @p [0,last2-first2), or @p last1 if no
5224
   *  such iterator exists.
5225
   *
5226
   *  Searches the range @p [first1,last1) for a sub-sequence that compares
5227
   *  equal value-by-value with the sequence given by @p [first2,last2) and
5228
   *  returns an iterator to the first element of the sub-sequence, or
5229
   *  @p last1 if the sub-sequence is not found.  The sub-sequence will be the
5230
   *  last such subsequence contained in [first,last1).
5231
   *
5232
   *  Because the sub-sequence must lie completely within the range
5233
   *  @p [first1,last1) it must start at a position less than
5234
   *  @p last1-(last2-first2) where @p last2-first2 is the length of the
5235
   *  sub-sequence.
5236
   *  This means that the returned iterator @c i will be in the range
5237
   *  @p [first1,last1-(last2-first2))
5238
  */
5239
  template<typename _ForwardIterator1, typename _ForwardIterator2>
5240
    inline _ForwardIterator1
5241
    find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
5242
             _ForwardIterator2 __first2, _ForwardIterator2 __last2)
5243
    {
5244
      // concept requirements
5245
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>)
5246
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>)
5247
      __glibcxx_function_requires(_EqualOpConcept<
5248
            typename iterator_traits<_ForwardIterator1>::value_type,
5249
            typename iterator_traits<_ForwardIterator2>::value_type>)
5250
      __glibcxx_requires_valid_range(__first1, __last1);
5251
      __glibcxx_requires_valid_range(__first2, __last2);
5252
 
5253
      return std::__find_end(__first1, __last1, __first2, __last2,
5254
                             std::__iterator_category(__first1),
5255
                             std::__iterator_category(__first2));
5256
    }
5257
 
5258
  /**
5259
   *  @brief  Find last matching subsequence in a sequence using a predicate.
5260
   *  @param  first1  Start of range to search.
5261
   *  @param  last1   End of range to search.
5262
   *  @param  first2  Start of sequence to match.
5263
   *  @param  last2   End of sequence to match.
5264
   *  @param  comp    The predicate to use.
5265
   *  @return   The last iterator @c i in the range
5266
   *  @p [first1,last1-(last2-first2)) such that @c predicate(*(i+N), @p
5267
   *  (first2+N)) is true for each @c N in the range @p [0,last2-first2), or
5268
   *  @p last1 if no such iterator exists.
5269
   *
5270
   *  Searches the range @p [first1,last1) for a sub-sequence that compares
5271
   *  equal value-by-value with the sequence given by @p [first2,last2) using
5272
   *  comp as a predicate and returns an iterator to the first element of the
5273
   *  sub-sequence, or @p last1 if the sub-sequence is not found.  The
5274
   *  sub-sequence will be the last such subsequence contained in
5275
   *  [first,last1).
5276
   *
5277
   *  Because the sub-sequence must lie completely within the range
5278
   *  @p [first1,last1) it must start at a position less than
5279
   *  @p last1-(last2-first2) where @p last2-first2 is the length of the
5280
   *  sub-sequence.
5281
   *  This means that the returned iterator @c i will be in the range
5282
   *  @p [first1,last1-(last2-first2))
5283
  */
5284
  template<typename _ForwardIterator1, typename _ForwardIterator2,
5285
           typename _BinaryPredicate>
5286
    inline _ForwardIterator1
5287
    find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
5288
             _ForwardIterator2 __first2, _ForwardIterator2 __last2,
5289
             _BinaryPredicate __comp)
5290
    {
5291
      // concept requirements
5292
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>)
5293
      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>)
5294
      __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
5295
            typename iterator_traits<_ForwardIterator1>::value_type,
5296
            typename iterator_traits<_ForwardIterator2>::value_type>)
5297
      __glibcxx_requires_valid_range(__first1, __last1);
5298
      __glibcxx_requires_valid_range(__first2, __last2);
5299
 
5300
      return std::__find_end(__first1, __last1, __first2, __last2,
5301
                             std::__iterator_category(__first1),
5302
                             std::__iterator_category(__first2),
5303
                             __comp);
5304
    }
5305
 
5306
} // namespace std
5307
 
5308
#endif /* _ALGO_H */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.