OpenCores
URL https://opencores.org/ocsvn/an-fpga-implementation-of-low-latency-noc-based-mpsoc/an-fpga-implementation-of-low-latency-noc-based-mpsoc/trunk

Subversion Repositories an-fpga-implementation-of-low-latency-noc-based-mpsoc

[/] [an-fpga-implementation-of-low-latency-noc-based-mpsoc/] [trunk/] [mpsoc/] [src_verilator/] [simulator.cpp] - Rev 54

Go to most recent revision | Compare with Previous | Blame | View Log

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <limits.h>
#include <ctype.h>
#include <stdint.h>
#include <inttypes.h>
#include <verilated.h>          // Defines common routines
 
#include "Vtraffic.h"
#include "Vpck_inj.h"
#include <thread>
#include <vector>
#include <atomic>
 
 
#include <cstdint>
#include <cstdlib>
#include <iostream>
 
 
#include "simulator.h"
 
 
 
 
int main(int argc, char** argv) {
	char change_injection_ratio=0;
	int i,j,x,y;//,report_delay_counter=0;
 
	char deafult_out[] = {"result"};
	NEw=Log2(NE);
	for(i=0;i<NE;i++)   custom_traffic_table[i]=INJECT_OFF; //off
	Verilated::commandArgs(argc, argv);   // Remember args
	processArgs ( argc,  argv );
	allocate_rsv_pck_counters();
	if (class_percentage==NULL) {
			class_percentage =   (int *) malloc(sizeof(int));
			class_percentage[0]=100;
	}
 
 
	Vrouter_new();
	if (ENDP_TYPE == PCK_INJECTOR)	for(i=0;i<NE;i++)	pck_inj[i]  = new Vpck_inj;
	else                            for(i=0;i<NE;i++)	traffic[i]  = new Vtraffic;
 
 
 
	FIXED_SRC_DST_PAIR = strcmp (TRAFFIC,"RANDOM") &  strcmp(TRAFFIC,"HOTSPOT") & strcmp(TRAFFIC,"random") & strcmp(TRAFFIC,"hot spot") & strcmp(TRAFFIC,"TASK");
 
 
	/********************
	*	initialize input
	*********************/
 
	reset=1;
	reset_all_register();
	start_i=0;
 
	mcast_init();
 
 
 
	topology_init();
	if( TRAFFIC_TYPE == NETRACE){
		netrace_init(netrace_file); // should be called first to initiate header
		pck_inj_init((int)header->num_nodes);
	}
	else if (TRAFFIC_TYPE ==SYNFUL) {
		pck_inj_init(SYNFUL_ENDP_NUM); //should be called first to initiate node mapping needed by synful lib
		synful_init(synful_file,synful_SSExit,synful_random_seed,sim_end_clk_num,end_sim_pck_num);
	}
	else 	traffic_gen_init();
 
 
 
	main_time=0;
	print_parameter();
	if( thread_num>1) initial_threads();
 
	while (!Verilated::gotFinish()) {
 
		if (main_time-saved_time >= 10 ) {
			reset = 0;
		}
 
		if(main_time == saved_time+21){ count_en=1; start_i=1;}
		if(main_time == saved_time+23) start_i=0;
 
		if(TRAFFIC_TYPE==NETRACE) netrace_posedge_event();
		else if(TRAFFIC_TYPE ==SYNFUL) synful_posedge_event();
		else traffic_clk_posedge_event();
 
 
		//The valus of all registers and input ports valuse change @ posedge of the clock. Once clk is deasserted,  as multiple modules are connected inside the testbench we need several eval for propogating combinational logic values
		//between modules when the clock .
		for (i=0;i<SMART_MAX+2;i++) {
			if(TRAFFIC_TYPE==NETRACE) netrace_negedge_event();
			else if(TRAFFIC_TYPE ==SYNFUL) synful_negedge_event();
			else traffic_clk_negedge_event( );
		}
 
		if(simulation_done){
 
			if( TRAFFIC_TYPE == NETRACE) netrace_final_report();
			else if(TRAFFIC_TYPE ==SYNFUL) synful_final_report();
			else traffic_gen_final_report();
			sim_final_all();
			return 0;
		}
 
		main_time++;
 
	}//Simulating is done
 
	sim_final_all();
	return 0;
 
}
 
 
#define __FILENAME__ (__FILE__ + SOURCE_PATH_SIZE)
 
void  usage(char * bin_name){
	printf("Usage:\n"
" %s -t <synthetic Traffic Pattern name> [synthetic Traffic options]\n"
" %s -f <Task file> [Task options]\n"
" %s -F <netrace file> [Netrace options] \n"
" %s -S <synful model file> [synful options]\n\n"
"synthetic Traffic options:\n"
"  -t <Traffic Pattern>        \"HOTSPOT\", \"RANDOM\", \"BIT_COMPLEMENT\" , \"BIT_REVERSE\",\n"
"                              \"TORNADO\", \"TRANSPOSE1\", \"TRANSPOSE2\", \"SHUFFEL\", \"CUSTOM\"\n"
"  -m <Packet size info>       packet size format  Random-Range or Random-discrete:\n"
"                              Random-Range : \"R,MIN,MAX\" : The injected packets' size in flits are\n"
"                              randomly selected in range MIN <= PCK_size <=MAX \n"
"                              Random-discrete: \"D,S1,S2,..Sn,P,P1,P2,P3,...Pn\": Si are the discrete\n"
"                              set of numbers representing packet size. The injected packet size is\n"
"                              randomly selected among these discrete values according to associated\n"
"                              probability values.\n"
"  -c <sim_end_clk_num>        The simulation will stop when the simulation clock number reaches this value\n"
"  -n <sim_end_pck_num>        The simulation will stop when the total sent packets to the NoC reaches this number\n"
"  -i <injection ratio>        flit injection ratio in percentage\n"
"  -p <class traffic ratios>   The percentage of traffic injected for each class. Represented in\n"
"                              comma-separated string format:\"n0,n1,n2..\" \n"
"  -h <HOTSPOT traffic format> represented in a string with the following format:\n"
"                              total number of hotspot nodes, first hotspot node ID, first hotspot node\n"
"                              send enable(1 or 0),first hotspot node percentage x10,second hotspot node ...\n"
"  -H <custom traffic pattern> custom traffic pattern: represented in a string with following format:\n"
"                              \"SRC1,DEST1, SRC2,DEST2, .., SRCn, DESTn\"   \n"
"  -T <thread-num>             total number of threads. The default is one (no-thread).\n"
"  -u <Multi/Broadcast format> represented in a string with following format:\n"
"                              \"ratio,min_pck_size,max_pck_size\"\n"
"                              ratio:The percentage of Multicast/broadcast packets against total injected \n"
"                              traffic. The Multicast/Broadcast packet size is randomly selected\n"
"                              between min_pck_size and max_pck_size. The max_pck_size must be smaller or equal\n"
"                              to the router buffer width. This filed is only valid when the NoC is configured\n"
"                              with the Multicast/Broadcast feature support.\n"
//"  -Q                          Quick (fast) simulation. ignore evaluating non-active routers \n"
//"                              to speed up simulation time"
"\nTrace options:\n"
"  -f <Task file>              Path to the task file. any custom task file can be generated using ProNoC gui\n"
"  -c <sim_end_clk_num>        Simulation will stop when simulation clock number reach this value \n"
"  -T <thread-num>             Total number of threads. The default is one (no-thread).\n"
//"  -Q                          Quick (fast) simulation. ignore evaluating non-active routers \n"
//"                              to speed up simulation time"
"\nNetrace options:\n"
"  -F <Netrace file>           Path to the task file. any custom task file can be generated using ProNoC gui\n"
"  -n <sim_end_pck_num>        The simulation will stop when the total sent packets to the NoC reaches this number\n"
"  -d                          ignore dependencies\n"
"  -r <start region>           Start region\n"
"  -l                          Reader throttling\n"
"  -v <level>                  Verbosity level. 0: off, 1:display a live number of injected packets,\n"
"                              3: print injected/ejected packets details, The default value is 1\n"
"  -T <thread-num>             Total number of threads. The default is one (no-thread).\n"
"  -s <speed-up-num>           The speed-up-num  is the ratio of netrace frequency to pronoc.The higher value\n"
"                              results in higher injection ratio to the NoC. Default is one\n"
//"  -Q                          Quick (fast) simulation. ignore evaluating non-active routers \n"
//"                              to speed up simulation time"
"\nsynful options:\n"
"  -S <model file>             Path to the synful application model file\n"
"  -r <seed value>             Seed value for random function\n"
"  -c <sim_end_clk_num>        The simulation will stop when the simulation clock number reaches this value \n"
"  -s                          Exit at steady state\n"
"  -n <sim_end_pck_num>        The simulation will stop when the total of sent packets to the NoC reaches this number\n"
"  -T <thread-num>             Total number of threads. The default is one (no-thread).\n"
"  -v <level>                  Verbosity level. 0: off, 1:display a live number of injected packets,\n"
"  -w <flit-size>              The synful flit size in Byte. It defines the number of flits that should be set to\n"
"                              ProNoC for each synful packets. The ProNoC packet size is:\n"
"                              Ceil(synful packet size/synful flit size).\n"
"                              3: print injected/ejected packets details, The default value is 1\n",
bin_name,bin_name,bin_name,bin_name
);
 
}
 
 
 
void netrace_processArgs (int argc, char **argv )
{
   char c;
 
   /* don't want getopt to moan - I can do that just fine thanks! */
   opterr = 0;
   if (argc < 2)  usage(argv[0]);
   while ((c = getopt (argc, argv, "F:dr:lv:T:n:s:")) != -1)
   {
	 switch (c)
	 {
	 	case 'F':
	 		TRAFFIC_TYPE=NETRACE;
	 		TRAFFIC=(char *) "NETRACE";
	 		ENDP_TYPE = PCK_INJECTOR;
	 		netrace_file = optarg;
	 		break;
	 	case 'd':
	 		ignore_dependencies=1;
	 		break;
	 	case 'r':
			start_region=atoi(optarg);
	 		break;
	 	case 'l':
	 		reader_throttling=1;
	 		break;
	 	case 'v':
	 		verbosity= atoi(optarg);
	 		break;
	 	case 'T':
			thread_num = atoi(optarg);
			break;
	 	case 'n':
	 		end_sim_pck_num=atoi(optarg);
	 		break;
	 	case 's':
	 		netrace_speed_up=atoi(optarg);
 
	 		break;
	 	case '?':
	 	    if (isprint (optopt))
	 	    	fprintf (stderr, "Unknown option `-%c'.\n", optopt);
	 		else
	 		    fprintf (stderr,  "Unknown option character `\\x%x'.\n",  optopt);
	     default:
	 	       usage(argv[0]);
	 	       exit(1);
	  }
	}
}
 
 
 
void synthetic_task_processArgs (int argc, char **argv )
{
   char c;
   int p;
   int array[10];
   float f;
 
   /* don't want getopt to moan - I can do that just fine thanks! */
   opterr = 0;
   if (argc < 2)  usage(argv[0]);
   while ((c = getopt (argc, argv, "t:m:n:c:i:p:h:H:f:T:u:Q")) != -1)
      {
	 switch (c)
	    {
	 	case 'f':
	 		TRAFFIC_TYPE=TASK;
	 		TRAFFIC=(char *) "TASK";
	 		task_traffic_init(optarg);
	 		break;
	    case 't':
			TRAFFIC=optarg;
			total_active_routers=-1;
			break;
		case 's':
			MIN_PACKET_SIZE=atoi(optarg);
			break;
		case 'n':
			 end_sim_pck_num=atoi(optarg);
			 break;
		case 'c':
			 sim_end_clk_num=atoi(optarg);
			 break;
		case 'i':
			 f=atof(optarg);
			 f*=(MAX_RATIO/100);
			 ratio= (int) f;
			 break;
		case 'p':
			p= parse_string (optarg, array);
			if (p==0) {
				printf("Warning: class setting is ignored!\n");
				break;
			}
			class_percentage =   (int *) malloc( p * sizeof(int));
			for(int k=0;k<p;k++){
				class_percentage[k]=array[k];
			}
			if(p >1 && p>C){
				printf("Warning: the number of given class %u is larger than the number of message classes in ProNoC (C=%u)!\n",p,C);
			}
			break;
		case 'm':
			update_pck_size(optarg);
 
			break;
		case 'H':
			update_custom_traffic(optarg);
			break;
		case 'h':
			update_hotspot(optarg);
			break;
		case  'T':
			thread_num = atoi(optarg);
			break;
		case 'Q':
			//Quick_sim_en=1;
			fprintf (stderr, "Unknown option `-%c'.\n", optopt);
			usage(argv[0]);
			exit(1);
			break;
		case 'u':
			update_mcast_traffic(optarg);
			break;
	    case '?':
	       if (isprint (optopt))
		  fprintf (stderr, "Unknown option `-%c'.\n", optopt);
	       else
		  fprintf (stderr, "Unknown option character `\\x%x'.\n", optopt);
	    default:
	       usage(argv[0]);
	       exit(1);
	    }
      }
}
 
 
 
 
void synful_processArgs (int argc, char **argv)
{
   char c;
   /* don't want getopt to moan - I can do that just fine thanks! */
   opterr = 0;
   if (argc < 2)  usage(argv[0]);
   while ((c = getopt (argc, argv, "S:c:sn:v:T:r:w:")) != -1)
   {
	 switch (c)
	 {
	 	case 'S':
	 		TRAFFIC_TYPE=SYNFUL;
	 		TRAFFIC=(char *) "SYNFUL";
	 		synful_file = optarg;
	 		ENDP_TYPE   =PCK_INJECTOR;
	 		break;
	 	case 'c':
	 		sim_end_clk_num=atoi(optarg);
	 		break;
	 	case 's':
	 		synful_SSExit =true;
	 		break;
	 	case 'n':
	 		end_sim_pck_num=atoi(optarg);
	 		break;
	 	case 'v':
	 		 verbosity= atoi(optarg);
	 		 break;
	 	case 'w':
	 		 synful_flitw= atoi(optarg);
	 		 break;
	 	case 'T':
	 		thread_num = atoi(optarg);
	 		break;
	 	case 'r':
	 		synful_random_seed = atoi(optarg);
	 		break;
	 	case '?':
	 		if (isprint (optopt)) fprintf (stderr, "Unknown option `-%c'.\n", optopt);
	 		else fprintf (stderr, "Unknown option character `\\x%x'.\n", optopt);
	 	default:
	 	     usage(argv[0]);
	 	     exit(1);
	 }//switch
   }//while
}
 
 
 
int parse_string ( char * str, int * array)
{
    int i=0; 
    char *pt;
    pt = strtok (str,",");
    while (pt != NULL) {
        int a = atoi(pt);
        array[i]=a;
        i++;
        pt = strtok (NULL, ",");
    }
   return i; 
}
 
 
 
 
 
 
unsigned int pck_dst_gen_unicast ( 	unsigned int core_num, unsigned char * inject_en) {
	if(TRAFFIC_TYPE==TASK)	return  	pck_dst_gen_task_graph ( core_num, inject_en);
	if((strcmp (TOPOLOGY,"MESH")==0)||(strcmp (TOPOLOGY,"TORUS")==0))	return  pck_dst_gen_2D (core_num, inject_en);
	return pck_dst_gen_1D (core_num, inject_en);
}
 
 
void mcast_full_rnd (unsigned int core_num){
	unsigned int rnd;
	int a;
	for(;;)  {
		DEST_ADDR_ASSIGN_RAND(traffic[core_num]->dest_e_addr);
		if((strcmp (SELF_LOOP_EN,"NO")==0)) DEST_ADDR_BIT_CLR(traffic[core_num]->dest_e_addr,core_num);
		DEST_ADDR_IS_ZERO(a,traffic[core_num]->dest_e_addr);
		//rnd = rand() & ~(0x1<<core_num);
		//rnd &= ((1<<NE) -1);
		//if(rnd!=0) return rnd;
		if(a!=1) return;
	}
}
 
 
void mcast_partial_rnd (unsigned int core_num){
	unsigned int rnd;int a;
	//printf("m[%d]=%d\n",core_num,mcast_list_array[core_num]);
	if(mcast_list_array[core_num] == 1){ // the current node is located in multicast partial list
		unsigned int self_node_addr = endp_id_to_mcast_id(core_num);//current node location in multicast list
		self_node_addr++;
		for(;;){
			DEST_ADDR_ASSIGN_RAND(traffic[core_num]->dest_e_addr);
			DEST_ADDR_BIT_CLR(traffic[core_num]->dest_e_addr,0);
			if((strcmp (SELF_LOOP_EN,"NO")==0))	DEST_ADDR_BIT_CLR(traffic[core_num]->dest_e_addr,self_node_addr);
			//rnd = rand() & ~((0x1<<(self_node_addr+1))|0x1); // generate a random multicast destination. remove the current node flag and unicast_flag from destination list
			//rnd &= ((1<<(MCAST_PRTLw+1)) -1);
			//printf("rnd=%d\n",rnd);
			DEST_ADDR_IS_ZERO(a,traffic[core_num]->dest_e_addr);
			if(a!=1) return;
			//if(rnd!=0) return rnd;
		}
	}else{
		for(;;){
			DEST_ADDR_ASSIGN_RAND(traffic[core_num]->dest_e_addr);
			DEST_ADDR_BIT_CLR(traffic[core_num]->dest_e_addr,0);
			DEST_ADDR_IS_ZERO(a,traffic[core_num]->dest_e_addr);
			if(a!=1) return;
			//rnd = rand() & ~0x1;// deassert the unicast flag
			//rnd &= ((1<<(MCAST_PRTLw+1)) -1);
			//if(rnd!=0) return rnd;
		}
	}
//this function should not come here
 
}
 
 
 
 
void pck_dst_gen ( 	unsigned int core_num, unsigned char * inject_en) {
 
	unsigned int dest = pck_dst_gen_unicast (core_num, inject_en);
	if(IS_UNICAST){
		traffic[core_num]->dest_e_addr= dest;
		return;
	}
	else if (*inject_en==0) return;
	//multicast
	DEST_ADDR_ASSIGN_ZERO(traffic[core_num]->dest_e_addr);//reset traffic[core_num]->dest_e_addr
 
	unsigned int dest_id = endp_addr_decoder (dest);
    //*inject_en = dest_id !=core_num;
 
	unsigned int rnd = rand() % 100; // 0~99
	if(rnd >= mcast.ratio){
		//send a unicast packet
		if((strcmp (SELF_LOOP_EN,"NO")==0) && dest_id==core_num){
			*inject_en=0;
			return;
		}
		if(IS_MCAST_FULL){
			//return (0x1<<dest_id);// for mcast-full
			DEST_ADDR_BIT_SET(traffic[core_num]->dest_e_addr,dest_id);
			return;
		}
		// IS_MCAST_PARTIAL | IS_BCAST_FULL | IS_BCAST_PARTIAL
		dest = (dest << 1) | 0x1; // {dest_coded,unicast_flag}
		DEST_ADDR_ASSIGN_INT(traffic[core_num]->dest_e_addr,dest);
		return;
	}
	traffic[core_num]->pck_size_in=rnd_between(mcast.min,mcast.max);
 
	if (IS_MCAST_FULL) {
		mcast_full_rnd (core_num);
		return;
	}
	if (IS_MCAST_PARTIAL){
		mcast_partial_rnd(core_num);
		return;
	}
 
	return; //IS_BCAST_FULL | IS_BCAST_PARTIAL  traffic[core_num]->dest_e_addr=0;
}
 
 
 
void update_hotspot(char * str){
	 int i;
	 int array[1000];
	 int p;
	 int acuum=0;
	 hotspot_st * new_node;
	 p= parse_string (str, array);
	 if (p<4){
		    fprintf(stderr,"ERROR: in hotspot traffic parameters. 4 value should be given as hotspot parameter\n");
			exit(1);
	 }
	 HOTSPOT_NUM=array[0];
	 if (p<1+HOTSPOT_NUM*3){
		    fprintf(stderr,"ERROR: in hotspot traffic parameters \n");
			exit(1);
	 }
	 new_node =  (hotspot_st *) malloc( HOTSPOT_NUM * sizeof(hotspot_st));
	 if( new_node == NULL){
		 fprintf(stderr,"ERROR: cannot allocate memory for hotspot traffic\n");
   	    exit(1);
   	 }
	 for (i=1;i<3*HOTSPOT_NUM; i+=3){
		new_node[i/3]. ip_num = array[i];
	    new_node[i/3]. send_enable=array[i+1];
	    new_node[i/3]. percentage =  acuum + array[i+2];
	    acuum= new_node[i/3]. percentage;									
 
	 }	 
	 if(acuum> 1000){
		 	printf("Warning: The hotspot traffic summation %f exceed than 100 percent.  \n", (float) acuum /10);   	   
	 } 	
	 hotspots=new_node;
}
 
void  update_mcast_traffic(char * str){
	int i;
	int array[10];
	int p;
	int max_valid =(B > LB)? LB : B;
	p= parse_string (str, array);
	if(p>0)	mcast.ratio =array[0];
	if(p>1)	mcast.min =array[1];
	if(p>2)	mcast.max =array[2];
 
	if (mcast.ratio > 100)       { printf("ERROR: The given multicast traffic ratio (%d) is larger than 100\n",mcast.ratio); 	exit(1);}
	if (mcast.min < MIN_PCK_SIZE){ printf("ERROR: The given multicast minimum packet size (%d) is larger than %d minimum packet size supported by the NoC\n",mcast.min, MIN_PCK_SIZE); 	exit(1);}
	if (mcast.max > max_valid)   { printf("ERROR: The given multicast maximum packet size (%d) is larger than %d maximum router buffer size\n",mcast.max, max_valid); 	exit(1);};
 
 
}
 
void update_custom_traffic (char * str){
	int i;
	int array[10000];
	int p;
	p= parse_string (str, array);
	for (i=0;i<p; i+=2){
		custom_traffic_table[array[i]] = array[i+1];
	}
}
 
void update_pck_size(char *str){
	int i;
	int array[1000];
	char substring[1000];
	int p;
	char *pt,*pt2;
	MIN_PACKET_SIZE=100000;
	MAX_PACKET_SIZE=1;
 
 
	pt = strtok (str,",");
	if(*pt=='R'){//random range
		p= parse_string (str+2, array);
		if(p<2){
			fprintf(stderr,"ERROR: Wrong Packet size format %s. It should be \"R,min,max\" : \n",str);
			exit(1);
		}
 
		MIN_PACKET_SIZE=array[0];
		MAX_PACKET_SIZE=array[1];
		AVG_PACKET_SIZE=(MIN_PACKET_SIZE+MAX_PACKET_SIZE)/2;// average packet size
	}else if(*pt=='D'){//random discrete
		pck_size_sel =  RANDOM_discrete;
		pt = strtok (str+2,"P");
		pt2 = strtok (NULL,"P");
		if (pt == NULL || pt2==NULL) {
			fprintf(stderr,"ERROR: Wrong Packet size format %s. It should be \"D,s1,s2..sn,P,p1,p2..pn\". missing letter \"P\" in format  \n",str);
			exit(1);
		}
		p= parse_string (pt, array);
		if (p==0){
			fprintf(stderr,"ERROR: Wrong Packet size format %s. It should be \"D,s1,s2..sn,P,p1,p2..pn\". missing si values after letter \"D\" \"P\" in format  \n",str);
			exit(1);
		}
		int in=p;
		//alocate mmeory for pck size
		discrete_size = (int*)malloc((p) * sizeof(int));
		discrete_prob = (int*)malloc((p) * sizeof(int));
		// Check if the memory has been successfully allocated
		if (discrete_size == NULL || discrete_prob==NULL) {
			printf("ERROR: Memory not allocated.\n");
			exit(1);
		}
 
		for (i=0; i<p; i++){
 
			//printf("I[%u]=%u,\n",i,array[i]);
			discrete_size[i] = array[i];
			if(MIN_PACKET_SIZE > array[i]) MIN_PACKET_SIZE = array[i];
			if(MAX_PACKET_SIZE < array[i]) MAX_PACKET_SIZE = array[i];
		}
 
		p= parse_string (pt2+1, array);
		int sum=0;
		AVG_PACKET_SIZE=0;
		for (i=0; i<p; i++){
			//printf("P[%u]=%u,\n",i,array[i]);
			if(i<in){
				 sum+=array[i];
				 discrete_prob[i]=sum;
				 AVG_PACKET_SIZE+=discrete_size[i] * array[i];
 
			}
		}
		AVG_PACKET_SIZE/=100;
 
		if(sum!=100){
			fprintf(stderr,"ERROR: The accumulatio of the first %u probebility values is %u which is not equal to 100\n",in,sum);
			exit(1);
		}
 
	}else {
		fprintf(stderr,"ERROR: Wrong Packet size format %s. It should start with one of \"D\" or \"R\" letter\n",str);
		exit(1);
	}
 
 
}
 
void allocate_rsv_pck_counters (void) {
	int p=(MAX_PACKET_SIZE-MIN_PACKET_SIZE)+1;
	rsv_size_array = (unsigned int*) calloc ( p , sizeof(int));
	if (rsv_size_array==NULL){
		 fprintf(stderr,"ERROR: cannot allocate memory for rsv_size_array\n");
		 exit(1);
	}
}
 
 
void task_traffic_init (char * str) {
	load_traffic_file(str,task_graph_data,task_graph_abstract);
	end_sim_pck_num=task_graph_total_pck_num;
	MIN_PACKET_SIZE = task_graph_min_pck_size;
	MAX_PACKET_SIZE = task_graph_max_pck_size;
	AVG_PACKET_SIZE=(MIN_PACKET_SIZE+MAX_PACKET_SIZE)/2;// average packet size
	int p=(MAX_PACKET_SIZE-MIN_PACKET_SIZE)+1;
	rsv_size_array = (unsigned int*) calloc ( p , sizeof(int));
	if (rsv_size_array==NULL){
		fprintf(stderr,"ERROR: cannot allocate (%d x int) memory for rsv_size_array. \n",p);
		exit(1);
	}
}
 
 
 
 
 
 
 
void processArgs (int argc, char **argv ){
	int i;
 
	mcast.ratio=50;
	mcast.min= MIN_PCK_SIZE;
	mcast.max= (B > LB)? LB : B;
 
	for( i = 1; i < argc; ++i ) {
		if( strcmp(argv[i], "-t") == 0 ) {
			synthetic_task_processArgs ( argc, argv );
			return;
		} else if( strcmp(argv[i], "-f") == 0 ) {
			synthetic_task_processArgs ( argc, argv );
			return;
 
		} else if( strcmp(argv[i], "-F") == 0 ) {
			netrace_processArgs (argc, argv );
			return;
		} else if ( strcmp(argv[i], "-S") == 0 ) {
			synful_processArgs (argc, argv );
			return;
		}
	}
	fprintf (stderr, "You should pass one of the Synthetic-, Task-, Synfull- or Nettrace- based simulation as input argument. \n");
	usage(argv[0]);
	exit(1);
}
 
 
int get_new_pck_size(){
		if(pck_size_sel ==  RANDOM_discrete){
				int rnd = rand() % 100; // 0~99
				int i=0;
				while( rnd > discrete_prob[i] ) i++;
				return discrete_size [i];
		}
		//random range
		return rnd_between(MIN_PACKET_SIZE,MAX_PACKET_SIZE);
}
 
 
 
 
 
 
void traffic_gen_final_report(){
	int i;
	for (i=0;i<NE;i++) if(traffic[i]->pck_number>0) total_active_endp   	= 	total_active_endp +1;
	printf("\nsimulation results-------------------\n");
	printf("\tSimulation clock cycles:%d\n",clk_counter);
	printf("\n\tTotal received packet in different size:\n");
	printf("\tflit_size,");
	for (i=0;i<=(MAX_PACKET_SIZE - MIN_PACKET_SIZE);i++){
		if(rsv_size_array[i]>0) printf("%u,",i+ MIN_PACKET_SIZE);
	}
	printf("\n\t#pck,");
	for (i=0;i<=(MAX_PACKET_SIZE - MIN_PACKET_SIZE);i++){
	   	if(rsv_size_array[i]>0) printf("%u,",rsv_size_array[i]);
	}
	printf("\n");
 
//	printf(" total received flits:%d\n",total_rsv_flit_number);
//	printf(" total sent flits:%d\n",total_sent_flit_number);
	print_statistic_new (clk_counter);
 
}
 
 
void traffic_gen_init( void ){
	int i;
	unsigned int dest_e_addr;
	for (i=0;i<NE;i++){
			unsigned char inject_en;
	    	random_var[i] = 100;
	    	traffic[i]->current_e_addr		= endp_addr_encoder(i);
	    	traffic[i]->start=0;
	    	traffic[i]->pck_class_in=  pck_class_in_gen( i);
	    	traffic[i]->pck_size_in=get_new_pck_size();
	    	pck_dst_gen (i, &inject_en);
	    	//traffic[i]->dest_e_addr= dest_e_addr;
	    	if(inject_en == 0) traffic[i]->stop=1;
	    	//printf("src=%u, des_eaddr=%x, dest=%x\n", i,dest_e_addr, endp_addr_decoder(dest_e_addr));
	    	if(inject_done) traffic[i]->stop=1;
	    	traffic[i]->start_delay=rnd_between(11,4*NE-12);
	    	if(TRAFFIC_TYPE==SYNTHETIC){
	    		//traffic[i]->avg_pck_size_in=AVG_PACKET_SIZE;
	    		traffic[i]->ratio=ratio;
	    		traffic[i]->init_weight=1;
	    	}
	}
}
 
void pck_inj_init (int model_node_num){
	int i,tmp;
	for (i=0;i<NE;i++){
	   	pck_inj[i]->current_e_addr		= endp_addr_encoder(i);
	   	pck_inj[i]->pck_injct_in_ready= (0x1<<V)-1;
	   	pck_inj[i]->pck_injct_in_pck_wr=0;
	}
	std::cout << "Node mapping---------------------" << std::endl;
	std::cout << "\tMapping " << model_node_num << " " << TRAFFIC  << " Nodes to " << NE << " ProNoC Nodes" << std::endl;
	std::cout << "\t" << TRAFFIC  << "\tID \t<-> ProNoC ID "<< std::endl;
	traffic_model_mapping = (int *) malloc( model_node_num * sizeof(int));
	for (i=0;i<model_node_num;i++){
	//TODO mapping should be done according to number of NE and should be set by the user later
		   	if(NE<=model_node_num){
		   		// we have less or equal number of injectors in traffic model thatn the number of modes in ProNoC
		   		// So we need to map multiples injector nodes from the model to one packet injector
		   		tmp = ((i* NE)/model_node_num);
		   		traffic_model_mapping[i]=tmp;
		   	} else {
		   		// we have more endpoints that what is defined in the model
		   		if(i<model_node_num) traffic_model_mapping[i]=i;
		   	}
		   	std::cout<< "\t\t" << i << "\t<->\t"  << tmp << std::endl;
 
	}
	std::cout << "Node mapping---------------------" << std::endl;
}
 
/*************
 * sc_time_stamp 
 * 
 * **********/
double sc_time_stamp () {       // Called by $time in Verilog
	return main_time;
}
 
int pow2( int num){
	int pw;
	pw= (0x1 << num);
	return pw;
}
 
/*
volatile int *  lock;
unsigned int  nr_per_thread=0;
unsigned int  ne_per_thread=0;
 
void thread_function (int n){
	int i; 
	unsigned int node=0;
	while(1){ 
		while(lock[n]==0) std::this_thread::yield();
		for(i=0;i<nr_per_thread;i++){
			node= (n * nr_per_thread)+i;
			if (node >= NR) break;
			single_router_eval(node);
		}	
		for(i=0;i<ne_per_thread;i++){
			node= (n * ne_per_thread)+i;
			if (node >= NE) break;
			if( TRAFFIC_TYPE == NETRACE)   pck_inj[node]->eval();
			else   traffic[node]->eval();
		}	
 
		//router1[n]->eval();
		//if( TRAFFIC_TYPE == NETRACE)   pck_inj[n]->eval();
		//else   traffic[n]->eval();
 
		lock[n]=0;
		if(n==0) break;//first thread is the main process 
	}
}
*/
 
class alignas(64) Vthread
{
    // Access specifier
    public:
	std::atomic<bool> eval;
	std::atomic<bool> copy;
	std::atomic<bool> update;
    // Data Members
    int n;//thread num
	int nr_per_thread;
	int ne_per_thread;
    // Member Functions()
    //Parameterized Constructor
 
 
    void function ( ){
		int i; 
		unsigned int node=0;
		while(1){ 
			while(!eval && !copy && !update) std::this_thread::yield();
			if(eval){
				//connect_clk_reset_start
				for(i=0;i<ne_per_thread;i++){
					node= (n * ne_per_thread)+i;
					if (node >= NE) break;
					if(ENDP_TYPE == PCK_INJECTOR){
						pck_inj[node]->reset= reset;
						pck_inj[node]->clk	= clk;
					}
					else {
						traffic[node]->start= start_i;
						traffic[node]->reset= reset;
						traffic[node]->clk	= clk;
					}
				}//endp
				for(i=0;i<nr_per_thread;i++){
					node= (n * nr_per_thread)+i;
					if (node >= NR) break;
					//if(router_is_active[node] | (Quick_sim_en==0))
					single_router_reset_clk(node);
				}
 
				//eval
				for(i=0;i<nr_per_thread;i++){
					node= (n * nr_per_thread)+i;
					if (node >= NR) break;
					//if(router_is_active[node] | (Quick_sim_en==0))
					single_router_eval(node);
				}
				for(i=0;i<ne_per_thread;i++){
					node= (n * ne_per_thread)+i;
					if (node >= NE) break;
					if(ENDP_TYPE == PCK_INJECTOR)   pck_inj[node]->eval();
					else   traffic[node]->eval();
				}
				eval=false;
			}
 
			if(copy){
				for  (int i=0;   i<R2R_TABLE_SIZ; i++) {
					if(
					r2r_cnt_all[i].id1 >= (n * nr_per_thread)
					&&
					r2r_cnt_all[i].id1 <  ((n+1) * nr_per_thread)
					)
					topology_connect_r2r(i);
				}
 
 
				for(i=0;i<ne_per_thread;i++){
					node= (n * ne_per_thread)+i;
					if (node >= NE) break;
					topology_connect_r2e(node);
				}
				copy=false;
			}
 
			if(update){
				for(i=0;i<nr_per_thread;i++){
					node= (n * nr_per_thread)+i;
					if (node >= NR) break;
					single_router_st_update(node);
				}
				update=false;
			}
 
			//router1[n]->eval();
			//if( TRAFFIC_TYPE == NETRACE)   pck_inj[n]->eval();
			//else   traffic[n]->eval();
 
 
			if(n==0) break;//first thread is the main process 
		}
	}
 
	Vthread(int x,int r,int e)
    {
       n=x; nr_per_thread=r; ne_per_thread=e;
       eval=false;
       copy =false;
       update=false;
       if(n!=0) {
		 std::thread th {&Vthread::function,this};     
         th.detach();      
	   }
    }
 
 
};
 
Vthread ** thread;
 
void initial_threads (void){
	int i;
	//devide nodes equally between threads
	unsigned int  nr_per_thread=0;
	unsigned int  ne_per_thread=0;
	nr_per_thread = (NR % thread_num)?  (unsigned int)(NR/thread_num) + 1 :  (unsigned int)(NR/thread_num);
	ne_per_thread = (NE % thread_num)?  (unsigned int)(NE/thread_num) + 1 :  (unsigned int)(NE/thread_num);
 
	//std::vector<std::thread> threads(thread_num-1);
	//lock = new int[thread_num];
	//for(i=0;i<thread_num;i++) lock [i]=0;	
 
	//Dynamically Allocating Memory
	thread = (Vthread **) new Vthread * [thread_num]; 
	for(i=0;i<thread_num;i++) thread[i] = new Vthread(i,nr_per_thread,ne_per_thread) ;
 
	//initiates (thread_num-1) number of live thread	 
	//for(i=0;i<thread_num-1;i++) threads[i] = std::thread(&thread_function, (i+1));
	//for (auto& th : threads)    th.detach();
 
	unsigned maxThreads = std::thread::hardware_concurrency();
    printf("Thread is initiated as following:\n"
    "\tMax hardware supported threads:%u\n"
    "\tthread_num:%u\n"
    "\trouter per thread:%u\n"
    "\tendpoint per thread:%u\n"
    ,maxThreads,thread_num,nr_per_thread,ne_per_thread);
}
 
 
 
 
void sim_eval_all (void){
	int i;
	if(thread_num>1) {
		for(i=0;i<thread_num;i++) thread[i]->eval=true;
		//thread_function (0);		
		thread[0]->function();
		for(i=0;i<thread_num;i++)while(thread[i]->eval);
	}else{// no thread
 
		connect_clk_reset_start_all();
 
		//routers_eval();
		for(i=0;i<NR;i++){
			//if(router_is_active[i] | (Quick_sim_en==0)) 
			single_router_eval(i);
		}
		if(ENDP_TYPE == PCK_INJECTOR) for(i=0;i<NE;i++) pck_inj[i]->eval();
		else for(i=0;i<NE;i++) traffic[i]->eval();
	}
}	
 
 
void topology_connect_all_nodes (void){
 
 
	int i;
	if(thread_num>1) {
		for(i=0;i<thread_num;i++) thread[i]->copy=true;
		//thread_function (0);
		thread[0]->function();
		for(i=0;i<thread_num;i++){
			while(thread[i]->copy==true);
		}
		return;
	}//no thread
	for  (int n=0; n<R2R_TABLE_SIZ; n++) {
		topology_connect_r2r(n);
	}
 
	for (int n=0;n<NE; n++){
		topology_connect_r2e(n);
	}
}
 
 
void sim_final_all (void){
	int i;
	routers_final();
	if(ENDP_TYPE == PCK_INJECTOR) for(i=0;i<NE;i++) pck_inj[i]->final();
	else for(i=0;i<NE;i++) traffic[i]->final();
	//noc->final(); 
}	
 
void connect_clk_reset_start_all(void){
	int i;
	//noc-> clk = clk; 
	//noc-> reset = reset;
	if(ENDP_TYPE == PCK_INJECTOR) {
		for(i=0;i<NE;i++)	{
			pck_inj[i]->reset= reset;
			pck_inj[i]->clk	= clk;
		}
	}else {
		for(i=0;i<NE;i++)	{
			traffic[i]->start= start_i;
			traffic[i]->reset= reset;
			traffic[i]->clk	= clk;
		}
	}
	connect_routers_reset_clk();
}
 
 
void traffic_clk_negedge_event(void){
	int i;
	clk = 0;
	//for (i=0;i<NR;i++) router_is_active [i]=0;
	topology_connect_all_nodes ();
 
	for (i=0;i<NE;i++){
		if(inject_done) traffic[i]->stop=1;
	}
 
	sim_eval_all();
}	
 
void update_traffic_injector_st (unsigned int i){
	unsigned char inject_en;
	// a packet has been received
	if(traffic[i]->update & ~reset){
		total_rsv_pck_num+=1;
		update_noc_statistic (i) ;
	}
	// the header flit has been sent out
	if(traffic[i]->hdr_flit_sent ){
		traffic[i]->pck_class_in=  pck_class_in_gen( i);
		traffic[i]->pck_size_in=get_new_pck_size();
		if((!FIXED_SRC_DST_PAIR)| (!IS_UNICAST)){
			pck_dst_gen (i, &inject_en);
			//traffic[i]->dest_e_addr= dest_e_addr;
			if(inject_en == 0) traffic[i]->stop=1;
			//printf("src=%u, dest=%x\n", i,endp_addr_decoder(dest_e_addr));
		}
	}
 
	if(traffic[i]->flit_out_wr==1){
		total_sent_flit_number++;
		if (!IS_UNICAST){
			total_expect_rsv_flit_num+=traffic[i]->mcast_dst_num_o;
		}else{
			total_expect_rsv_flit_num++;
		}
		#if (C>1)
			sent_stat [i][traffic[i]->flit_out_class].flit_num++;
		#else
		sent_stat [i].flit_num++;
		#endif
	}
 
	if(traffic[i]->flit_in_wr==1){
		total_rsv_flit_number++;
	}
 
	if(traffic[i]->hdr_flit_sent==1){
		total_sent_pck_num++;
		#if (C>1)
			sent_stat [i][traffic[i]->flit_out_class].pck_num++;
		#else
			sent_stat [i].pck_num++;
		#endif
	}
}
 
void update_all_traffic_injector_st(){
	for (int i=0;i<NE;i++){
			update_traffic_injector_st(i);
		}
 
}
 
 
 
void traffic_clk_posedge_event(void) {
	int i;
	unsigned int dest_e_addr;
 
	clk = 1;       // Toggle clock
	if(count_en) clk_counter++;
	inject_done= ((total_sent_pck_num >= end_sim_pck_num) || (clk_counter>= sim_end_clk_num) || total_active_routers == 0);
	//if(inject_done) printf("clk_counter=========%d\n",clk_counter);
	total_rsv_flit_number_old=total_rsv_flit_number;
	update_all_router_stat();
	update_all_traffic_injector_st();
 
	if(inject_done){
		if(total_rsv_flit_number_old == total_rsv_flit_number){
			ideal_rsv_cnt++;
			if(ideal_rsv_cnt >= NE*10){
				traffic_gen_final_report( );
				fprintf(stderr,"ERROR: The number of expected (%u) & received flits (%u) were not equal at the end of simulation\n",total_expect_rsv_flit_num, total_rsv_flit_number);
				exit(1);
			}
		}else ideal_rsv_cnt=0;
		if(total_expect_rsv_flit_num == total_rsv_flit_number ) simulation_done=1;
	}
 
	sim_eval_all();
 
}			
 
 
/**********************************
 *
 * 	update_noc_statistic
 *
 *
 *********************************/
 
void update_rsvd_st (
		statistic_t * 	rsvd_stat,
		unsigned int   	clk_num_h2h,
		unsigned int    clk_num_h2t,
		unsigned int 	latency,
		unsigned int    distance,
		unsigned int    pck_size
 
) {
	rsvd_stat->pck_num ++;
	rsvd_stat->flit_num+=  pck_size;
	rsvd_stat->sum_clk_h2h +=(double)clk_num_h2h;
	rsvd_stat->sum_clk_h2t +=(double)clk_num_h2t;
	rsvd_stat->sum_clk_per_hop+= ((double)clk_num_h2h/(double)distance);
	if (rsvd_stat->worst_latency < latency ) rsvd_stat->worst_latency=latency;
	if (rsvd_stat->min_latency==0          ) rsvd_stat->min_latency  =latency;
	if (rsvd_stat->min_latency   > latency ) rsvd_stat->min_latency  =latency;
	#if (STND_DEV_EN)
	  	rsvd_stat->sum_clk_pow2 += (double)clk_num_h2h * (double) clk_num_h2h;
	#endif
}
 
void update_sent_st (
	statistic_t *  sent_stat,
	unsigned int 	latency
) {
 
	if (sent_stat->worst_latency < latency ) sent_stat->worst_latency=latency;
	if (sent_stat->min_latency==0          ) sent_stat->min_latency  =latency;
	if (sent_stat->min_latency   > latency ) sent_stat->min_latency  =latency;
 
}
 
 
void update_statistic_at_ejection (
	int	core_num,
	unsigned int   	clk_num_h2h,
	unsigned int    clk_num_h2t,
	unsigned int    distance,
	unsigned int  	class_num,
	unsigned int 	src,
	unsigned int    pck_size
	){
 
 
 
	if(ENDP_TYPE == TRFC_INJECTOR) {
		if( traffic[core_num]->pck_size_o >= MIN_PACKET_SIZE && traffic[core_num]->pck_size_o <=MAX_PACKET_SIZE){
			  if(rsv_size_array!=NULL) 	rsv_size_array[traffic[core_num]->pck_size_o-MIN_PACKET_SIZE]++;
		}
	}
 
	if(verbosity==0 && ( TRAFFIC_TYPE == NETRACE || TRAFFIC_TYPE ==SYNFUL)) if((total_rsv_pck_num & 0X1FFFF )==0 ) printf(" packet sent total=%d\n",total_rsv_pck_num);
    unsigned int latency = (strcmp (AVG_LATENCY_METRIC,"HEAD_2_TAIL")==0)? clk_num_h2t :  clk_num_h2h;
    #if(C>1)
    	update_rsvd_st ( &rsvd_stat[core_num][class_num],  	clk_num_h2h,   clk_num_h2t, 	latency,    distance,pck_size);
    	update_sent_st ( &sent_stat[src     ][class_num],  	latency);
    #else
    	update_rsvd_st ( &rsvd_stat[core_num], clk_num_h2h,   clk_num_h2t, 	latency,    distance,pck_size);
    	update_sent_st ( &sent_stat[src     ], latency);
	#endif
 
    update_rsvd_st ( &endp_to_endp[src][core_num],  	clk_num_h2h,   clk_num_h2t, 	latency,    distance, pck_size);
 
}
 
 
 
 
 
void update_noc_statistic (	int	core_num){
	unsigned int   	clk_num_h2h =traffic[core_num]->time_stamp_h2h;
	unsigned int    clk_num_h2t =traffic[core_num]->time_stamp_h2t;
    unsigned int    distance=traffic[core_num]->distance;
    unsigned int  	class_num=traffic[core_num]->pck_class_out;
    unsigned int    src_e_addr=traffic[core_num]->src_e_addr;
    unsigned int 	src = endp_addr_decoder (src_e_addr);
    unsigned int    pck_size = traffic[core_num]-> pck_size_o;
    update_statistic_at_ejection ( core_num,	clk_num_h2h,  clk_num_h2t,  distance,  	class_num, 	src,pck_size);
 
 
}
 
avg_st_t finilize_statistic (unsigned long int total_clk, statistic_t rsvd_stat){
 
	 avg_st_t avg_statistic;
	 avg_statistic.avg_throughput= ((double)(rsvd_stat.flit_num*100)/NE )/total_clk;
	 avg_statistic.avg_latency_flit    = rsvd_stat.sum_clk_h2h/rsvd_stat.pck_num;
	 avg_statistic.avg_latency_pck	   = rsvd_stat.sum_clk_h2t/rsvd_stat.pck_num;
	 avg_statistic.avg_latency_per_hop = ( rsvd_stat.pck_num==0)? 0 : rsvd_stat.sum_clk_per_hop/rsvd_stat.pck_num;
	 avg_statistic.avg_pck_siz        = ( rsvd_stat.pck_num==0)? 0 : (double)(rsvd_stat.flit_num / rsvd_stat.pck_num);
	 #if (STND_DEV_EN)
	 	 avg_statistic.std_dev =standard_dev( rsvd_stat.sum_clk_pow2,rsvd_stat.pck_num, avg_statistic.avg_latency_flit);
	 #endif
	 return avg_statistic;
}
 
template<typename T>
	void myout(T value)
	{
	   std::cout << value << std::endl;
	}
template<typename First, typename ... Rest>
	void myout(First first, Rest ... rest)
	{
	   std::cout << first << ",";
	   myout(rest...);
	}
 
void print_st_single (unsigned long int total_clk, statistic_t rsvd_stat, statistic_t sent_stat){
 
 
 
	avg_st_t avg;
	avg=finilize_statistic (total_clk,  rsvd_stat);
 
	myout(
			sent_stat.pck_num,
			rsvd_stat.pck_num,
			sent_stat.flit_num,
			rsvd_stat.flit_num,
			sent_stat.worst_latency,
			rsvd_stat.worst_latency,
			sent_stat.min_latency,
			rsvd_stat.min_latency,
			avg.avg_latency_per_hop,
			avg.avg_latency_flit,
			avg.avg_latency_pck,
			avg.avg_throughput,
			avg.avg_pck_siz,
			#if (STND_DEV_EN)
			avg.std_dev
			#endif
	);
//	printf("\n");
 
}
 
 
void merge_statistic (statistic_t * merge_stat, statistic_t stat_in){
	merge_stat->pck_num+=stat_in.pck_num;
	merge_stat->flit_num+=stat_in.flit_num;
	if(merge_stat->worst_latency <  stat_in.worst_latency) merge_stat->worst_latency= stat_in.worst_latency;
	if(merge_stat->min_latency   == 0                       ) merge_stat->min_latency  = stat_in.min_latency;
	if(merge_stat->min_latency   > stat_in.min_latency  && stat_in.min_latency!=0   ) merge_stat->min_latency  = stat_in.min_latency;
	merge_stat->sum_clk_h2h      +=stat_in.sum_clk_h2h    ;
	merge_stat->sum_clk_h2t      +=stat_in.sum_clk_h2t    ;
	merge_stat->sum_clk_per_hop  +=stat_in.sum_clk_per_hop;
	#if (STND_DEV_EN)
		merge_stat->sum_clk_pow2 +=stat_in.sum_clk_pow2;
    #endif
 
}
 
void print_statistic_new (unsigned long int total_clk){
	int i;
 
 
	print_router_st();
	print_endp_to_endp_st("pck_num");
	print_endp_to_endp_st("flit_num");
 
	printf( "\n\tEndpoints Statistics:\n"
			"\t#EID,"
			"sent_stat.pck_num,"
			"rsvd_stat.pck_num,"
			"sent_stat.flit_num,"
			"rsvd_stat.flit_num,"
			"sent_stat.worst_latency,"
			"rsvd_stat.worst_latency,"
			"sent_stat.min_latency,"
			"rsvd_stat.min_latency,"
			"avg_latency_per_hop,"
			"avg_latency_flit,"
			"avg_latency_pck,"
			"avg_throughput(%%),"
			"avg_pck_size,"
			#if (STND_DEV_EN)
			"avg.std_dev"
			#endif
			"\n");
 
 
 
#if(C>1)
	int c;
	statistic_t sent_stat_class [NE];
	statistic_t rsvd_stat_class [NE];
	statistic_t sent_stat_per_class [C];
	statistic_t rsvd_stat_per_class [C];
 
	memset (&rsvd_stat_class,0,sizeof(statistic_t)*NE);
	memset (&sent_stat_class,0,sizeof(statistic_t)*NE);
	memset (&rsvd_stat_per_class,0,sizeof(statistic_t)*C);
	memset (&sent_stat_per_class,0,sizeof(statistic_t)*C);
 
 
	for (i=0; i<NE;i++){
		for (c=0; c<C;c++){
			merge_statistic (&rsvd_stat_class[i],rsvd_stat[i][c]);
			merge_statistic (&sent_stat_class[i],sent_stat[i][c]);
			merge_statistic (&rsvd_stat_per_class[c],rsvd_stat[i][c]);
			merge_statistic (&sent_stat_per_class[c],sent_stat[i][c]);
		}
	}
 
 
 
 
#else
	#define sent_stat_class  sent_stat
	#define rsvd_stat_class  rsvd_stat
#endif
 
 
 
 
 
	statistic_t rsvd_stat_total, sent_stat_total;
	memset (&rsvd_stat_total,0,sizeof(statistic_t));
	memset (&sent_stat_total,0,sizeof(statistic_t));
	for (i=0; i<NE;i++){
		merge_statistic (&rsvd_stat_total,rsvd_stat_class[i]);
		merge_statistic (&sent_stat_total,sent_stat_class[i]);
	}
	printf("\ttotal,");
	print_st_single (total_clk, rsvd_stat_total,sent_stat_total);
 
#if(C>1)
	for (c=0; c<C;c++){
		printf("\ttotal_class%u,",c);
		print_st_single (total_clk, rsvd_stat_per_class[c],sent_stat_per_class[c]);
	}
#endif
 
    for (i=0; i<NE;i++){
    	printf("\t%u,",i);
    	print_st_single (total_clk, rsvd_stat_class[i],sent_stat_class[i] );
    }
 
 
 
 
 
}
 
 
 
 
 
 
 
void print_parameter (){
	printf ("NoC parameters:---------------- \n");
	printf ("\tTopology: %s\n",TOPOLOGY);
	printf ("\tRouting algorithm: %s\n",ROUTE_NAME);
	printf ("\tVC_per port: %d\n", V);
	printf ("\tNon-local port buffer_width per VC: %d\n", B);
	printf ("\tLocal port buffer_width per VC: %d\n", LB);
 
	#if defined (IS_MESH) || defined (IS_FMESH) || defined (IS_TORUS)
	    printf ("\tRouter num in row: %d \n",T1);
	    printf ("\tRouter num in column: %d \n",T2);
	    printf ("\tEndpoint num per router: %d\n",T3);
	#elif defined (IS_LINE) || defined (IS_RING )
	    printf ("\tTotal Router num: %d \n",T1);
	    printf ("\tEndpoint num per router: %d\n",T3);
	#elif defined (IS_FATTREE) || defined (IS_TREE)
	    printf ("\tK: %d \n",T1);
	    printf ("\tL: %d \n",T2);
	#elif defined (IS_STAR)
	    printf ("\tTotal Endpoints number: %d \n",T1);
	#else//CUSTOM
	    printf ("\tTotal Endpoints number: %d \n",T1);
		printf ("\tTotal Routers number: %d \n",T2);
    #endif
 
	printf ("\tNumber of Class: %d\n", C);
	printf ("\tFlit data width: %d \n", Fpay);
	printf ("\tVC reallocation mechanism: %s \n",  VC_REALLOCATION_TYPE);
	printf ("\tVC/sw combination mechanism: %s \n", COMBINATION_TYPE);
	printf ("\tAVC_ATOMIC_EN:%d \n", AVC_ATOMIC_EN);
	printf ("\tCongestion Index:%d \n",CONGESTION_INDEX);
	printf ("\tADD_PIPREG_AFTER_CROSSBAR:%d\n",ADD_PIPREG_AFTER_CROSSBAR);
	printf ("\tSSA_EN enabled:%s \n",SSA_EN);
	printf ("\tSwitch allocator arbitration type:%s \n",SWA_ARBITER_TYPE);
	printf ("\tMinimum supported packet size:%d flit(s) \n",MIN_PCK_SIZE);
	printf ("\tLoop back is enabled:%s \n",SELF_LOOP_EN);
	printf ("\tNumber of multihop bypass (SMART max):%d \n",SMART_MAX);
	printf ("\tCastying type:%s.\n",CAST_TYPE);
	if (IS_MCAST_PARTIAL){
		printf ("\tCAST LIST:%s\n",MCAST_ENDP_LIST);
	}
	printf ("NoC parameters:---------------- \n");
	printf ("\nSimulation parameters-------------\n");
	#if(DEBUG_EN)
		printf ("\tDebuging is enabled\n");
	#else
		printf ("\tDebuging is disabled\n");
	#endif
	//if(strcmp (AVG_LATENCY_METRIC,"HEAD_2_TAIL")==0)printf ("\tOutput is the average latency on sending the packet header until receiving tail\n");
	//else printf ("\tOutput is the average latency on sending the packet header until receiving header flit at destination node\n");
	printf ("\tTraffic pattern:%s\n",TRAFFIC);
	size_t n = sizeof(class_percentage)/sizeof(class_percentage[0]);
	for(int p=0;p<n; p++){
		printf ("\ttraffic percentage of class %u is : %d\n",p,  class_percentage[p]);
	}
	if(strcmp (TRAFFIC,"HOTSPOT")==0){
		//printf ("\tHot spot percentage: %u\n", HOTSPOT_PERCENTAGE);
	    printf ("\tNumber of hot spot cores: %d\n", HOTSPOT_NUM);
	}
	if (strcmp (CAST_TYPE,"UNICAST")){
		printf ("\tMULTICAST traffic ratio: %d(%%), min: %d, max: %d\n", mcast.ratio,mcast.min,mcast.max);
	}
 
 
	//printf ("\tTotal packets sent by one router: %u\n", TOTAL_PKT_PER_ROUTER);
	if(sim_end_clk_num!=0) printf ("\tSimulation timeout =%d\n", sim_end_clk_num);
	if(end_sim_pck_num!=0) printf ("\tSimulation ends on total packet num of =%d\n", end_sim_pck_num);
	if(TRAFFIC_TYPE!=NETRACE && TRAFFIC_TYPE!=SYNFUL){
		printf ("\tPacket size (min,max,average) in flits: (%u,%u,%u)\n",MIN_PACKET_SIZE,MAX_PACKET_SIZE,AVG_PACKET_SIZE);
		printf ("\tPacket injector FIFO width in flit:%u \n",TIMSTMP_FIFO_NUM);
	}
	if( TRAFFIC_TYPE == SYNTHETIC) printf("\tFlit injection ratio per router is =%f (flits/clk/Total Endpoint %%)\n",(float)ratio*100/MAX_RATIO);
	printf ("Simulation parameters-------------\n");
 
 
 
}
 
 
 
 
 
/************************
 *
 * 	reset system
 *
 *
 * *******************/
 
void reset_all_register (void){
	int i;
	 total_active_endp=0;
	 total_rsv_pck_num=0;
	 total_sent_pck_num=0;
	 sum_clk_h2h=0;
	 sum_clk_h2t=0;
	 ideal_rsv_cnt=0;
#if (STND_DEV_EN)
	 sum_clk_pow2=0;
#endif
 
	 sum_clk_per_hop=0;
	 count_en=0;
	 clk_counter=0;
 
	 for(i=0;i<C;i++)
	 {
		 total_rsv_pck_num_per_class[i]=0;
	     sum_clk_h2h_per_class[i]=0;
	     sum_clk_h2t_per_class[i]=0;
	 	 sum_clk_per_hop_per_class[i]=0;
#if (STND_DEV_EN)
	 	 sum_clk_pow2_per_class[i]=0;
#endif
 
	 }  //for
	 total_sent_flit_number=0;
	 total_expect_rsv_flit_num=0;
 
 
}
 
 
 
 
/***********************
 *
 * 	standard_dev
 *
 * ******************/
 
#if (STND_DEV_EN)
/************************
 * std_dev = sqrt[(B-A^2/N)/N]  = sqrt [(B/N)- (A/N)^2] = sqrt [B/N - mean^2]
 * A = sum of the values
 * B = sum of the squarded values 
 * *************/
 
double standard_dev( double sum_pow2, unsigned int  total_num, double average){
	double std_dev;
 
	/*
	double  A, B, N;
	N= total_num;
	A= average * N;
	B= sum_pow2;
 
	A=(A*A)/N;
	std_dev = (B-A)/N;
	std_dev = sqrt(std_dev);
*/	
	if(total_num==0) return 0;
 
	std_dev = sum_pow2/(double)total_num; //B/N
	std_dev -= (average*average);// (B/N) - mean^2
	std_dev = sqroot(std_dev);// sqrt [B/N - mean^2]
 
	return std_dev;
 
}
 
#endif
 
 
 
/**********************
 *
 *	pck_class_in_gen
 *
 * *****************/
 
unsigned char  pck_class_in_gen(
	 unsigned int  core_num
 
) {
	unsigned char pck_class_in;
	unsigned char  rnd=rand()%100;
	int c=0;
	int sum=class_percentage[0];
	size_t n = sizeof(class_percentage)/sizeof(class_percentage[0]);
	for(;;){
		if( rnd < sum) return c;
		if( c==n-1 ) return c;
		c++;
		sum+=class_percentage[c];
	}
	return 0;
}
 
 
 
 
void update_injct_var(unsigned int src,  unsigned int injct_var){
	//printf("before%u=%u\n",src,random_var[src]);
	random_var[src]= rnd_between(100-injct_var, 100+injct_var);
	//printf("after=%u\n",random_var[src]);
}
 
unsigned int pck_dst_gen_task_graph ( unsigned int src, unsigned char * inject_en){
	 task_t  task;
	float f,v;
	*inject_en=1;
	int index = task_graph_abstract[src].active_index;
 
	if(index == DISABLE){
		traffic[src]->ratio=0;
		traffic[src]->stop=1;
		*inject_en=0;
		return INJECT_OFF; //disable sending
	}
 
	if(	read(task_graph_data[src],index,&task)==0){
		traffic[src]->ratio=0;
		traffic[src]->stop=1;
		*inject_en=0;
		return INJECT_OFF; //disable sending
 
	}
 
#if (C>1)
	if(sent_stat[src][traffic[src]->flit_out_class].pck_num & 0xFF){//sent 255 packets
#else
	if(sent_stat[src].pck_num & 0xFF){//sent 255 packets
#endif
 
			//printf("uu=%u\n",task.jnjct_var);
			update_injct_var(src, task.jnjct_var);
 
		}
 
	task_graph_total_pck_num++;
	task.pck_sent = task.pck_sent +1;
	task.burst_sent= task.burst_sent+1;
	task.byte_sent = task.byte_sent + (task.avg_pck_size * (Fpay/8) );
 
	traffic[src]->pck_class_in=  pck_class_in_gen(src);
	//traffic[src]->avg_pck_size_in=task.avg_pck_size;
	traffic[src]->pck_size_in=rnd_between(task.min_pck_size,task.max_pck_size);
 
	f=  task.injection_rate;
	v= random_var[src];
	f*= (v /100);
	if(f>100) f= 100;
	f=  f * MAX_RATIO / 100;
 
	traffic[src]->ratio=(unsigned int)f;
	traffic[src]->init_weight=task.initial_weight;
 
	if (task.burst_sent >= task.burst_size){
		task.burst_sent=0;
		task_graph_abstract[src].active_index=task_graph_abstract[src].active_index+1;
		if(task_graph_abstract[src].active_index>=task_graph_abstract[src].total_index) task_graph_abstract[src].active_index=0;
 
	}
 
	update_by_index(task_graph_data[src],index,task);
 
	if (task.byte_sent  >= task.bytes){ // This task is done remove it from the queue
				remove_by_index(&task_graph_data[src],index);
				task_graph_abstract[src].total_index = task_graph_abstract[src].total_index-1;
				if(task_graph_abstract[src].total_index==0){ //all tasks are done turned off the core
					task_graph_abstract[src].active_index=-1;
					traffic[src]->ratio=0;
					traffic[src]->stop=1;
					if(total_active_routers!=0) total_active_routers--;
					*inject_en=0;
					return INJECT_OFF;
				}
				if(task_graph_abstract[src].active_index>=task_graph_abstract[src].total_index) task_graph_abstract[src].active_index=0;
	}
 
	return endp_addr_encoder(task.dst);
}
 
 
void update_all_router_stat(void){
	if(thread_num>1) {
		int i;
		for(i=0;i<thread_num;i++) thread[i]->update=true;
		//thread_function (0);
		thread[0]->function();
		for(i=0;i<thread_num;i++)while(thread[i]->update==true);
		return;
	}
	//no thread
	for (int i=0; i<NR; i++) single_router_st_update(i);
}
 
void update_router_st (
		unsigned int Pnum,
		unsigned int rid,
		EVENT * event
 
){
 
	for (int p=0;p<Pnum;p++){
		if(event[p] & FLIT_IN_WR_FLG ) router_stat [rid][p].flit_num_in++;
		if(event[p] & PCK_IN_WR_FLG  ) router_stat [rid][p].pck_num_in++;
		if(event[p] & FLIT_OUT_WR_FLG) router_stat [rid][p].flit_num_out++;
		if(event[p] & PCK_OUT_WR_FLG ) router_stat [rid][p].pck_num_out++;
		if(event[p] & FLIT_IN_BYPASSED)router_stat [rid][p].flit_num_in_bypassed++;
		else if( event[p] & FLIT_IN_WR_FLG){
			router_stat [rid][p].flit_num_in_buffered++;
			int bypassed_times = (event[p] >> BYPASS_LSB);
			router_stat [rid][p].bypass_counter[bypassed_times]++;
		}
	}
}
 
 
void print_router_st (void) {
 
	//report router statistic
	printf("\n\n\tRouters' statistics:\n");
	printf("\t#RID, #Port,"
	   	"flit_in,"
	   	"pck_in,"
	   	"flit_out,"
		"pck_out,"
		"flit_in_buffered,"
		"flit_in_bypassed,"
	);
	if(SMART_MAX>0) for (int k=0;k<SMART_MAX+1;k++) printf("bypsd_%0d_times,",k);
	printf("\n");
 
	for (int i=0; i<NR; i++){
 
	   	for (int p=0;p<MAX_P;p++){
 
	   		printf("\t%u,%u,",i,p);
	   		printf("%d,%d,%d,%d,%d,%d,",
	    		router_stat [i][p].flit_num_in,
	    		router_stat [i][p].pck_num_in,
				router_stat [i][p].flit_num_out,
				router_stat [i][p].pck_num_out,
				router_stat [i][p].flit_num_in_buffered,
				router_stat [i][p].flit_num_in_bypassed
	    		);
	    	if(SMART_MAX>0) for (int k=0;k<SMART_MAX+1;k++) printf("%d," ,router_stat [i][p].bypass_counter[k]);
	    	printf("\n");
	    	router_stat_accum [i].flit_num_in              += router_stat [i][p].flit_num_in;
	    	router_stat_accum [i].pck_num_in               += router_stat [i][p].pck_num_in;
	    	router_stat_accum [i].flit_num_out             += router_stat [i][p].flit_num_out;
	    	router_stat_accum [i].pck_num_out              += router_stat [i][p].pck_num_out;
	    	router_stat_accum [i].flit_num_in_buffered     += router_stat [i][p].flit_num_in_buffered;
	    	router_stat_accum [i].flit_num_in_bypassed     += router_stat [i][p].flit_num_in_bypassed;
	    	if(SMART_MAX>0) for (int k=0;k<SMART_MAX+1;k++) router_stat_accum [i].bypass_counter[k]+= router_stat [i][p].bypass_counter[k];
 
	   	}
	   	printf("\t%u,total,",i);
	   	printf("%d,%d,%d,%d,%d,%d,",
		router_stat_accum [i].flit_num_in,
		router_stat_accum [i].pck_num_in,
		router_stat_accum [i].flit_num_out,
		router_stat_accum [i].pck_num_out,
		router_stat_accum [i].flit_num_in_buffered,
		router_stat_accum [i].flit_num_in_bypassed
	   	);
	   	if(SMART_MAX>0) for (int k=0;k<SMART_MAX+1;k++) printf("%d," , router_stat_accum [i].bypass_counter[k]);
	   	printf("\n");
	  }
}
 
 
void print_endp_to_endp_st(const char * st)  {
	printf ("\n\tEndp_to_Endp %s:\n\t#EID,",st);
	for (int src=0; src<NE; src++) printf ("%u,",src);
	printf ("\n");
	for (int src=0; src<NE; src++){
		printf ("\t%u,",src);
		for (int dst=0;dst<NE;dst++){
			if(strcmp(st,"pck_num")==0)  printf("%u,",endp_to_endp[src][dst].pck_num);
			if(strcmp(st,"flit_num")==0) printf("%u,",endp_to_endp[src][dst].flit_num);
		}
		printf ("\n");
	}
}
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.