OpenCores
URL https://opencores.org/ocsvn/rs_decoder_31_19_6/rs_decoder_31_19_6/trunk

Subversion Repositories rs_decoder_31_19_6

[/] [rs_decoder_31_19_6/] [trunk/] [cseeblock.v] - Diff between revs 2 and 4

Show entire file | Details | Blame | View Log

Rev 2 Rev 4
Line 1... Line 1...
 
//***************************************************************//
 
// Chien Search and Error Evaluator (CSEE) block find            //
 
// error location (Xi) while determine its error magnitude (Yi). //
 
// This CSEE block implement Chien search algorithm to find      //
 
// location of an error and Fourney Formula to compute the error //
 
// error value. Error value will be outputted serially and has   //
 
// to be synchronous with output of FIFO Register.               //
 
//***************************************************************//
 
 
 No newline at end of file
 No newline at end of file
 
module CSEEblock(lambda0, lambda1, lambda2, lambda3, lambda4,
 
                  lambda5, lambda6, homega0, homega1, homega2,
 
                  homega3, homega4, homega5, errorvalue, clock1,
 
                  clock2, active_csee, reset, lastdataout, evalerror,
 
                  en_outfifo, rootcntr);
 
 
 
input [4:0] lambda0, lambda1, lambda2, lambda3, lambda4,
 
            lambda5, lambda6;
 
input [4:0] homega0, homega1, homega2, homega3, homega4, homega5;
 
input clock1, clock2, active_csee, reset;
 
input lastdataout, evalerror, en_outfifo;
 
output [4:0] errorvalue;
 
output [2:0] rootcntr;
 
 
 
wire [4:0] cs0_out, cs1_out, cs2_out, cs3_out, cs4_out, cs5_out,
 
           cs6_out;
 
wire [4:0] fn0_out, fn1_out, fn2_out, fn3_out, fn4_out, fn5_out;
 
wire [4:0] oddlambda, evenlambda, lambdaval;
 
wire [4:0] omegaval, fourney_out, inv_oddlambda;
 
wire zerodetect;
 
wire [4:0] andtree_out;
 
reg load;
 
reg enrootcnt;
 
reg [2:0] rootcntr;
 
 
 
parameter st0=0, st1=1;
 
reg state, nxt_state;
 
 
 
//*****//
 
// FSM //
 
//*****//
 
always@(posedge clock2 or negedge reset)
 
begin
 
    if(~reset)
 
       state = st0;
 
    else
 
       state = nxt_state;
 
end
 
 
 
always@(state or active_csee or lastdataout)
 
begin
 
    case(state)
 
    st0   : begin
 
            if(active_csee)
 
               nxt_state = st1;
 
            else
 
               nxt_state = st0;
 
            end
 
    st1   : begin
 
             if(lastdataout)
 
                nxt_state = st0;
 
             else
 
                nxt_state = st1;
 
            end
 
    default: nxt_state = st0;
 
    endcase
 
end
 
 
 
always@(state)
 
begin
 
    case(state)
 
    st0   : begin
 
            load = 0;
 
            enrootcnt = 0;
 
            end
 
    st1   : begin
 
            load = 1;
 
            enrootcnt = 1;
 
            end
 
    default: begin
 
             load = 0;
 
             enrootcnt = 0;
 
             end
 
    endcase
 
end
 
 
 
//********************************//
 
// Counter for roots of lambda(x) //
 
// with synchronous hold          // 
 
//********************************//
 
always@(posedge clock2)
 
begin
 
    if(enrootcnt)
 
       begin
 
       if(zerodetect)
 
          rootcntr <= rootcntr + 1;
 
       else
 
          rootcntr <= rootcntr;
 
       end
 
    else
 
       rootcntr <= 3'b0;
 
end
 
 
 
 
 
//*******************//
 
// Chien Seach block //
 
//*******************//
 
degree0_cell cs0_cell(lambda0, cs0_out, clock1, load, evalerror);
 
degree1_cell cs1_cell(lambda1, cs1_out, clock1, load, evalerror);
 
degree2_cell cs2_cell(lambda2, cs2_out, clock1, load, evalerror);
 
degree3_cell cs3_cell(lambda3, cs3_out, clock1, load, evalerror);
 
degree4_cell cs4_cell(lambda4, cs4_out, clock1, load, evalerror);
 
degree5_cell cs5_cell(lambda5, cs5_out, clock1, load, evalerror);
 
degree6_cell cs6_cell(lambda6, cs6_out, clock1, load, evalerror);
 
 
 
assign oddlambda = cs1_out ^ cs3_out ^ cs5_out;
 
assign evenlambda = (cs0_out ^ cs2_out) ^ (cs4_out ^ cs6_out);
 
assign lambdaval = oddlambda ^ evenlambda;
 
 
 
//*****************************************//
 
// Error Evaluator (Fourney Formula) block //
 
//*****************************************//
 
degree0_cell fn0_cell(homega0, fn0_out, clock1, load, evalerror);
 
degree1_cell fn1_cell(homega1, fn1_out, clock1, load, evalerror);
 
degree2_cell fn2_cell(homega2, fn2_out, clock1, load, evalerror);
 
degree3_cell fn3_cell(homega3, fn3_out, clock1, load, evalerror);
 
degree4_cell fn4_cell(homega4, fn4_out, clock1, load, evalerror);
 
degree5_cell fn5_cell(homega5, fn5_out, clock1, load, evalerror);
 
 
 
assign omegaval = (fn0_out ^ fn1_out) ^ (fn2_out ^ fn3_out) ^
 
                  (fn4_out ^ fn5_out);
 
 
 
inverscomb invers(oddlambda, inv_oddlambda);
 
lcpmult multiplier(inv_oddlambda, omegaval, fourney_out);
 
 
 
//*****************************//
 
// Zero detect and error value //
 
//*****************************//
 
assign zerodetect = ~((lambdaval[0]|lambdaval[1]) |
 
                     (lambdaval[2]|lambdaval[3]) | lambdaval[4]);
 
assign andtree_out[0] = fourney_out[0] & zerodetect;
 
assign andtree_out[1] = fourney_out[1] & zerodetect;
 
assign andtree_out[2] = fourney_out[2] & zerodetect;
 
assign andtree_out[3] = fourney_out[3] & zerodetect;
 
assign andtree_out[4] = fourney_out[4] & zerodetect;
 
 
 
//assign errorvalue = andtree_out;
 
register5_wl erroreg(andtree_out, errorvalue, clock2, en_outfifo);
 
 
 
endmodule
 
 
 
 
 
//******************************************************//
 
// Modul-modul chien search cell dibentuk dgn perkalian //
 
 
 
//***********************************************//
 
// Module for terms whose degree is zero         //
 
//***********************************************//
 
module degree0_cell(in, out, clock, load, compute);
 
 
 
input [4:0] in;
 
output [4:0] out;
 
input clock, compute, load;
 
wire [4:0] outmux, outreg;
 
 
 
register5_wl register(outmux, outreg, clock, load);
 
mux2_to_1 multiplex(in, outreg, outmux, compute);
 
assign out = outreg;
 
 
 
endmodule
 
 
 
 
 
//********************************************************//
 
// Module that computes term with degree one.             //
 
// Constructed by a variable-constant multiplier with     //
 
// alpha^1 as constant.                                   //
 
//********************************************************//
 
module degree1_cell(in, out, clock, load, compute);
 
 
 
input [4:0] in;
 
output [4:0] out;
 
input clock, load, compute;
 
wire [4:0] outmux;
 
wire [0:4] outmult, outreg;
 
 
 
register5_wl register(outmux, outreg, clock, load);
 
mux2_to_1 multiplexer(in, outmult, outmux, compute);
 
 
 
//Multipy variable-alpha^1
 
assign outmult[0] = outreg[4];
 
assign outmult[1] = outreg[0];
 
assign outmult[2] = outreg[1] ^ outreg[4];
 
assign outmult[3] = outreg[2];
 
assign outmult[4] = outreg[3];
 
 
 
assign out = outreg;
 
 
 
endmodule
 
 
 
 
 
//********************************************************//
 
// Module that computes term with degree two.
 
// Constructed by a variable-constant multiplier with 
 
// alpha^2 as constant.                                   //
 
//********************************************************//
 
module degree2_cell(in, out, clock, load, compute);
 
 
 
input [4:0] in;
 
output [4:0] out;
 
input clock, load, compute;
 
wire [4:0] outmux;
 
wire [0:4] outmult, outreg;
 
 
 
register5_wl register(outmux, outreg, clock, load);
 
mux2_to_1 multiplexer(in, outmult, outmux, compute);
 
 
 
//Multipy variable-alpha^2
 
assign outmult[0] = outreg[3];
 
assign outmult[1] = outreg[4];
 
assign outmult[2] = outreg[0] ^ outreg[3];
 
assign outmult[3] = outreg[1] ^ outreg[4];
 
assign outmult[4] = outreg[2];
 
 
 
assign out = outreg;
 
 
 
endmodule
 
 
 
//********************************************************//
 
// Module that computes term with degree three.           //
 
// Constructed by a variable-constant multiplier with     //
 
// alpha^3 as constant.                                   //
 
//********************************************************//
 
module degree3_cell(in, out, clock, load, compute);
 
 
 
input [4:0] in;
 
output [4:0] out;
 
input clock, load, compute;
 
wire [4:0] outmux;
 
wire [0:4] outmult, outreg;
 
 
 
register5_wl register(outmux, outreg, clock, load);
 
mux2_to_1 multiplexer(in, outmult, outmux, compute);
 
 
 
//Multipy variable-alpha^3
 
assign outmult[0] = outreg[2];
 
assign outmult[1] = outreg[3];
 
assign outmult[2] = outreg[2] ^ outreg[4];
 
assign outmult[3] = outreg[0] ^ outreg[3];
 
assign outmult[4] = outreg[1] ^ outreg[4];
 
 
 
assign out = outreg;
 
 
 
endmodule
 
 
 
 
 
//********************************************************//
 
// Module that computes term with degree four.           //
 
// Constructed by a variable-constant multiplier with     //
 
// alpha^4 as constant.                                   //
 
//********************************************************//
 
module degree4_cell(in, out, clock, load, compute);
 
 
 
input [4:0] in;
 
output [4:0] out;
 
input clock, load, compute;
 
wire [4:0] outmux;
 
wire [0:4] outmult, outreg;
 
 
 
register5_wl register(outmux, outreg, clock, load);
 
mux2_to_1 multiplexer(in, outmult, outmux, compute);
 
 
 
//Multipy variable-alpha^4
 
assign outmult[0] = outreg[1] ^ outreg[4];
 
assign outmult[1] = outreg[2];
 
assign outmult[2] = outreg[1] ^ outreg[3] ^ outreg[4];
 
assign outmult[3] = outreg[2] ^ outreg[4];
 
assign outmult[4] = outreg[0] ^ outreg[3];
 
 
 
assign out = outreg;
 
 
 
endmodule
 
 
 
//********************************************************//
 
// Module that computes term with degree five.            //
 
// Constructed by a variable-constant multiplier with     //
 
// alpha^5 as constant.                                   //
 
//********************************************************//
 
module degree5_cell(in, out, clock, load, compute);
 
 
 
input [4:0] in;
 
output [4:0] out;
 
input clock, load, compute;
 
wire [4:0] outmux;
 
wire [0:4] outmult, outreg;
 
 
 
register5_wl register(outmux, outreg, clock, load);
 
mux2_to_1 multiplexer(in, outmult, outmux, compute);
 
 
 
//Multipy variable-alpha^5
 
assign outmult[0] = outreg[0] ^ outreg[3];
 
assign outmult[1] = outreg[1] ^ outreg[4];
 
assign outmult[2] = outreg[0] ^ outreg[2] ^ outreg[3];
 
assign outmult[3] = outreg[1] ^ outreg[3] ^ outreg[4];
 
assign outmult[4] = outreg[2] ^ outreg[4];
 
 
 
assign out = outreg;
 
 
 
endmodule
 
 
 
//********************************************************//
 
// Module that computes term with degree six.            //
 
// Constructed by a variable-constant multiplier with     //
 
// alpha^6 as constant.                                   //
 
//********************************************************//
 
module degree6_cell(in, out, clock, load, compute);
 
 
 
input [4:0] in;
 
output [4:0] out;
 
input clock, load, compute;
 
wire [4:0] outmux;
 
wire [0:4] outmult, outreg;
 
 
 
register5_wl register(outmux, outreg, clock, load);
 
mux2_to_1 multiplexer(in, outmult, outmux, compute);
 
 
 
//Multipy variable-alpha^6
 
assign outmult[0] = outreg[2] ^ outreg[4];
 
assign outmult[1] = outreg[0] ^ outreg[3];
 
assign outmult[2] = outreg[1] ^ outreg[2];
 
assign outmult[3] = outreg[0] ^ outreg[2] ^ outreg[3];
 
assign outmult[4] = outreg[1] ^ outreg[3] ^ outreg[4];
 
 
 
assign out = outreg;
 
 
 
endmodule
 
 
 
 
 
//***********************************************************//
 
// Invers Multiplication module for GF(2^5) is formed by AND //
 
// and XOR gates. This module is derived directly from       //
 
// Fermat Theorem, which state that                          //
 
// beta^(-1) = beta^2.beta^(2^2).beta^(2^3).beta^(2^4),      //
 
// for beta member of GF(2^5).                               //
 
// Note: this module is only used in CSEE block              //
 
//***********************************************************//
 
module inverscomb(in, out);
 
 
 
input [0:4] in;
 
output [0:4] out;
 
 
 
//form product consists of AND gates
 
wire p0, p1, p2, p3, p4 , p5 , p6, p7, p8, p9,
 
    p10, p11, p12, p13, p14, p15, p16, p17, p18,
 
    p19, p20, p21, p22, p23, p24;
 
//form intermediate sum of the product that can be reused
 
wire s0, s1, s2, s3, s4, s5, s6;
 
 
 
//form intermediate sum of product that is only used by single function
 
wire t0, t1, t2;
 
 
 
assign p0 = in[0]&in[1];
 
assign p1 = in[0]&in[2];
 
assign p2 = in[0]&in[3];
 
assign p3 = in[0]&in[4];
 
assign p4 = in[1]&in[2];
 
assign p5 = in[1]&in[3];
 
assign p6 = in[1]&in[4];
 
assign p7 = in[2]&in[4];
 
assign p8 = in[3]&in[4];
 
assign p9 = in[2]&in[3];
 
assign p10 = p0&in[2];
 
assign p11 = p0&in[4];
 
assign p12 = p2&in[4];
 
assign p13 = p9&in[0];
 
assign p14 = p4&in[3];
 
assign p15 = p8&in[2];
 
assign p16 = p7&in[1];
 
assign p17 = p2&in[1];
 
assign p18 = p3&in[2];
 
assign p19 = p6&in[3];
 
assign p20 = p4&p8;
 
assign p21 = p1&p5;
 
assign p22 = p3&p5;
 
assign p23 = p2&p7;
 
assign p24 = p1&p6;
 
 
 
assign s0 = p1 ^ p15;
 
assign s1 = ((p6 ^ p12) ^ p14);
 
assign s2 = (in[4] ^ p0) ^ p21;
 
assign s3 = (in[1] ^ in[3]) ^ (p2 ^ p3) ^ (p24 ^ p10);
 
assign s4 = (p4 ^ p5) ^ (p20 ^ p7) ^ p17;
 
assign s5 = (in[2] ^ p5) ^ (p22 ^ p23);
 
assign s6 = p11 ^ p20;
 
 
 
assign t0 = (in[0] ^ p2) ^ (p4 ^ p10);
 
assign t1 = (in[3] ^ p0) ^ p24;
 
assign t2 = p19 ^ p23;
 
 
 
assign out[0] = ((s0 ^ s1) ^ (s2 ^ s5)) ^ ((s6 ^ p13) ^ t0);
 
assign out[1] = ((s0 ^ s1) ^ s2) ^ (s3 ^ (s6 ^ p16));
 
assign out[2] = (s0 ^ s4) ^ ((p13 ^ p8) ^ t1);
 
assign out[3] = ((s0 ^ s1) ^ (s2 ^ s5)) ^ ((p16 ^ p8) ^ (p9 ^ p18) ^ p7);
 
assign out[4] = (s0 ^ s1) ^ (s3 ^ s4) ^ (p9 ^ t2);
 
 
 
endmodule
 No newline at end of file
 No newline at end of file

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.