OpenCores
URL https://opencores.org/ocsvn/xilinx_virtex_fp_library/xilinx_virtex_fp_library/trunk

Subversion Repositories xilinx_virtex_fp_library

[/] [xilinx_virtex_fp_library/] [trunk/] [SinglePathFPAdder/] [SinglePathFPAdder.v] - Blame information for rev 18

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 8 constantin
`timescale 1ns / 1ps
2
//////////////////////////////////////////////////////////////////////////////////
3 18 constantin
// Company:     UPT
4
// Engineer:    Constantina-Elena Gavriliu
5 8 constantin
// 
6
// Create Date:    16:09:49 11/04/2013 
7
// Design Name: 
8
// Module Name:    SinglePathFPAdder 
9 18 constantin
 
10 8 constantin
// Project Name: 
11
// Target Devices: 
12
// Tool versions: 
13
// Description: A ± B
14 18 constantin
//                              //do not take into consideration cases for which the operation generates a NaN or Infinity exception (with corresponding sign) when initial "special cases" are not such exceptions
15 8 constantin
//
16 18 constantin
// Dependencies:        effective_op.v
17
//                                      leading_zeros.v
18
//                                      rounding.v
19
//                                      shifter.v
20
//                                      special_cases.v
21 8 constantin
//
22
// Revision: 
23
// Revision 0.01 - File Created
24
// Additional Comments: 
25
//
26
//////////////////////////////////////////////////////////////////////////////////
27 9 constantin
module SinglePathFPAdder #(     parameter size_mantissa                         = 24, //calculate the size containing the hiden bit 1.M
28 18 constantin
                                                        parameter size_exponent                         = 8,
29
                                                        parameter size_exception_field          = 2,
30
                                                        parameter size_counter                          = 5,    //log2(size_mantissa) + 1 = 5)
31
                                                        parameter [size_exception_field - 1 : 0] zero                    = 0, //00
32
                                                        parameter [size_exception_field - 1 : 0] normal_number   = 1, //01
33
                                                        parameter [size_exception_field - 1 : 0] infinity                = 2, //10
34
                                                        parameter [size_exception_field - 1 : 0] NaN                     = 3, //11
35
                                                        parameter pipeline                                      = 0,
36
                                                        parameter pipeline_pos                          = 0,     // 8 bits
37
                                                        parameter double_size_mantissa          = size_mantissa + size_mantissa,
38
                                                        parameter double_size_counter           = size_counter + 1,
39
                                                        parameter size  = size_mantissa + size_exponent + size_exception_field)
40 8 constantin
 
41 18 constantin
                                                (       input sub,
42
                                                        input [size - 1 : 0] a_number_i,
43
                                                        input [size - 1 : 0] b_number_i,
44
                                                        output[size - 1 : 0] resulted_number_o);
45 8 constantin
 
46 9 constantin
 
47
        wire [size_exception_field - 1 : 0] sp_case_a_number, sp_case_b_number;
48 8 constantin
        wire [size_mantissa - 1 : 0] m_a_number, m_b_number;
49
        wire [size_exponent - 1 : 0] e_a_number, e_b_number;
50
        wire s_a_number, s_b_number;
51
 
52 9 constantin
        wire [size_exponent     : 0] a_greater_exponent, b_greater_exponent;
53
        wire [size_exponent - 1 : 0] unadjusted_exponent;
54 14 constantin
        wire [1 : 0] adjust_exponent;
55 9 constantin
 
56 8 constantin
        wire [size_exponent - 1 : 0] exp_difference;
57 9 constantin
        wire [size_exponent     : 0] exp_inter;
58
        wire [size_mantissa - 1 : 0] shifted_m_b;
59 18 constantin
        wire [size_mantissa - 1 : 0] initial_rounding_bits, final_rounding_bits;
60
        wire [size_mantissa - 2 : 0] inter_rounding_bits;
61 8 constantin
        wire eff_op;
62
 
63 9 constantin
        wire [size_counter  - 1 : 0] lzs;
64 18 constantin
        wire [size_mantissa + 2 : 0] adder_mantissa;
65
        wire [size_mantissa     : 0] rounded_mantissa;
66
        wire [size_mantissa + 1 : 0] unnormalized_mantissa;
67
        wire [size_mantissa - 1 : 0] unrounded_mantissa;
68 8 constantin
 
69 9 constantin
        wire [size_exception_field - 1 : 0] resulted_exception_field;
70
        wire [size_mantissa - 1 : 0] resulted_mantissa;
71
        wire [size_exponent - 1 : 0] resulted_exponent;
72 8 constantin
        wire resulted_sign;
73
 
74 18 constantin
        wire [1:0] dummy_bits;
75 9 constantin
        wire zero_flag;
76 18 constantin
        wire [4:0] sign_cases;
77
        wire dummy_ovf, correction, negation_cond;
78
        reg intermediar_sign;
79 8 constantin
 
80 9 constantin
 
81 8 constantin
        assign e_a_number       = a_number_i[size_mantissa + size_exponent - 1 : size_mantissa - 1];
82
        assign e_b_number = b_number_i[size_mantissa + size_exponent - 1 : size_mantissa - 1];
83
        assign s_a_number = a_number_i[size - size_exception_field - 1];
84
        assign s_b_number = b_number_i[size - size_exception_field - 1];
85
        assign sp_case_a_number = a_number_i[size - 1 : size - size_exception_field];
86
        assign sp_case_b_number = b_number_i[size - 1 : size - size_exception_field];
87 9 constantin
 
88
        //find the greater exponent
89
        assign a_greater_exponent = e_a_number - e_b_number;
90
        assign b_greater_exponent = e_b_number - e_a_number;
91
 
92 8 constantin
        //find the difference between exponents
93 9 constantin
        assign exp_difference   = (a_greater_exponent[size_exponent])? b_greater_exponent[size_exponent - 1 : 0] : a_greater_exponent[size_exponent - 1 : 0];
94
        assign exp_inter                = (b_greater_exponent[size_exponent])? {1'b0, e_a_number} : {1'b0, e_b_number};
95
 
96
        //set shifter always on m_b_number
97
        assign {m_a_number, m_b_number} = (b_greater_exponent[size_exponent])?
98
                                                                                                        {{1'b1, a_number_i[size_mantissa - 2 :0]}, {1'b1, b_number_i[size_mantissa - 2 :0]}} :
99 18 constantin
                                                                                                        {{1'b1, b_number_i[size_mantissa - 2 :0]}, {1'b1, a_number_i[size_mantissa - 2 :0]}};
100 9 constantin
        //shift m_b_number                              
101 8 constantin
        shifter #(      .INPUT_SIZE(size_mantissa),
102 9 constantin
                                .SHIFT_SIZE(size_exponent),
103
                                .OUTPUT_SIZE(double_size_mantissa),
104
                                .DIRECTION(1'b0), //0=right, 1=left
105
                                .PIPELINE(pipeline),
106
                                .POSITION(pipeline_pos))
107 8 constantin
                m_b_shifter_instance(   .a(m_b_number),//mantissa
108 9 constantin
                                                                .arith(1'b0),//logical shift
109
                                                                .shft(exp_difference),
110
                                                                .shifted_a({shifted_m_b, initial_rounding_bits}));
111 8 constantin
 
112
        //istantiate effective_operation_component
113
        effective_op effective_op_instance( .a_sign(s_a_number), .b_sign(s_b_number), .sub(sub), .eff_op(eff_op));
114 18 constantin
 
115
        //compute addition
116
        assign adder_mantissa = (eff_op)?       ({1'b0, m_a_number, 1'b0} - {1'b0, shifted_m_b, initial_rounding_bits[size_mantissa - 1]}) :
117
                                                                                ({1'b0, m_a_number, 1'b0} + {1'b0, shifted_m_b, initial_rounding_bits[size_mantissa - 1]});
118
 
119 9 constantin
        //compute unnormalized_mantissa
120 18 constantin
        assign unnormalized_mantissa = (adder_mantissa[size_mantissa + 2])? ~adder_mantissa[size_mantissa + 1 : 0] : adder_mantissa[size_mantissa + 1 : 0];
121 8 constantin
 
122 18 constantin
        assign inter_rounding_bits = (~(|exp_difference[size_exponent - 1 : 1]))?
123
                                                                                        ((adder_mantissa[size_mantissa + 2]? ~initial_rounding_bits[size_mantissa - 2 : 0] : initial_rounding_bits[size_mantissa - 2 : 0])) :
124
                                                                                        ((eff_op)? ((|initial_rounding_bits[size_mantissa - 2 : 0])?~initial_rounding_bits[size_mantissa - 2 : 0] : initial_rounding_bits[size_mantissa - 2 : 0]) : initial_rounding_bits[size_mantissa - 2 : 0]);
125
 
126 8 constantin
        //compute leading_zeros over unnormalized mantissa
127 18 constantin
        leading_zeros #(        .SIZE_INT(size_mantissa + 2), .SIZE_COUNTER(size_counter), .PIPELINE(pipeline))
128
                leading_zeros_instance (.a(unnormalized_mantissa[size_mantissa + 1 : 0]),
129
                                                                                .ovf(unnormalized_mantissa[size_mantissa + 1]),
130 8 constantin
                                                                                .lz(lzs));
131 9 constantin
 
132 8 constantin
        //compute shifting over unnormalized_mantissa
133 9 constantin
        shifter #(      .INPUT_SIZE(double_size_mantissa + 1),
134
                                        .SHIFT_SIZE(size_counter),
135
                                        .OUTPUT_SIZE(double_size_mantissa + 2),
136 8 constantin
                                        .DIRECTION(1'b1), //0=right, 1=left
137
                                        .PIPELINE(pipeline),
138
                                        .POSITION(pipeline_pos))
139 9 constantin
                shifter_instance(       .a({unnormalized_mantissa, inter_rounding_bits}),//mantissa
140 18 constantin
                                                                .arith(inter_rounding_bits[0]),//logical shift
141 8 constantin
                                                                .shft(lzs),
142 18 constantin
                                                                .shifted_a({unrounded_mantissa, final_rounding_bits, dummy_bits}));
143
 
144
        assign correction = ~(|exp_difference[size_exponent - 1 : 1])?  1'b0 :
145
                                                        (eff_op? ((|initial_rounding_bits[size_mantissa - 2 : 0])?
146
                                                                ((adder_mantissa[0] | ((~adder_mantissa[0]) & (~adder_mantissa[size_mantissa]) & (~initial_rounding_bits[size_mantissa - 1])
147
                                                                                & (~(&final_rounding_bits[size_mantissa-2 : 0]))))? 1'b1 : 1'b0) : 1'b0) : 1'b0);
148
 
149 9 constantin
        //instantiate rounding_component
150 18 constantin
        rounding #(     .SIZE_MOST_S_MANTISSA(size_mantissa + 1),
151 9 constantin
                                .SIZE_LEAST_S_MANTISSA(size_mantissa))
152
                rounding_instance(      .unrounded_mantissa({1'b0, unrounded_mantissa}),
153
                                    .dummy_bits(final_rounding_bits),
154 18 constantin
                                                        .eff_op(eff_op),
155
                                                        .correction(correction),
156 9 constantin
                                    .rounded_mantissa(rounded_mantissa));
157 8 constantin
 
158 9 constantin
        //adjust exponent in case of overflow
159 18 constantin
        assign adjust_exponent = (rounded_mantissa[size_mantissa])? 2'd2 : 2'd1;
160 8 constantin
 
161
        //compute resulted_exponent
162 9 constantin
        assign unadjusted_exponent = exp_inter - lzs;
163
        assign resulted_exponent = unadjusted_exponent + adjust_exponent;
164 8 constantin
 
165 18 constantin
        assign resulted_mantissa = (rounded_mantissa[size_mantissa])? (rounded_mantissa[size_mantissa : 1]) : (rounded_mantissa[size_mantissa - 1 : 0]);
166 8 constantin
 
167
        //compute exception_field
168
        special_cases   #(      .size_exception_field(size_exception_field),
169
                                                        .zero(zero),
170
                                                        .normal_number(normal_number),
171
                                                        .infinity(infinity),
172
                                                        .NaN(NaN))
173
                special_cases_instance( .sp_case_a_number(sp_case_a_number),
174
                                                                                .sp_case_b_number(sp_case_b_number),
175 18 constantin
                                                                                .eff_op(eff_op),
176 8 constantin
                                                                                .sp_case_result_o(resulted_exception_field));
177 17 constantin
 
178 9 constantin
        //set zero_flag in case of equal numbers
179 17 constantin
        assign zero_flag = ~((|{resulted_mantissa,resulted_exception_field[1]}) & (|resulted_exception_field));
180 9 constantin
 
181 18 constantin
        assign sign_cases = {eff_op, s_a_number, s_b_number, a_greater_exponent[size_exponent], b_greater_exponent[size_exponent]};
182
 
183
        always
184
                @(*)
185
        begin
186
                case (sign_cases)
187
                        5'b00000:       intermediar_sign = 1'b0;
188
                        5'b00001:       intermediar_sign = 1'b0;
189
                        5'b00010:       intermediar_sign = 1'b0;
190
 
191
                        5'b10000:       intermediar_sign = ~adder_mantissa[size_mantissa+1];
192
                        5'b10001:       intermediar_sign = 1'b0;
193
                        5'b10010:       intermediar_sign = 1'b1;
194
 
195
                        5'b10100:       intermediar_sign = ~adder_mantissa[size_mantissa+1];
196
                        5'b10101:       intermediar_sign = 1'b0;
197
                        5'b10110:       intermediar_sign = 1'b1;
198
 
199
                        5'b00100:       intermediar_sign = 1'b0;
200
                        5'b00101:       intermediar_sign = 1'b0;
201
                        5'b00110:       intermediar_sign = 1'b0;
202
 
203
                        5'b11000:       intermediar_sign = adder_mantissa[size_mantissa+1];
204
                        5'b11001:       intermediar_sign = 1'b1;
205
                        5'b11010:       intermediar_sign = 1'b0;
206
 
207
                        5'b01000:       intermediar_sign = 1'b1;
208
                        5'b01001:       intermediar_sign = 1'b1;
209
                        5'b01010:       intermediar_sign = 1'b1;
210
 
211
                        5'b01100:       intermediar_sign = 1'b1;
212
                        5'b01101:       intermediar_sign = 1'b1;
213
                        5'b01110:       intermediar_sign = 1'b1;
214
 
215
                        5'b11100:       intermediar_sign = adder_mantissa[size_mantissa+1];
216
                        5'b11101:       intermediar_sign = 1'b1;
217
                        5'b11110:       intermediar_sign = 1'b0;
218
 
219
                        default: intermediar_sign = 1'b1;
220
                endcase
221
        end
222
 
223
        assign resulted_sign = intermediar_sign;
224 9 constantin
 
225 18 constantin
        assign resulted_number_o = (zero_flag | (~(|resulted_exception_field)))? {size{1'b0}} :
226
                                                                        (&(resulted_exception_field))? {resulted_exception_field, resulted_sign,{(size-1-size_exception_field){1'b0}}} :
227
                                                                        (resulted_exception_field[1])? {resulted_exception_field, {(size-size_exception_field){1'b0}}} :
228
                                                                        (!sp_case_a_number)? {b_number_i[size-1 : size-size_exception_field], resulted_sign, b_number_i[size-1-size_exception_field-1 : 0]} :
229
                                                                        (!sp_case_b_number)? {a_number_i[size-1 : size-size_exception_field], resulted_sign, a_number_i[size-1-size_exception_field-1 : 0]} :
230 9 constantin
                                                                        {resulted_exception_field, resulted_sign, resulted_exponent, resulted_mantissa[size_mantissa - 2 : 0]};
231
 
232 8 constantin
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.