OpenCores
URL https://opencores.org/ocsvn/xilinx_virtex_fp_library/xilinx_virtex_fp_library/trunk

Subversion Repositories xilinx_virtex_fp_library

[/] [xilinx_virtex_fp_library/] [trunk/] [DualPathFPAdder/] [FarPath.v] - Blame information for rev 18

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 8 constantin
`timescale 1ns / 1ps
2
//////////////////////////////////////////////////////////////////////////////////
3 18 constantin
// Company:     UPT
4
// Engineer:    Constantina-Elena Gavriliu
5 8 constantin
// 
6
// Create Date:    00:31:57 11/19/2013 
7
// Design Name: 
8
// Module Name:    FarPath 
9
// Project Name: 
10
// Target Devices: 
11
// Tool versions: 
12
// Description: A ± B when |Ea-Eb| >= 2
13
//
14 18 constantin
// Dependencies:        rounding.v
15
//                                      shifter.v
16 8 constantin
//
17
// Revision: 
18
// Revision 0.01 - File Created
19
// Additional Comments: 
20
//
21
//////////////////////////////////////////////////////////////////////////////////
22 18 constantin
module FarPath  #(      parameter size_in_mantissa                      = 24,   //1.M
23
                                        parameter size_out_mantissa                     = 24,
24
                                        parameter size_exponent                         = 8,
25
                                        parameter pipeline                                      = 0,
26
                                        parameter pipeline_pos                          = 0,     // 8 bits
27
                                        parameter size_counter                          = 5,    //log2(size_in_mantissa) + 1 = 5)
28
                                        parameter double_size_in_mantissa   = size_in_mantissa + size_in_mantissa)
29
                                (       input [size_in_mantissa - 1     : 0] m_a_number,
30
                                        input [size_in_mantissa - 1 : 0] m_b_number,
31
                                        input eff_op,
32
                                        input [size_exponent            : 0] exp_inter,
33
                                        input [size_exponent - 1 : 0] exp_difference,
34
                                        output[size_out_mantissa- 1 : 0] resulted_m_o,
35
                                        output[size_exponent - 1        : 0] resulted_e_o);
36 8 constantin
 
37 18 constantin
        wire [size_exponent - 1 : 0] adjust_mantissa;
38
        wire [size_exponent - 1 : 0] unadjusted_exponent;
39 9 constantin
        wire [double_size_in_mantissa:0] normalized_mantissa;
40 8 constantin
 
41 18 constantin
        wire [size_in_mantissa - 1      : 0] shifted_m_b;
42
        wire [size_in_mantissa + 2      : 0] adder_mantissa;
43
        wire [size_in_mantissa + 1      : 0] unnormalized_mantissa;
44 10 constantin
 
45 18 constantin
        wire [size_in_mantissa - 1 : 0] initial_rounding_bits;
46
        wire [size_in_mantissa - 2 : 0] inter_rounding_bits;
47 10 constantin
 
48 8 constantin
        wire dummy_bit;
49 18 constantin
        wire dummy_ovf, negation_cond, correction;
50 10 constantin
 
51
        //shift m_b_number                              
52
        shifter #(      .INPUT_SIZE(size_in_mantissa),
53
                                .SHIFT_SIZE(size_exponent),
54
                                .OUTPUT_SIZE(double_size_in_mantissa),
55
                                .DIRECTION(1'b0), //0=right, 1=left
56
                                .PIPELINE(pipeline),
57
                                .POSITION(pipeline_pos))
58
                m_b_shifter_instance(   .a(m_b_number),//mantissa
59
                                                                .arith(1'b0),//logical shift
60
                                                                .shft(exp_difference),
61
                                                                .shifted_a({shifted_m_b, initial_rounding_bits}));
62
 
63 18 constantin
 
64
        //compute addition
65
        assign adder_mantissa = (eff_op)?       ({1'b0, m_a_number, 1'b0} - {1'b0, shifted_m_b, initial_rounding_bits[size_in_mantissa - 1]}) :
66
                                                                                ({1'b0, m_a_number, 1'b0} + {1'b0, shifted_m_b, initial_rounding_bits[size_in_mantissa - 1]});
67
 
68 10 constantin
        //compute unnormalized_mantissa
69 18 constantin
        assign unnormalized_mantissa = (adder_mantissa[size_in_mantissa + 2])? ~adder_mantissa[size_in_mantissa + 1 : 0] : adder_mantissa[size_in_mantissa + 1 : 0];
70 10 constantin
 
71 18 constantin
        assign inter_rounding_bits = ((eff_op)? ((|initial_rounding_bits[size_in_mantissa - 2 : 0])?~initial_rounding_bits[size_in_mantissa - 2 : 0] : initial_rounding_bits[size_in_mantissa - 2 : 0]) : initial_rounding_bits[size_in_mantissa - 2 : 0]);
72
 
73
 
74
        assign adjust_mantissa = unnormalized_mantissa[size_in_mantissa + 1]? 2'd0 :
75
                                                                                unnormalized_mantissa[size_in_mantissa]? 2'd1 : 2'd2;
76 8 constantin
 
77
        //compute shifting over unnormalized_mantissa
78 9 constantin
        shifter #(      .INPUT_SIZE(double_size_in_mantissa+1),
79 8 constantin
                                        .SHIFT_SIZE(size_exponent),
80 9 constantin
                                        .OUTPUT_SIZE(double_size_in_mantissa+2),
81 8 constantin
                                        .DIRECTION(1'b1),
82
                                        .PIPELINE(pipeline),
83
                                        .POSITION(pipeline_pos))
84 9 constantin
                unnormalized_no_shifter_instance(.a({unnormalized_mantissa, inter_rounding_bits}),
85 18 constantin
                                                                                                        .arith(inter_rounding_bits[0]),
86 8 constantin
                                                                                                        .shft(adjust_mantissa),
87
                                                                                                        .shifted_a({normalized_mantissa, dummy_bit}));
88
 
89 18 constantin
        assign correction = eff_op? ((|initial_rounding_bits[size_in_mantissa - 2 : 0])?
90
                                                                ((adder_mantissa[0] | ((~adder_mantissa[0]) & (~adder_mantissa[size_in_mantissa]) & (~initial_rounding_bits[size_in_mantissa - 1])
91
                                                                                & (~(&{normalized_mantissa[size_in_mantissa-1 : 0],dummy_bit}))))? 1'b1 : 1'b0) : 1'b0) : 1'b0;
92
 
93
 
94 8 constantin
        //instantiate rounding_component
95
        rounding #(     .SIZE_MOST_S_MANTISSA(size_out_mantissa),
96
                                        .SIZE_LEAST_S_MANTISSA(size_out_mantissa + 2'd1))
97 9 constantin
                rounding_instance(      .unrounded_mantissa(normalized_mantissa[double_size_in_mantissa : double_size_in_mantissa - size_out_mantissa + 1]),
98
                                                                        .dummy_bits(normalized_mantissa[double_size_in_mantissa - size_out_mantissa: 0]),
99 18 constantin
                                                                        .correction(correction),
100 8 constantin
                                                                        .rounded_mantissa(resulted_m_o));
101 9 constantin
 
102
        assign unadjusted_exponent = exp_inter - adjust_mantissa;
103
        assign resulted_e_o = unadjusted_exponent + 1'b1;
104
 
105 8 constantin
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.