353 lines | 9.24 kB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
-----------------------------------------------------------------------------
-- Filename: gh_uart_Rx_8bit.vhd
--
-- Description:
-- an 8 bit UART Rx Module
--
-- Copyright (c) 2006 by H LeFevre
-- A VHDL 16550 UART core
-- an OpenCores.org Project
-- free to use, but see documentation for conditions
--
-- Revision History:
-- Revision Date Author Comment
-- -------- ---------- --------- -----------
-- 1.0 02/18/06 H LeFevre Initial revision
-- 1.1 02/25/06 H LeFevre mod to SM, goes to idle faster
-- if no break error
-- 2.0 06/18/07 P.Azkarate Define "range" in R_WCOUNT and R_brdCOUNT signals
-----------------------------------------------------------------------------
library ieee ;
use ieee.std_logic_1164.all ;
entity gh_uart_Rx_8bit is
port(
clk : in std_logic; -- clock
rst : in std_logic;
BRCx16 : in std_logic; -- 16x clock enable
sRX : in std_logic;
num_bits : in integer;
Parity_EN : in std_logic;
Parity_EV : in std_logic;
Parity_ER : out std_logic;
Frame_ER : out std_logic;
Break_ITR : out std_logic;
D_RDY : out std_logic;
D : out std_logic_vector(7 downto 0)
);
end entity;
architecture a of gh_uart_Rx_8bit is
COMPONENT gh_shift_reg_se_sl is
GENERIC (size: INTEGER := 16);
PORT(
clk : IN STD_logic;
rst : IN STD_logic;
srst : IN STD_logic:='0';
SE : IN STD_logic; -- shift enable
D : IN STD_LOGIC;
Q : OUT STD_LOGIC_VECTOR(size-1 DOWNTO 0)
);
END COMPONENT;
COMPONENT gh_parity_gen_Serial is
PORT(
clk : IN STD_LOGIC;
rst : IN STD_LOGIC;
srst : in STD_LOGIC;
SD : in STD_LOGIC; -- sample data pulse
D : in STD_LOGIC; -- data
Q : out STD_LOGIC
);
END COMPONENT;
COMPONENT gh_counter_integer_down IS
generic(max_count : integer := 8);
PORT(
clk : IN STD_LOGIC;
rst : IN STD_LOGIC;
LOAD : in STD_LOGIC; -- load D
CE : IN STD_LOGIC; -- count enable
D : in integer RANGE 0 TO max_count;
Q : out integer RANGE 0 TO max_count
);
END COMPONENT;
COMPONENT gh_jkff is
PORT(
clk : IN STD_logic;
rst : IN STD_logic;
J,K : IN STD_logic;
Q : OUT STD_LOGIC
);
END COMPONENT;
type R_StateType is (idle,R_start_bit,shift_data,R_parity,
R_stop_bit,break_err);
signal R_state, R_nstate : R_StateType;
signal parity : std_logic;
signal parity_Grst : std_logic;
signal RWC_LD : std_logic;
signal R_WCOUNT : integer range 0 to 15;
signal s_DATA_LD : std_logic;
signal chk_par : std_logic;
signal chk_frm : std_logic;
signal clr_brk : std_logic;
signal clr_D : std_logic;
signal s_chk_par : std_logic;
signal s_chk_frm : std_logic;
signal R_shift_reg : std_logic_vector(7 downto 0);
signal iRX : std_logic;
signal BRC : std_logic;
signal dCLK_LD : std_logic;
signal R_brdCOUNT : integer range 0 to 15;
signal iParity_ER : std_logic;
signal iFrame_ER : std_logic;
signal iBreak_ITR : std_logic;
signal iD_RDY : std_logic;
begin
----------------------------------------------
---- outputs----------------------------------
----------------------------------------------
process(CLK,rst)
begin
if (rst = '1') then
Parity_ER <= '0';
Frame_ER <= '0';
Break_ITR <= '0';
D_RDY <= '0';
elsif (rising_edge(CLK)) then
if (BRCx16 = '1') then
D_RDY <= iD_RDY;
if (iD_RDY = '1') then
Parity_ER <= iParity_ER;
Frame_ER <= iFrame_ER;
Break_ITR <= iBreak_ITR;
end if;
end if;
end if;
end process;
D <= R_shift_reg when (num_bits = 8) else
('0' & R_shift_reg(7 downto 1)) when (num_bits = 7) else
("00" & R_shift_reg(7 downto 2)) when (num_bits = 6) else
("000" & R_shift_reg(7 downto 3)); -- when (bits_word = 5) else
----------------------------------------------
dCLK_LD <= '1' when (R_state = idle) else
'0';
BRC <= '0' when (BRCx16 = '0') else
'1' when (R_brdCOUNT = 0) else
'0';
u1 : gh_counter_integer_down -- baud rate divider
generic map (15)
port map(
clk => clk,
rst => rst,
LOAD => dCLK_LD,
CE => BRCx16,
D => 14,
Q => R_brdCOUNT);
----------------------------------------------------------
U2 : gh_shift_reg_se_sl
Generic Map(8)
PORT MAP (
clk => clk,
rst => rst,
srst => clr_D,
SE => s_DATA_LD,
D => sRX,
Q => R_shift_reg);
-----------------------------------------------------------
chk_par <= s_chk_par and (((parity xor iRX) and Parity_EV)
or (((not parity) xor iRX) and (not Parity_EV)));
U2c : gh_jkff
PORT MAP (
clk => clk,
rst => rst,
j => chk_par,
k => dCLK_LD,
Q => iParity_ER);
chk_frm <= s_chk_frm and (not iRX);
U2d : gh_jkff
PORT MAP (
clk => clk,
rst => rst,
j => chk_frm,
k => dCLK_LD,
Q => iFrame_ER);
U2e : gh_jkff
PORT MAP (
clk => clk,
rst => rst,
j => clr_d,
k => clr_brk,
Q => iBreak_ITR);
--------------------------------------------------------------
--------------------------------------------------------------
process(R_state,BRCx16,BRC,iRX,R_WCOUNT,Parity_EN,R_brdCOUNT,iBreak_ITR)
begin
case R_state is
when idle => -- idle
iD_RDY <= '0'; s_DATA_LD <= '0'; RWC_LD <= '1';
s_chk_par <= '0'; s_chk_frm <= '0'; clr_brk <= '0';
clr_D <= '0';
if (iRX = '0') then
R_nstate <= R_start_bit;
else
R_nstate <= idle;
end if;
when R_start_bit => --
iD_RDY <= '0'; s_DATA_LD <= '0'; RWC_LD <= '1';
s_chk_par <= '0'; s_chk_frm <= '0'; clr_brk <= '0';
if (BRC = '1') then
clr_D <= '1';
R_nstate <= shift_data;
elsif ((R_brdCOUNT = 8) and (iRX = '1')) then -- false start bit detection
clr_D <= '0';
R_nstate <= idle;
else
clr_D <= '0';
R_nstate <= R_start_bit;
end if;
when shift_data => -- send data bit
iD_RDY <= '0'; RWC_LD <= '0';
s_chk_par <= '0'; s_chk_frm <= '0';
clr_D <= '0';
if (BRCx16 = '0') then
s_DATA_LD <= '0'; clr_brk <= '0';
R_nstate <= shift_data;
elsif (R_brdCOUNT = 8) then
s_DATA_LD <= '1'; clr_brk <= iRX;
R_nstate <= shift_data;
elsif ((R_WCOUNT = 1) and (R_brdCOUNT = 0) and (Parity_EN = '1')) then
s_DATA_LD <= '0'; clr_brk <= '0';
R_nstate <= R_parity;
elsif ((R_WCOUNT = 1) and (R_brdCOUNT = 0)) then
s_DATA_LD <= '0'; clr_brk <= '0';
R_nstate <= R_stop_bit;
else
s_DATA_LD <= '0'; clr_brk <= '0';
R_nstate <= shift_data;
end if;
when R_parity => -- check parity bit
iD_RDY <= '0'; s_DATA_LD <= '0';
RWC_LD <= '0'; s_chk_frm <= '0';
clr_D <= '0';
if (BRCx16 = '0') then
s_chk_par <= '0'; clr_brk <= '0';
R_nstate <= R_parity;
elsif (R_brdCOUNT = 8) then
s_chk_par <= '1'; clr_brk <= iRX;
R_nstate <= R_parity;
elsif (BRC = '1') then
s_chk_par <= '0'; clr_brk <= '0';
R_nstate <= R_stop_bit;
else
s_chk_par <= '0'; clr_brk <= '0';
R_nstate <= R_parity;
end if;
when R_stop_bit => -- check stop bit
s_DATA_LD <= '0'; RWC_LD <= '0';
s_chk_par <= '0'; clr_brk <= iRX;
clr_D <= '0';
if ((BRC = '1') and (iBreak_ITR = '1')) then
iD_RDY <= '1'; s_chk_frm <= '0';
R_nstate <= break_err;
elsif (BRC = '1') then
iD_RDY <= '1'; s_chk_frm <= '0';
R_nstate <= idle;
elsif (R_brdCOUNT = 8) then
iD_RDY <= '0'; s_chk_frm <= '1';
R_nstate <= R_stop_bit;
elsif ((R_brdCOUNT = 7) and (iBreak_ITR = '0')) then -- added 02/20/06
iD_RDY <= '1'; s_chk_frm <= '0';
R_nstate <= idle;
else
iD_RDY <= '0'; s_chk_frm <= '0';
R_nstate <= R_stop_bit;
end if;
when break_err =>
iD_RDY <= '0'; s_DATA_LD <= '0'; RWC_LD <= '0';
s_chk_par <= '0'; s_chk_frm <= '0'; clr_brk <= '0';
clr_D <= '0';
if (iRX = '1') then
R_nstate <= idle;
else
R_nstate <= break_err;
end if;
when others =>
iD_RDY <= '0'; s_DATA_LD <= '0'; RWC_LD <= '0';
s_chk_par <= '0'; s_chk_frm <= '0'; clr_brk <= '0';
clr_D <= '0';
R_nstate <= idle;
end case;
end process;
--
-- registers for SM
process(CLK,rst)
begin
if (rst = '1') then
iRX <= '1';
R_state <= idle;
elsif (rising_edge(CLK)) then
if (BRCx16 = '1') then
iRX <= sRX;
R_state <= R_nstate;
else
iRX <= iRX;
R_state <= R_state;
end if;
end if;
end process;
u3 : gh_counter_integer_down -- word counter
generic map (8)
port map(
clk => clk,
rst => rst,
LOAD => RWC_LD,
CE => BRC,
D => num_bits,
Q => R_WCOUNT
);
--------------------------------------------------------
--------------------------------------------------------
parity_Grst <= '1' when (R_state = R_start_bit) else
'0';
U4 : gh_parity_gen_Serial
PORT MAP (
clk => clk,
rst => rst,
srst => parity_Grst,
SD => BRC,
D => R_shift_reg(7),
Q => parity);
end a;