OpenCores
URL https://opencores.org/ocsvn/xilinx_virtex_fp_library/xilinx_virtex_fp_library/trunk

Subversion Repositories xilinx_virtex_fp_library

[/] [xilinx_virtex_fp_library/] [trunk/] [SinglePathFPAdderMappedConversions/] [SinglePathAdderConversion.v] - Blame information for rev 15

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 15 constantin
`timescale 1ns / 1ps
2
//////////////////////////////////////////////////////////////////////////////////
3
// Company: 
4
// Engineer: 
5
// 
6
// Create Date:    16:09:49 11/04/2013 
7
// Design Name: 
8
// Module Name:    SinglePathAdderConversion 
9
// Project Name: 
10
// Target Devices: 
11
// Tool versions: 
12
// Description: A ± B with mapped conversions
13
//
14
// Dependencies: 
15
//
16
// Revision: 
17
// Revision 0.01 - File Created
18
// Additional Comments: 
19
//
20
//////////////////////////////////////////////////////////////////////////////////
21
module SinglePathAdderConversion #(     parameter size_mantissa         = 24, //calculate the size containing the hiden bit 1.M
22
                                                        parameter size_exponent                         = 8,
23
                                                        parameter size_exception_field          = 2,
24
                                                        parameter size_counter                          = 5,    //log2(size_mantissa) + 1 = 5)
25
                                                        parameter [size_exception_field - 1 : 0] zero                    = 0, //00
26
                                                        parameter [size_exception_field - 1 : 0] normal_number   = 1, //01
27
                                                        parameter [size_exception_field - 1 : 0] infinity                = 2, //10
28
                                                        parameter [size_exception_field - 1 : 0] NaN                     = 3, //11
29
                                                        parameter size_integer                  = 32,
30
                                                        parameter counter_integer               = 6,//log2(size_integer) + 1 = 6)
31
                                                        parameter [1 : 0] FP_operation   = 0, //00 
32
                                                        parameter [1 : 0] FP_to_int              = 1, //01 
33
                                                        parameter [1 : 0] int_to_FP              = 2, //10 
34
                                                        parameter pipeline                              = 0,
35
                                                        parameter pipeline_pos                  = 0,     // 8 bits
36
                                                        parameter size  = size_mantissa + size_exponent + size_exception_field
37
                                                        )
38
                                                        (       input [1:0] conversion,
39
                                                                input sub,
40
                                                                input [size - 1 : 0] a_number_i,
41
                                                                input [size - 1 : 0] b_number_i,
42
                                                                output[size - 1 : 0] resulted_number_o);
43
 
44
        parameter double_size_mantissa  = size_mantissa + size_mantissa;
45
        parameter double_size_counter   = size_counter + 1;
46
        parameter max_size                              = (size_integer > size_mantissa)? size_integer : size_mantissa;
47
        parameter max_counter                   = (counter_integer > size_counter)? counter_integer : size_counter;
48
        parameter size_diff_i_m                 = (size_integer > size_mantissa)? (size_integer - size_mantissa) : (size_mantissa - size_integer);
49
        parameter bias                                  = {1'b0,{(size_exponent-1){1'b1}}};
50
        parameter exp_biased                    = bias + size_mantissa;
51
        parameter exponent                              = exp_biased - 1'b1;
52
        parameter subtr                                 = max_size -2'd2;
53
 
54
 
55
        wire [size_exception_field - 1 : 0] sp_case_a_number, sp_case_b_number;
56
        wire [size_mantissa - 1 : 0] m_a_number, m_b_number;
57
        wire [size_exponent - 1 : 0] e_a_number, e_b_number;
58
        wire s_a_number, s_b_number;
59
 
60
        wire [size_exponent     : 0] a_greater_exponent, b_greater_exponent;
61
 
62
        wire [size_exponent - 1 : 0] exp_difference;
63
        wire [size_exponent     : 0] exp_inter;
64
        wire [size_mantissa - 1 : 0] shifted_m_b, convert_neg_mantissa, mantissa_to_shift;
65
 
66
        wire [size_mantissa - 1 : 0] initial_rounding_bits, inter_rounding_bits;
67
        wire eff_op;
68
 
69
        wire [size_mantissa + 1 : 0] adder_mantissa;
70
        wire [size_mantissa     : 0] unnormalized_mantissa;
71
 
72
        wire [size_exception_field - 1 : 0] sp_case_o, resulted_exception_field;
73
        wire [size_mantissa - 1 : 0] resulted_mantissa;
74
        wire [size_exponent - 1 : 0] resulted_exponent;
75
        wire resulted_sign;
76
 
77
        wire zero_flag;
78
 
79
        wire [size_exponent  : 0] subtracter;
80
 
81
        wire [max_size - size_mantissa : 0] dummy_bits;
82
        wire [size_exponent     : 0] shift_value_when_positive_exponent, shift_value_when_negative_exponent;
83
        wire [size_exponent - 1 : 0] shift_value, shft_val;
84
        wire lsb_shft_bit;
85
 
86
        wire [size_exponent - 1 : 0] max_resulted_e_o;
87
        wire [size_exponent - 1 : 0] max_unadjusted_exponent, max_adjust_exponent;
88
        wire [size_exponent - 1 : 0] max_exp_selection;
89
        wire [size_mantissa - 1 : 0] r_mantissa;
90
        wire [size_mantissa     : 0] max_rounded_mantissa;
91
        wire [max_counter - 1 : 0] max_lzs;
92
        wire [max_size - 1 : 0] max_entityINT_FP, max_entityFP_INT;
93
        wire arith_shift;
94
        wire max_ovf;
95
 
96
        wire do_conversion;
97
 
98
        assign do_conversion = |conversion; //let me know if there is a conversion
99
 
100
        assign e_a_number       = a_number_i[size_mantissa + size_exponent - 1 : size_mantissa - 1];
101
        assign e_b_number = b_number_i[size_mantissa + size_exponent - 1 : size_mantissa - 1];
102
        assign s_a_number = a_number_i[size - size_exception_field - 1];
103
        assign s_b_number = b_number_i[size - size_exception_field - 1];
104
        assign sp_case_a_number = a_number_i[size - 1 : size - size_exception_field];
105
        assign sp_case_b_number = b_number_i[size - 1 : size - size_exception_field];
106
 
107
 
108
        //find the greater exponent
109
        assign a_greater_exponent = e_a_number - e_b_number;
110
        assign b_greater_exponent = e_b_number - e_a_number;
111
 
112
        //find the difference between exponents
113
        assign exp_difference   = (a_greater_exponent[size_exponent])? b_greater_exponent[size_exponent - 1 : 0] : a_greater_exponent[size_exponent - 1 : 0];
114
        assign exp_inter                = (b_greater_exponent[size_exponent])? {1'b0, e_a_number} : {1'b0, e_b_number};
115
 
116
        //set shifter always on m_b_number
117
        assign {m_a_number, m_b_number} = (b_greater_exponent[size_exponent])?
118
                                                                                                        {{1'b1, a_number_i[size_mantissa - 2 :0]}, {1'b1, b_number_i[size_mantissa - 2 :0]}} :
119
                                                                                                        {{1'b1, b_number_i[size_mantissa - 2 :0]}, {1'b1, a_number_i[size_mantissa - 2 :0]}};
120
 
121
        assign subtracter =  e_a_number - bias;
122
        assign shift_value_when_positive_exponent = subtr - subtracter[size_exponent-1 : 0];
123
        assign shift_value_when_negative_exponent = max_size + (~subtracter[size_exponent-1 : 0]);
124
        assign shift_value = (subtracter[size_exponent])? shift_value_when_negative_exponent[size_exponent - 1 : 0] :
125
                             (shift_value_when_positive_exponent[size_exponent])? (~shift_value_when_positive_exponent[size_exponent - 1 : 0]):
126
                                                                                   shift_value_when_positive_exponent[size_exponent - 1 : 0];
127
        assign shft_val = do_conversion? shift_value : exp_difference;
128
 
129
        assign convert_neg_mantissa = {1'b0, ~a_number_i[size_mantissa-2 : 0]};
130
 
131
        assign mantissa_to_shift = conversion[0]? (s_a_number? convert_neg_mantissa + 1'b1 : {1'b1, a_number_i[size_mantissa-2 : 0]}) : m_b_number;
132
        assign arith_shift = conversion[0]? s_a_number : 1'b0;
133
 
134
        //shift m_b_number                              
135
        shifter #(      .INPUT_SIZE(size_mantissa),
136
                                .SHIFT_SIZE(size_exponent),
137
                                .OUTPUT_SIZE(double_size_mantissa),
138
                                .DIRECTION(1'b0), //0=right, 1=left
139
                                .PIPELINE(pipeline),
140
                                .POSITION(pipeline_pos))
141
                m_b_shifter_instance(   .a(mantissa_to_shift),//mantissa
142
                                                                .arith(arith_shift),//logical shift
143
                                                                .shft(shft_val),
144
                                                                .shifted_a({shifted_m_b, initial_rounding_bits}));
145
 
146
        assign max_entityFP_INT = {s_a_number, shifted_m_b[size_mantissa-1 : 0], initial_rounding_bits[size_mantissa-1 : size_mantissa - size_diff_i_m + 1]};
147
 
148
        //istantiate effective_operation_component
149
        effective_op effective_op_instance( .a_sign(s_a_number), .b_sign(s_b_number), .sub(sub), .eff_op(eff_op));
150
 
151
        //compute unnormalized_mantissa
152
        assign adder_mantissa = (eff_op)? ({1'b0, m_a_number} - {1'b0, shifted_m_b}) : ({1'b0, m_a_number} + {1'b0, shifted_m_b});
153
 
154
        assign {unnormalized_mantissa, inter_rounding_bits} =
155
                                                                (adder_mantissa[size_mantissa + 1])?    ({~adder_mantissa[size_mantissa : 0], ~initial_rounding_bits}) :
156
                                                                                                                                                ({adder_mantissa[size_mantissa  : 0], initial_rounding_bits});
157
 
158
        assign max_entityINT_FP = do_conversion? (s_a_number? (~a_number_i[max_size-1 : 0]) : a_number_i[max_size-1 : 0]) :
159
                                                                                                        {{(max_size-size_mantissa-1){1'b0}}, unnormalized_mantissa[size_mantissa : 0]};
160
        assign lsb_shft_bit = (do_conversion)? s_a_number : max_entityINT_FP[0];
161
 
162
        assign max_ovf = do_conversion? 1'b0 : unnormalized_mantissa[size_mantissa];
163
 
164
        //compute leading_zeros over unnormalized mantissa
165
        leading_zeros #(        .SIZE_INT(max_size), .SIZE_COUNTER(max_counter), .PIPELINE(pipeline))
166
                leading_zeros_instance (.a(max_entityINT_FP),
167
                                                                .ovf(max_ovf),
168
                                                                .lz(max_lzs));
169
 
170
        //compute shifting over unnormalized_mantissa
171
        shifter #(      .INPUT_SIZE(max_size),
172
                                .SHIFT_SIZE(max_counter),
173
                                .OUTPUT_SIZE(max_size + 1),
174
                                .DIRECTION(1'b1), //0=right, 1=left
175
                                .PIPELINE(pipeline),
176
                                .POSITION(pipeline_pos))
177
                shifter_instance(       .a(max_entityINT_FP),//mantissa
178
                                                        .arith(lsb_shft_bit),//logical shift
179
                                                        .shft(max_lzs),
180
                                                        .shifted_a({r_mantissa, dummy_bits}));
181
 
182
        //instantiate rounding_component
183
        rounding #(     .SIZE_MOST_S_MANTISSA(size_mantissa + 1),
184
                                .SIZE_LEAST_S_MANTISSA(max_size - size_mantissa + 1))
185
                rounding_instance(      .unrounded_mantissa({1'b0,r_mantissa}),
186
                                    .dummy_bits(dummy_bits),
187
                                    .rounded_mantissa(max_rounded_mantissa));
188
 
189
 
190
        assign max_exp_selection = do_conversion? exponent : exp_inter;
191
        assign max_adjust_exponent = max_exp_selection - max_lzs;
192
        assign max_unadjusted_exponent = max_adjust_exponent + size_diff_i_m;
193
        assign max_resulted_e_o = (do_conversion & ~(|max_entityINT_FP))? bias : max_unadjusted_exponent + max_rounded_mantissa[size_mantissa];
194
 
195
        assign resulted_exponent = conversion[0]?        max_entityFP_INT[size_mantissa+size_exponent-2 : size_mantissa-1] : max_resulted_e_o;
196
        assign resulted_mantissa = conversion[0]?        max_entityFP_INT[size_mantissa-1 : 0] :
197
                                                                                                (max_rounded_mantissa[size_mantissa])?  (max_rounded_mantissa[size_mantissa : 1]) :
198
                                                                                                                                                                                (max_rounded_mantissa[size_mantissa-1 : 0]);
199
 
200
        //compute exception_field
201
        special_cases   #(      .size_exception_field(size_exception_field),
202
                                                .zero(zero),
203
                                                .normal_number(normal_number),
204
                                                .infinity(infinity),
205
                                                .NaN(NaN))
206
                special_cases_instance( .sp_case_a_number(sp_case_a_number),
207
                                                                .sp_case_b_number(sp_case_b_number),
208
                                                                .sp_case_result_o(sp_case_o));
209
 
210
        //compute special case
211
        assign resulted_exception_field = do_conversion? sp_case_a_number : sp_case_o;
212
 
213
        //set zero_flag in case of equal numbers
214
        assign zero_flag = ~((|{resulted_mantissa,sp_case_o[1]}) & (|sp_case_o));
215
 
216
        //compute resulted_sign
217
        assign resulted_sign = do_conversion? s_a_number : ((eff_op)?
218
                                        (!a_greater_exponent[size_exponent]? (!b_greater_exponent[size_exponent]? ~adder_mantissa[size_mantissa+1] : s_a_number) : ~s_b_number) :
219
                                        s_a_number);
220
 
221
        assign resulted_number_o = (zero_flag)? {size{1'b0}} :
222
                                                                        {resulted_exception_field, resulted_sign, resulted_exponent, resulted_mantissa[size_mantissa - 2 : 0]};
223
 
224
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.