OpenCores
URL https://opencores.org/ocsvn/ion/ion/trunk

Subversion Repositories ion

[/] [ion/] [trunk/] [tools/] [slite/] [src/] [slite.c] - Rev 2

Go to most recent revision | Compare with Previous | Blame | View Log

/*------------------------------------------------------------------------------
* slite.c -- MIPS-I simulator based on Steve Rhoad's "mlite"
*
* This is a slightly modified version of Steve Rhoad's "mlite" simulator, which
* is part of his PLASMA project (original date: 1/31/01).
*
*-------------------------------------------------------------------------------
* Usage:
*     slite <code file name> <data file name>
*
* The program will allocate a chunk of RAM (MEM_SIZE bytes) and map it to
* address 0x00000000 of the simulated CPU.
* Then it will read the 'code file' (as a big-endian plain binary) onto address
* 0x0 of the simulated CPU memory, and 'data file' on address 0x10000.
* Finally, will reset the CPU and enter the interactive debugger.
*
* (Note that the above is only necessary if the system does not have caches,
* because of the Harvard architecture. With caches in place, program loading
* would be antirely conventional).
*
* A simulation log file will be dumped to file "sw_sim_log.txt". This log can be
* used to compare with an equivalent log dumped by the hardware simulation, as
* a simple way to validate the hardware for a given program. See the project
* readme files for details.
*
*-------------------------------------------------------------------------------
* KNOWN BUGS:
*
* 1.- Load delay slot simulation does not work
*
* Some programs don't work when load delay slots are simulated (by setting
* "s->load_delay_slot = 1" in function main).
*
* The actual HW core does no longer use load delay slots but load interlocking
* so it may be better to just remove this feature.
*
*-------------------------------------------------------------------------------
* @date 2011-jan-16
*
*-------------------------------------------------------------------------------
* COPYRIGHT:    Software placed into the public domain by the author.
*               Software 'as is' without warranty.  Author liable for nothing.
*
* IMPORTANT: Assumes host is little endian.
*-----------------------------------------------------------------------------*/
 
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
 
/** Set to !=0 to disable file logging */
#define FILE_LOGGING_DISABLED (0)
/** Define to enable cache simulation (unimplemented) */
//#define ENABLE_CACHE
 
 
#define MEM_SIZE (1024*1024*2)
#define ntohs(A) ( ((A)>>8) | (((A)&0xff)<<8) )
#define htons(A) ntohs(A)
#define ntohl(A) ( ((A)>>24) | (((A)&0xff0000)>>8) | (((A)&0xff00)<<8) | ((A)<<24) )
#define htonl(A) ntohl(A)
 
/*---- OS-dependent support functions and definitions ------------------------*/
#ifndef WIN32
//Support for Linux
#define putch putchar
#include <termios.h>
#include <unistd.h>
 
void Sleep(unsigned int value)
{
   usleep(value * 1000);
}
 
int kbhit(void)
{
   struct termios oldt, newt;
   struct timeval tv;
   fd_set read_fd;
 
   tcgetattr(STDIN_FILENO, &oldt);
   newt = oldt;
   newt.c_lflag &= ~(ICANON | ECHO);
   tcsetattr(STDIN_FILENO, TCSANOW, &newt);
   tv.tv_sec=0;
   tv.tv_usec=0;
   FD_ZERO(&read_fd);
   FD_SET(0,&read_fd);
   if(select(1, &read_fd, NULL, NULL, &tv) == -1)
      return 0;
   //tcsetattr(STDIN_FILENO, TCSANOW, &oldt);
   if(FD_ISSET(0,&read_fd))
      return 1;
   return 0;
}
 
int getch(void)
{
   struct termios oldt, newt;
   int ch;
 
   tcgetattr(STDIN_FILENO, &oldt);
   newt = oldt;
   newt.c_lflag &= ~(ICANON | ECHO);
   tcsetattr(STDIN_FILENO, TCSANOW, &newt);
   ch = getchar();
   //tcsetattr(STDIN_FILENO, TCSANOW, &oldt);
   return ch;
}
#else
//Support for Windows
#include <conio.h>
extern void __stdcall Sleep(unsigned long value);
#endif
/*---- End of OS-dependent support functions and definitions -----------------*/
 
/*---- Hardware system parameters --------------------------------------------*/
 
/* Much of this is a remnant from Plasma's mlite and is  no longer used. */
/* FIXME Refactor HW system params */
 
 
#define UART_WRITE        0x20000000
#define UART_READ         0x20000000
#define IRQ_MASK          0x20000010
#define IRQ_STATUS        0x20000020
#define CONFIG_REG        0x20000070
#define MMU_PROCESS_ID    0x20000080
#define MMU_FAULT_ADDR    0x20000090
#define MMU_TLB           0x200000a0
 
#define IRQ_UART_READ_AVAILABLE  0x001
#define IRQ_UART_WRITE_AVAILABLE 0x002
#define IRQ_COUNTER18_NOT        0x004
#define IRQ_COUNTER18            0x008
#define IRQ_MMU                  0x200
 
#define MMU_ENTRIES 4
#define MMU_MASK (1024*4-1)
 
/** Length of debugging jump target queue */
#define TRACE_BUFFER_SIZE (32)
 
typedef struct {
   unsigned int buf[TRACE_BUFFER_SIZE];   /**< queue of last jump targets */
   unsigned int next;                     /**< internal queue head pointer */
   FILE *log;                             /**< text log file or NULL */
   int pr[32];                            /**< last value of register bank */
   int hi, lo, epc;                       /**< last value of internal regs */
} Trace;
 
typedef struct
{
   unsigned int virtualAddress;
   unsigned int physicalAddress;
} MmuEntry;
 
typedef struct {
   int load_delay_slot;
   int delay;
   unsigned int delayed_reg;
   int delayed_data;
   int r[32];
   int opcode;
   int pc, pc_next, epc;
   unsigned int hi;
   unsigned int lo;
   int status;
   int userMode;
   int processId;
   int exceptionId;
   int faultAddr;
   int irqStatus;
   int skip;
   Trace t;
   unsigned char *mem;
   int wakeup;
   int big_endian;
   MmuEntry mmuEntry[MMU_ENTRIES];
} State;
 
static char *opcode_string[]={
   "SPECIAL","REGIMM","J","JAL","BEQ","BNE","BLEZ","BGTZ",
   "ADDI","ADDIU","SLTI","SLTIU","ANDI","ORI","XORI","LUI",
   "COP0","COP1","COP2","COP3","BEQL","BNEL","BLEZL","BGTZL",
   "?","?","?","?","?","?","?","?",
   "LB","LH","LWL","LW","LBU","LHU","LWR","?",
   "SB","SH","SWL","SW","?","?","SWR","CACHE",
   "LL","LWC1","LWC2","LWC3","?","LDC1","LDC2","LDC3"
   "SC","SWC1","SWC2","SWC3","?","SDC1","SDC2","SDC3"
};
 
static char *special_string[]={
   "SLL","?","SRL","SRA","SLLV","?","SRLV","SRAV",
   "JR","JALR","MOVZ","MOVN","SYSCALL","BREAK","?","SYNC",
   "MFHI","MTHI","MFLO","MTLO","?","?","?","?",
   "MULT","MULTU","DIV","DIVU","?","?","?","?",
   "ADD","ADDU","SUB","SUBU","AND","OR","XOR","NOR",
   "?","?","SLT","SLTU","?","DADDU","?","?",
   "TGE","TGEU","TLT","TLTU","TEQ","?","TNE","?",
   "?","?","?","?","?","?","?","?"
};
 
static char *regimm_string[]={
   "BLTZ","BGEZ","BLTZL","BGEZL","?","?","?","?",
   "TGEI","TGEIU","TLTI","TLTIU","TEQI","?","TNEI","?",
   "BLTZAL","BEQZAL","BLTZALL","BGEZALL","?","?","?","?",
   "?","?","?","?","?","?","?","?"
};
 
static unsigned int HWMemory[8];
 
/*---- Local function prototypes ---------------------------------------------*/
 
/* Debug and logging */
void init_trace_buffer(State *s, const char *log_file_name);
void close_trace_buffer(State *s);
void dump_trace_buffer(State *s);
void log_cycle(State *s);
void log_read(State *s, int full_address, int word_value, int size, int log);
 
/* Hardware simulation */
int mem_read(State *s, int size, unsigned int address, int log);
void mem_write(State *s, int size, int unsigned address, unsigned value);
void start_load(State *s, int rt, int data);
 
/*---- Local functions -------------------------------------------------------*/
 
/** Log to file a memory read operation (not including target reg change) */
void log_read(State *s, int full_address, int word_value, int size, int log){
   if(s->t.log!=NULL && log!=0){
      if(size==4){ size=0x04; }
      else if(size==2){ size=0x02; }
      else { size=0x01; }
      fprintf(s->t.log, "(%08X) [%08X] <**>=%08X RD\n",
              s->pc, full_address, /*size,*/ word_value);
   }
}
 
/** Read memory, optionally logging */
int mem_read(State *s, int size, unsigned int address, int log)
{
   unsigned int value=0, word_value=0, ptr;
   unsigned int full_address = address;
 
   s->irqStatus |= IRQ_UART_WRITE_AVAILABLE;
   switch(address)
   {
      case UART_READ:
         word_value = 0x00000001;
         log_read(s, full_address, word_value, size, log);
         return word_value;
         /* FIXME Take input from text file */
         /*
         if(kbhit()){
            HWMemory[0] = getch();
         }
         s->irqStatus &= ~IRQ_UART_READ_AVAILABLE; //clear bit
         return HWMemory[0];
         */
      case IRQ_MASK:
         return HWMemory[1];
      case IRQ_MASK + 4:
         Sleep(10);
         return 0;
      case IRQ_STATUS:
         /*if(kbhit())
            s->irqStatus |= IRQ_UART_READ_AVAILABLE;
         return s->irqStatus;
         */
         /* FIXME Optionally simulate UART TX delay */
         word_value = 0x00000003; /* Ready to TX and RX */
         log_read(s, full_address, word_value, size, log);
         return word_value;
      case MMU_PROCESS_ID:
         return s->processId;
      case MMU_FAULT_ADDR:
         return s->faultAddr;
   }
 
   ptr = (unsigned int)s->mem + (address % MEM_SIZE);
 
   if(0x10000000 <= address && address < 0x10000000 + 1024*1024)
      ptr += 1024*1024;
 
   word_value = *(int*)(ptr&0xfffffffc);
   if(s->big_endian)
            word_value = ntohl(word_value);
   switch(size)
   {
      case 4:
         if(address & 3){
            printf("Unaligned access PC=0x%x address=0x%x\n",
                   (int)s->pc, (int)address);
         }
         assert((address & 3) == 0);
         value = *(int*)ptr;
         if(s->big_endian)
            value = ntohl(value);
         break;
      case 2:
         assert((address & 1) == 0);
         value = *(unsigned short*)ptr;
         if(s->big_endian)
            value = ntohs((unsigned short)value);
         break;
      case 1:
         value = *(unsigned char*)ptr;
         break;
      default:
         printf("ERROR");
   }
 
   log_read(s, full_address, word_value, size, log);
   return(value);
}
 
/** Write memory */
void mem_write(State *s, int size, unsigned address, unsigned value)
{
   unsigned int ptr, mask, dvalue, b0, b1, b2, b3;
 
   if(s->t.log!=NULL){
      b0 = value & 0x000000ff;
      b1 = value & 0x0000ff00;
      b2 = value & 0x00ff0000;
      b3 = value & 0xff000000;
 
      switch(size){
         case 4:  mask = 0x0f;
                  dvalue = value;
                  break;
 
         case 2:  if((address&0x2)==0){
                     mask = 0xc;
                     dvalue = b1<<16 | b0<<16;
                  }
                  else{
                     mask = 0x3;
                     dvalue = b1 | b0;
                  }
                  break;
         case 1:  switch(address%4){
                  case 0 : mask = 0x8;
                           dvalue = b0<<24;
                           break;
                  case 1 : mask = 0x4;
                           dvalue = b0<<16;
                           break;
                  case 2 : mask = 0x2;
                           dvalue = b0<<8;
                           break;
                  case 3 : mask = 0x1;
                           dvalue = b0;
                           break;
                  }
                  break;
         default:
            printf("BUG: mem write size invalid (%08x)\n", s->pc);
            exit(2);
 
      }
      fprintf(s->t.log, "(%08X) [%08X] |%02X|=%08X WR\n", s->pc, address, mask, dvalue);
   }
 
   switch(address)
   {
      case UART_WRITE:
         putch(value);
         fflush(stdout);
         return;
      case IRQ_MASK:
         HWMemory[1] = value;
         return;
      case IRQ_STATUS:
         s->irqStatus = value;
         return;
      case CONFIG_REG:
         return;
      case MMU_PROCESS_ID:
         //printf("processId=%d\n", value);
         s->processId = value;
         return;
   }
 
   if(MMU_TLB <= address && address <= MMU_TLB+MMU_ENTRIES * 8)
   {
      //printf("TLB 0x%x 0x%x\n", address - MMU_TLB, value);
      ptr = (unsigned int)s->mmuEntry + address - MMU_TLB;
      *(int*)ptr = value;
      s->irqStatus &= ~IRQ_MMU;
      return;
   }
 
   ptr = (unsigned int)s->mem + (address % MEM_SIZE);
 
   if(0x10000000 <= address && address < 0x10000000 + 1024*1024)
      ptr += 1024*1024;
 
   switch(size)
   {
      case 4:
         assert((address & 3) == 0);
         if(s->big_endian)
            value = htonl(value);
         *(int*)ptr = value;
         break;
      case 2:
         assert((address & 1) == 0);
         if(s->big_endian)
            value = htons((unsigned short)value);
         *(short*)ptr = (unsigned short)value;
         break;
      case 1:
         *(char*)ptr = (unsigned char)value;
         break;
      default:
         printf("ERROR");
   }
}
 
/*---- Optional MMU and cache implementation ---------------------------------*/
 
/*
   The actual core does not have a cache so all of the original Plasma mlite.c
   code for cache simulation has been removed.
*/
 
#ifdef ENABLE_CACHE
#error Cache simulation missing!
#else
static void cache_init(void) {}
#endif
/*---- End optional cache implementation -------------------------------------*/
 
 
/** Simulates MIPS-I multiplier unsigned behavior*/
void mult_big(unsigned int a,
              unsigned int b,
              unsigned int *hi,
              unsigned int *lo)
{
   unsigned int ahi, alo, bhi, blo;
   unsigned int c0, c1, c2;
   unsigned int c1_a, c1_b;
 
   ahi = a >> 16;
   alo = a & 0xffff;
   bhi = b >> 16;
   blo = b & 0xffff;
 
   c0 = alo * blo;
   c1_a = ahi * blo;
   c1_b = alo * bhi;
   c2 = ahi * bhi;
 
   c2 += (c1_a >> 16) + (c1_b >> 16);
   c1 = (c1_a & 0xffff) + (c1_b & 0xffff) + (c0 >> 16);
   c2 += (c1 >> 16);
   c0 = (c1 << 16) + (c0 & 0xffff);
   *hi = c2;
   *lo = c0;
}
 
/** Simulates MIPS-I multiplier signed behavior*/
void mult_big_signed(int a,
                     int b,
                     unsigned int *hi,
                     unsigned int *lo)
{
   unsigned int ahi, alo, bhi, blo;
   unsigned int c0, c1, c2;
   unsigned int c1_a, c1_b;
 
   ahi = a >> 16;
   alo = a & 0xffff;
   bhi = b >> 16;
   blo = b & 0xffff;
 
   c0 = alo * blo;
   c1_a = ahi * blo;
   c1_b = alo * bhi;
   c2 = ahi * bhi;
 
   c2 += (c1_a >> 16) + (c1_b >> 16);
   c1 = (c1_a & 0xffff) + (c1_b & 0xffff) + (c0 >> 16);
   c2 += (c1 >> 16);
   c0 = (c1 << 16) + (c0 & 0xffff);
   *hi = c2;
   *lo = c0;
}
 
/** Load data from memory (used to simulate load delay slots) */
void start_load(State *s, int rt, int data){
   if(s->load_delay_slot){
      s->delayed_reg = rt;
      s->delay = 1;
      s->delayed_data = data;
   }
   else{
      /* load delay slot not simulated */
      s->r[rt] = data;
   }
}
 
/** Execute one cycle of the CPU (including any interlock stall cycles) */
void cycle(State *s, int show_mode)
{
   unsigned int opcode;
   unsigned int op, rs, rt, rd, re, func, imm, target;
   int imm_sex;
   int imm_shift, branch=0, lbranch=2, skip2=0;
   int *r=s->r;
   unsigned int *u=(unsigned int*)s->r;
   unsigned int ptr, epc, rSave;
 
   if(!show_mode){
      log_cycle(s);
   }
 
   opcode = mem_read(s, 4, s->pc, 0);
   op = (opcode >> 26) & 0x3f;
   rs = (opcode >> 21) & 0x1f;
   rt = (opcode >> 16) & 0x1f;
   rd = (opcode >> 11) & 0x1f;
   re = (opcode >> 6) & 0x1f;
   func = opcode & 0x3f;
   imm = opcode & 0xffff;
   imm_sex = (imm&0x8000)? 0xffff0000 | imm : imm;
   imm_shift = (((int)(short)imm) << 2) - 4;
   target = (opcode << 6) >> 4;
   ptr = (short)imm + r[rs];
   r[0] = 0;
   if(show_mode)
   {
      printf("%8.8x %8.8x ", s->pc, opcode);
      if(op == 0)
         printf("%8s ", special_string[func]);
      else if(op == 1)
         printf("%8s ", regimm_string[rt]);
      else
         printf("%8s ", opcode_string[op]);
      printf("$%2.2d $%2.2d $%2.2d $%2.2d ", rs, rt, rd, re);
      printf("%4.4x", imm);
      if(show_mode == 1)
         printf(" r[%2.2d]=%8.8x r[%2.2d]=%8.8x", rs, r[rs], rt, r[rt]);
      printf("\n");
   }
   if(show_mode > 5)
      return;
   epc = s->pc + 4;
   if(s->pc_next != s->pc + 4)
      epc |= 2;  //branch delay slot
 
   s->pc = s->pc_next;
   s->pc_next = s->pc_next + 4;
   if(s->skip)
   {
      s->skip = 0;
      return;
   }
   rSave = r[rt];
   switch(op)
   {
      case 0x00:/*SPECIAL*/
         switch(func)
         {
            case 0x00:/*SLL*/  r[rd]=r[rt]<<re;          break;
            case 0x02:/*SRL*/  r[rd]=u[rt]>>re;          break;
            case 0x03:/*SRA*/  r[rd]=r[rt]>>re;          break;
            case 0x04:/*SLLV*/ r[rd]=r[rt]<<r[rs];       break;
            case 0x06:/*SRLV*/ r[rd]=u[rt]>>r[rs];       break;
            case 0x07:/*SRAV*/ r[rd]=r[rt]>>r[rs];       break;
            case 0x08:/*JR*/   s->pc_next=r[rs];         break;
            case 0x09:/*JALR*/ r[rd]=s->pc_next; s->pc_next=r[rs]; break;
            case 0x0a:/*MOVZ*/ if(!r[rt]) r[rd]=r[rs];   break;  /*IV*/
            case 0x0b:/*MOVN*/ if(r[rt]) r[rd]=r[rs];    break;  /*IV*/
            case 0x0c:/*SYSCALL*/ /* epc|=1; WHY? */
                                  s->exceptionId=1; break;
            case 0x0d:/*BREAK*/   /* epc|=1; WHY? */
                                  s->exceptionId=1; break;
            case 0x0f:/*SYNC*/ s->wakeup=1;              break;
            case 0x10:/*MFHI*/ r[rd]=s->hi;              break;
            case 0x11:/*FTHI*/ s->hi=r[rs];              break;
            case 0x12:/*MFLO*/ r[rd]=s->lo;              break;
            case 0x13:/*MTLO*/ s->lo=r[rs];              break;
            case 0x18:/*MULT*/ mult_big_signed(r[rs],r[rt],&s->hi,&s->lo); break;
            case 0x19:/*MULTU*/ mult_big(r[rs],r[rt],&s->hi,&s->lo); break;
            case 0x1a:/*DIV*/  s->lo=r[rs]/r[rt]; s->hi=r[rs]%r[rt]; break;
            case 0x1b:/*DIVU*/ s->lo=u[rs]/u[rt]; s->hi=u[rs]%u[rt]; break;
            case 0x20:/*ADD*/  r[rd]=r[rs]+r[rt];        break;
            case 0x21:/*ADDU*/ r[rd]=r[rs]+r[rt];        break;
            case 0x22:/*SUB*/  r[rd]=r[rs]-r[rt];        break;
            case 0x23:/*SUBU*/ r[rd]=r[rs]-r[rt];        break;
            case 0x24:/*AND*/  r[rd]=r[rs]&r[rt];        break;
            case 0x25:/*OR*/   r[rd]=r[rs]|r[rt];        break;
            case 0x26:/*XOR*/  r[rd]=r[rs]^r[rt];        break;
            case 0x27:/*NOR*/  r[rd]=~(r[rs]|r[rt]);     break;
            case 0x2a:/*SLT*/  r[rd]=r[rs]<r[rt];        break;
            case 0x2b:/*SLTU*/ r[rd]=u[rs]<u[rt];        break;
            case 0x2d:/*DADDU*/r[rd]=r[rs]+u[rt];        break;
            case 0x31:/*TGEU*/ break;
            case 0x32:/*TLT*/  break;
            case 0x33:/*TLTU*/ break;
            case 0x34:/*TEQ*/  break;
            case 0x36:/*TNE*/  break;
            default: printf("ERROR0(*0x%x~0x%x)\n", s->pc, opcode);
               s->wakeup=1;
         }
         break;
      case 0x01:/*REGIMM*/
         switch(rt) {
            case 0x10:/*BLTZAL*/ r[31]=s->pc_next;
            case 0x00:/*BLTZ*/   branch=r[rs]<0;    break;
            case 0x11:/*BGEZAL*/ r[31]=s->pc_next;
            case 0x01:/*BGEZ*/   branch=r[rs]>=0;   break;
            case 0x12:/*BLTZALL*/r[31]=s->pc_next;
            case 0x02:/*BLTZL*/  lbranch=r[rs]<0;   break;
            case 0x13:/*BGEZALL*/r[31]=s->pc_next;
            case 0x03:/*BGEZL*/  lbranch=r[rs]>=0;  break;
            default: printf("ERROR1\n"); s->wakeup=1;
          }
         break;
      case 0x03:/*JAL*/    r[31]=s->pc_next;
      case 0x02:/*J*/      s->pc_next=(s->pc&0xf0000000)|target; break;
      case 0x04:/*BEQ*/    branch=r[rs]==r[rt];     break;
      case 0x05:/*BNE*/    branch=r[rs]!=r[rt];     break;
      case 0x06:/*BLEZ*/   branch=r[rs]<=0;         break;
      case 0x07:/*BGTZ*/   branch=r[rs]>0;          break;
      case 0x08:/*ADDI*/   r[rt]=r[rs]+(short)imm;  break;
      case 0x09:/*ADDIU*/  u[rt]=u[rs]+(short)imm;  break;
      case 0x0a:/*SLTI*/   r[rt]=r[rs]<(short)imm;  break;
      case 0x0b:/*SLTIU*/  u[rt]=u[rs]<(unsigned int)(short)imm; break;
      case 0x0c:/*ANDI*/   r[rt]=r[rs]&imm;         break;
      case 0x0d:/*ORI*/    r[rt]=r[rs]|imm;         break;
      case 0x0e:/*XORI*/   r[rt]=r[rs]^imm;         break;
      case 0x0f:/*LUI*/    r[rt]=(imm<<16);         break;
      case 0x10:/*COP0*/
         if((opcode & (1<<23)) == 0)  //move from CP0
         {
            if(rd == 12)
               r[rt]=s->status;
            else
               r[rt]=s->epc;
         }
         else                         //move to CP0
         {
            s->status=r[rt]&1;
            if(s->processId && (r[rt]&2))
            {
               s->userMode|=r[rt]&2;
               //printf("CpuStatus=%d %d %d\n", r[rt], s->status, s->userMode);
               //s->wakeup = 1;
               //printf("pc=0x%x\n", epc);
            }
         }
         break;
//      case 0x11:/*COP1*/ break;
//      case 0x12:/*COP2*/ break;
//      case 0x13:/*COP3*/ break;
      case 0x14:/*BEQL*/   lbranch=r[rs]==r[rt];    break;
      case 0x15:/*BNEL*/   lbranch=r[rs]!=r[rt];    break;
      case 0x16:/*BLEZL*/  lbranch=r[rs]<=0;        break;
      case 0x17:/*BGTZL*/  lbranch=r[rs]>0;         break;
//      case 0x1c:/*MAD*/  break;   /*IV*/
      case 0x20:/*LB*/     //r[rt]=(signed char)mem_read(s,1,ptr,1);  break;
                           start_load(s, rt,(signed char)mem_read(s,1,ptr,1));
                           break;
 
      case 0x21:/*LH*/     //r[rt]=(signed short)mem_read(s,2,ptr,1); break;
                           start_load(s, rt, (signed short)mem_read(s,2,ptr,1));
                           break;
      case 0x22:/*LWL*/    //target=8*(ptr&3);
                           //r[rt]=(r[rt]&~(0xffffffff<<target))|
                           //      (mem_read(s,4,ptr&~3)<<target); break;
                           break;
      case 0x23:/*LW*/     //r[rt]=mem_read(s,4,ptr,1);   break;
                           start_load(s, rt, mem_read(s,4,ptr,1));
                           break;
      case 0x24:/*LBU*/    //r[rt]=(unsigned char)mem_read(s,1,ptr,1); break;
                           start_load(s, rt, (unsigned char)mem_read(s,1,ptr,1));
                           break;
      case 0x25:/*LHU*/    //r[rt]= (unsigned short)mem_read(s,2,ptr,1);
                           start_load(s, rt, (unsigned short)mem_read(s,2,ptr,1));
                           break;
      case 0x26:/*LWR*/
                           //target=32-8*(ptr&3);
                           //r[rt]=(r[rt]&~((unsigned int)0xffffffff>>target))|
                           //((unsigned int)mem_read(s,4,ptr&~3)>>target);
                           break;
      case 0x28:/*SB*/     mem_write(s,1,ptr,r[rt]);  break;
      case 0x29:/*SH*/     mem_write(s,2,ptr,r[rt]);  break;
      case 0x2a:/*SWL*/
                           //mem_write(s,1,ptr,r[rt]>>24);
                           //mem_write(s,1,ptr+1,r[rt]>>16);
                           //mem_write(s,1,ptr+2,r[rt]>>8);
                           //mem_write(s,1,ptr+3,r[rt]); break;
      case 0x2b:/*SW*/     mem_write(s,4,ptr,r[rt]);  break;
      case 0x2e:/*SWR*/    break; //fixme
      case 0x2f:/*CACHE*/  break;
      case 0x30:/*LL*/     //r[rt]=mem_read(s,4,ptr);   break;
                           start_load(s, rt, mem_read(s,4,ptr,1));
                           break;
 
//      case 0x31:/*LWC1*/ break;
//      case 0x32:/*LWC2*/ break;
//      case 0x33:/*LWC3*/ break;
//      case 0x35:/*LDC1*/ break;
//      case 0x36:/*LDC2*/ break;
//      case 0x37:/*LDC3*/ break;
//      case 0x38:/*SC*/     *(int*)ptr=r[rt]; r[rt]=1; break;
      case 0x38:/*SC*/     mem_write(s,4,ptr,r[rt]); r[rt]=1; break;
//      case 0x39:/*SWC1*/ break;
//      case 0x3a:/*SWC2*/ break;
//      case 0x3b:/*SWC3*/ break;
//      case 0x3d:/*SDC1*/ break;
//      case 0x3e:/*SDC2*/ break;
//      case 0x3f:/*SDC3*/ break;
      default: printf("ERROR2 address=0x%x opcode=0x%x\n", s->pc, opcode);
         s->wakeup=1;
   }
   s->pc_next += (branch || lbranch == 1) ? imm_shift : 0;
   s->pc_next &= ~3;
   s->skip = (lbranch == 0) | skip2;
 
   /* if there's a delayed load pending, do it now: load reg with memory data */
   if(s->load_delay_slot){
      /*--- simulate real core's load interlock ---*/
      if(s->delay<=0){
         if(s->delayed_reg>0){
            s->r[s->delayed_reg] = s->delayed_data;
         }
         s->delayed_reg = 0;
      }
      else{
         s->delay = s->delay - 1;
      }
   }
   else{
      /*--- delay slot or interlocking not simulated ---*/
      /*
      if(s->delay){
         r[s->delayed_reg] = s->delayed_data;
         s->delay=0;
      }
      */
   }
 
   if(s->exceptionId)
   {
      r[rt] = rSave;
      s->epc = epc;
      s->pc_next = 0x3c;
      s->skip = 1;
      s->exceptionId = 0;
      s->userMode = 0;
      //s->wakeup = 1;
      return;
   }
}
 
/** Dump CPU state to console */
void show_state(State *s)
{
   int i,j;
   printf("pid=%d userMode=%d, epc=0x%x\n", s->processId, s->userMode, s->epc);
   for(i = 0; i < 4; ++i)
   {
      printf("%2.2d ", i * 8);
      for(j = 0; j < 8; ++j)
      {
         printf("%8.8x ", s->r[i*8+j]);
      }
      printf("\n");
   }
   //printf("%8.8lx %8.8lx %8.8lx %8.8lx\n", s->pc, s->pc_next, s->hi, s->lo);
   j = s->pc;
   for(i = -4; i <= 8; ++i)
   {
      printf("%c", i==0 ? '*' : ' ');
      s->pc = j + i * 4;
      cycle(s, 10);
   }
   s->pc = j;
}
 
/** Show debug monitor prompt and execute user command */
void do_debug(State *s)
{
   int ch;
   int i, j=0, watch=0, addr;
   s->pc_next = s->pc + 4;
   s->skip = 0;
   s->delayed_reg = 0;
   s->wakeup = 0;
   show_state(s);
   ch = ' ';
   for(;;)
   {
      if(ch != 'n')
      {
         if(watch)
            printf("0x%8.8x=0x%8.8x\n", watch, mem_read(s, 4, watch,0));
         printf("1=Debug 2=Trace 3=Step 4=BreakPt 5=Go 6=Memory ");
         printf("7=Watch 8=Jump 9=Quit A=dump > ");
      }
      ch = getch();
      if(ch != 'n')
         printf("\n");
      switch(ch)
      {
      case 'a': case 'A':
         dump_trace_buffer(s); break;
      case '1': case 'd': case ' ':
         cycle(s, 0); show_state(s); break;
      case 'n':
         cycle(s, 1); break;
      case '2': case 't':
         cycle(s, 0); printf("*"); cycle(s, 10); break;
      case '3': case 's':
         printf("Count> ");
         scanf("%d", &j);
         for(i = 0; i < j; ++i)
            cycle(s, 1);
         show_state(s);
         break;
      case '4': case 'b':
         printf("Line> ");
         scanf("%x", &j);
         printf("break point=0x%x\n", j);
         break;
      case '5': case 'g':
         s->wakeup = 0;
         cycle(s, 0);
         while(s->wakeup == 0)
         {
            if(s->pc == j){
               printf("\n\nStop: pc = 0x%08x\n\n", j);
               break;
            }
            cycle(s, 0);
         }
         show_state(s);
         break;
      case 'G':
         s->wakeup = 0;
         cycle(s, 1);
         while(s->wakeup == 0)
         {
            if(s->pc == j)
               break;
            cycle(s, 1);
         }
         show_state(s);
         break;
      case '6': case 'm':
         printf("Memory> ");
         scanf("%x", &j);
         for(i = 0; i < 8; ++i)
         {
            printf("%8.8x ", mem_read(s, 4, j+i*4, 0));
         }
         printf("\n");
         break;
      case '7': case 'w':
         printf("Watch> ");
         scanf("%x", &watch);
         break;
      case '8': case 'j':
         printf("Jump> ");
         scanf("%x", &addr);
         s->pc = addr;
         s->pc_next = addr + 4;
         show_state(s);
         break;
      case '9': case 'q':
         return;
      }
   }
}
 
/** Read binary code and data files */
int read_program(State *s, char *code_name, char *data_name){
   FILE *in;
   int bytes, i;
   unsigned char *buffer;
 
   /* Read code file (.text + .reginfo + .rodata) */
   in = fopen(code_name, "rb");
   if(in == NULL)
   {
      printf("Can't open file %s!\n",code_name);
      getch();
      return(0);
   }
   bytes = fread(s->mem, 1, MEM_SIZE, in);
   fclose(in);
   in = NULL;
   printf("Code [size= %6d, start= 0x%08x]\n", bytes, 0);
 
   /* Read data file (.data + .bss) if necessary */
   if(data_name!=NULL){
      in = fopen(data_name, "rb");
      if(in == NULL)
      {
         printf("Can't open file %s!\n",data_name);
         getch();
         return(0);
      }
      /* FIXME Section '.data' start hardcoded to 0x10000 */
      buffer = (unsigned char*)malloc(MEM_SIZE);
 
      bytes = fread(buffer, 1, MEM_SIZE, in);
      fclose(in);
      printf("Data [size= %6d, start= 0x%08x]\n", bytes, 0x10000);
 
      for(i=0;i<bytes;i++){
         s->mem[0x10000+i] = buffer[i];
      }
      free(buffer);
   }
 
   return 1;
}
 
/*----------------------------------------------------------------------------*/
 
int main(int argc,char *argv[])
{
   State state, *s=&state;
   int index;
   char *code_filename;
   char *data_filename;
 
   printf("MIPS-I emulator\n");
   memset(s, 0, sizeof(State));
   s->big_endian = 1;
   s->load_delay_slot = 0;
   s->mem = (unsigned char*)malloc(MEM_SIZE);
   memset(s->mem, 0, MEM_SIZE);
 
 
   if(argc==3){
      code_filename = argv[1];
      data_filename = argv[2];
   }
   else if(argc==2){
      code_filename = argv[1];
      data_filename = NULL;
   }
   else{
      printf("Usage:");
      printf("    slite file.exe <bin code file> [<bin data file>]\n");
      return 0;
   }
 
   if(!read_program(s, code_filename, data_filename)) return 0;
 
   init_trace_buffer(s, "sw_sim_log.txt");
   memcpy(s->mem + 1024*1024, s->mem, 1024*1024);  //internal 8KB SRAM
   cache_init(); /* stub */
 
   /* NOTE: Original mlite supported loading little-endian code, which this
      program doesn't. The endianess-conversion code has been removed.
   */
 
   /* Simulate a CPU reset */
   s->pc = 0x0;
   /* FIXME PC fixup at address zero has to be removed */
   index = mem_read(s, 4, 0, 0);
   if((index & 0xffffff00) == 0x3c1c1000){
      s->pc = 0x10000000;
   }
 
   /* Enter debug command interface; will only exit clean with user command */
   do_debug(s);
 
   /* Close and deallocate everything and quit */
   close_trace_buffer(s);
   free(s->mem);
   return(0);
}
 
/*----------------------------------------------------------------------------*/
 
 
void init_trace_buffer(State *s, const char *log_file_name){
   int i;
 
#if FILE_LOGGING_DISABLED
   s->t.log = NULL;
   return;
#else
   for(i=0;i<TRACE_BUFFER_SIZE;i++){
      s->t.buf[i]=0xffffffff;
   }
   s->t.next = 0;
 
   /* if file logging is enabled, open log file */
   if(log_file_name!=NULL){
      s->t.log = fopen(log_file_name, "w");
      if(s->t.log==NULL){
         printf("Error opening log file '%s', file logging disabled\n", log_file_name);
      }
   }
   else{
      s->t.log = NULL;
   }
#endif
}
 
/** Dumps last jump targets as a chunk of hex numbers (older is left top) */
void dump_trace_buffer(State *s){
   int i, col;
 
   for(i=0, col=0;i<TRACE_BUFFER_SIZE;i++, col++){
      printf("%08x ", s->t.buf[s->t.next + i]);
      if((col % 8)==7){
         printf("\n");
      }
   }
}
 
/** Logs last cycle's activity (changes in state and/or loads/stores) */
void log_cycle(State *s){
   static unsigned int last_pc = 0;
   int i;
 
   /* store PC in trace buffer only if there was a jump */
   if(s->pc != (last_pc+4)){
      s->t.buf[s->t.next] = s->pc;
      s->t.next = (s->t.next + 1) % TRACE_BUFFER_SIZE;
   }
   last_pc = s->pc;
 
   /* if file logging is enabled, dump a trace log to file */
   if(s->t.log!=NULL){
      for(i=0;i<32;i++){
         if(s->t.pr[i] != s->r[i]){
            fprintf(s->t.log, "(%08X) [%02X]=%08X\n", s->pc, i, s->r[i]);
         }
         s->t.pr[i] = s->r[i];
      }
      if(s->lo != s->t.lo){
         fprintf(s->t.log, "(%08X) [LO]=%08X\n", s->pc, s->lo);
      }
      s->t.lo = s->lo;
 
      if(s->hi != s->t.hi){
         fprintf(s->t.log, "(%08X) [HI]=%08X\n", s->pc, s->hi);
      }
      s->t.hi = s->hi;
 
      if(s->epc != s->t.epc){
         fprintf(s->t.log, "(%08X) [EP]=%08X\n", s->pc, s->epc);
      }
      s->t.epc = s->epc;
   }
}
 
/** Frees debug buffers and closes log file */
void close_trace_buffer(State *s){
   if(s->t.log){
      fclose(s->t.log);
   }
}
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.