1 |
8 |
zuofu |
#
|
2 |
|
|
# img2xes - Convert various types of image files into an XES-formatted hexadecimal data file
|
3 |
|
|
#
|
4 |
|
|
# The man page for this program is stored at the end of this file in POD format.
|
5 |
|
|
# Use 'pod2text img2xes.pl' in order to generate the man page.
|
6 |
|
|
#
|
7 |
|
|
|
8 |
|
|
|
9 |
|
|
|
10 |
|
|
use Math::Complex;
|
11 |
|
|
use Getopt::Long;
|
12 |
|
|
|
13 |
|
|
#
|
14 |
|
|
# create pointers to the netpbm image translation programs
|
15 |
|
|
#
|
16 |
|
|
# $netpbm_bin_dir = "C:/progra~1/gnuwin32/bin/"; # set this to the location of the netpbm utilities if it's not in your path already
|
17 |
|
|
$bmptopnm = $netpbm_bin_dir . "bmptopnm.exe";
|
18 |
|
|
$pngtopnm = $netpbm_bin_dir . "pngtopnm.exe";
|
19 |
|
|
$giftopnm = $netpbm_bin_dir . "giftopnm.exe";
|
20 |
|
|
$tifftopnm = $netpbm_bin_dir . "tifftopnm.exe";
|
21 |
|
|
$jpegtopnm = $netpbm_bin_dir . "jpegtopnm.exe";
|
22 |
|
|
|
23 |
|
|
#
|
24 |
|
|
# get options for the program
|
25 |
|
|
#
|
26 |
|
|
GetOptions(
|
27 |
|
|
"help" => \$help,
|
28 |
|
|
"width=i" => \$screen_width, # width of screen in pixels
|
29 |
|
|
"x=i" => \$screen_width, # also width of screen
|
30 |
|
|
"height=i" => \$screen_height, # height of screen in scanlines
|
31 |
|
|
"y=i" => \$screen_height, # also height of screen
|
32 |
|
|
"depth=s" => \$screen_depth, # #bits of each RGB component
|
33 |
|
|
"pixelwidth=i" => \$pixel_width, # #bits per pixel
|
34 |
|
|
"memwidth=i" => \$mem_width, # #bits per word of memory
|
35 |
|
|
"address=s" => \$mem_start_address, # starting address of image in memory
|
36 |
|
|
"ifile=s" => \$in_file, # input image file
|
37 |
|
|
"ofile=s" => \$xes_file # output hex file in XES format
|
38 |
|
|
);
|
39 |
|
|
|
40 |
|
|
# convert the hex or octal starting address to a decimal integer
|
41 |
|
|
$mem_start_address = oct($mem_start_address);
|
42 |
|
|
|
43 |
|
|
print "Unknown options:\n" if $ARGV[0];
|
44 |
|
|
foreach (@ARGV) {
|
45 |
|
|
print "$_\n";
|
46 |
|
|
}
|
47 |
|
|
|
48 |
|
|
if ( $ARGV[0] || $help ) {
|
49 |
|
|
print "perl $0 [-help] [(-width|-x) <#pixels>] [(-height|-y) <#lines>] [-depth <#R>+<#G>+<#B>] [-pixelwidth <#bits>] [-memwidth <#bits>] [-address <hex_or_oct_address>] [-ifile <file.pnm>] [-ofile <file.xes>]\n";
|
50 |
|
|
die;
|
51 |
|
|
}
|
52 |
|
|
|
53 |
|
|
#
|
54 |
|
|
# set default parameter values if not already set by the program options
|
55 |
|
|
#
|
56 |
|
|
!$screen_width && ( $screen_width = 800 );
|
57 |
|
|
!$screen_height && ( $screen_height = 600 );
|
58 |
|
|
!$screen_depth && ( $screen_depth = "3+2+3" );
|
59 |
|
|
!$pixel_width && ( $pixel_width = 8 );
|
60 |
|
|
!$mem_width && ( $mem_width = 16 );
|
61 |
|
|
!$mem_start_address && ( $mem_start_address = 0 );
|
62 |
|
|
|
63 |
|
|
$pixel_width > $mem_width && die "Error: pixel width cannot exceed the memory width!\n";
|
64 |
|
|
($num_r_bits,$num_g_bits,$num_b_bits) = split(/\+/,$screen_depth);
|
65 |
|
|
$color_depth = $num_r_bits + $num_g_bits + $num_b_bits;
|
66 |
|
|
$pixel_width < $color_depth && die "Error: pixel width is too small to hold the RGB values!\n";
|
67 |
|
|
|
68 |
|
|
#
|
69 |
|
|
# open the file containing the image data or run the external program to convert the
|
70 |
|
|
# image file into a portable pixel map file (PGM, PPM or PNM)
|
71 |
|
|
#
|
72 |
|
|
if ( defined $in_file ) {
|
73 |
|
|
if($in_file =~ /\.(\w+)$/) {
|
74 |
|
|
$_ = $1;
|
75 |
|
|
/^bmp/i && (open(IN,"$bmptopnm $in_file |") || die "$!\n");
|
76 |
|
|
/^png/i && (open(IN,"$pngtopnm $in_file |") || die "$!\n");
|
77 |
|
|
/^gif/i && (open(IN,"$giftopnm $in_file |") || die "$!\n");
|
78 |
|
|
/^tif/i && (open(IN,"$tifftopnm $in_file |") || die "$!\n");
|
79 |
|
|
/^jpeg/i && (open(IN,"$jpegtopnm $in_file |") || die "$!\n");
|
80 |
|
|
/^jpg/i && (open(IN,"$jpegtopnm $in_file |") || die "$!\n");
|
81 |
|
|
/^pnm/i && (open( IN, "$in_file" ) || die "$!\n");
|
82 |
|
|
/^ppm/i && (open( IN, "$in_file" ) || die "$!\n");
|
83 |
|
|
/^pgm/i && (open( IN, "$in_file" ) || die "$!\n");
|
84 |
|
|
}
|
85 |
|
|
}
|
86 |
|
|
else {
|
87 |
|
|
open( IN, "-" ) || die "$!\n"; # open the standard input if there is no file specified
|
88 |
|
|
}
|
89 |
|
|
binmode(IN);
|
90 |
|
|
|
91 |
|
|
#
|
92 |
|
|
# open the file where the hexadecimal data will be stored
|
93 |
|
|
#
|
94 |
|
|
if ( defined $xes_file ) {
|
95 |
|
|
open( OUT, ">$xes_file" ) || die "$!\n";
|
96 |
|
|
}
|
97 |
|
|
else {
|
98 |
|
|
open( OUT, ">-" ) || die "$!\n"; # open the standard output if there is no file specified
|
99 |
|
|
}
|
100 |
|
|
|
101 |
|
|
#
|
102 |
|
|
# read the header that gives the image type, dimensions and grayscale/color range
|
103 |
|
|
#
|
104 |
|
|
while (<IN>) {
|
105 |
|
|
/^\s*#/ && next; # skip comment lines
|
106 |
|
|
$_ =~ s/\s*#.*$//; # strip comments from the ends of lines
|
107 |
|
|
chomp; # remove newlines from ends of lines
|
108 |
|
|
$header .= "$_ "; # append current field to the header information
|
109 |
|
|
@header = split( /\s+/, $header );
|
110 |
|
|
( $header[0] =~ /^P[2356]$/ ) && ( @header == 4 ) && last; # got all the header information for PGM and PPM files
|
111 |
|
|
( $header[0] =~ /^P[14]$/ ) && ( @header == 3 ) && last; # got all the header information for PBM files
|
112 |
|
|
( $header[0] !~ /^P[123456]$/ ) && die "unknown type of PNM file!!\n";
|
113 |
|
|
( @header < 4 ) && next; # keep going until we have all the info from the header
|
114 |
|
|
}
|
115 |
|
|
|
116 |
|
|
#
|
117 |
|
|
# get the dimensions of the image and the range of each pixel value
|
118 |
|
|
#
|
119 |
|
|
$image_width = $header[1];
|
120 |
|
|
$image_height = $header[2];
|
121 |
|
|
( $header[0] =~ /^P[2356]$/ ) && ( $num_img_pixel_bits = int( logn( $header[3] + 1, 2 ) ) );
|
122 |
|
|
|
123 |
|
|
#
|
124 |
|
|
# determine some characteristics of the image data
|
125 |
|
|
#
|
126 |
|
|
$is_bitmap = ( $header[0] =~ /P[14]/ ); # is it a bitmap, graymap or pixelmap?
|
127 |
|
|
$is_text = ( $header[0] =~ /P[123]/ ); # is the data stored as ASCII text or binary values?
|
128 |
|
|
$is_color = ( $header[0] =~ /P[36]/ ); # is the data RGB or grayscale/BW?
|
129 |
|
|
|
130 |
|
|
#
|
131 |
|
|
# process pixelmap and graymap image data
|
132 |
|
|
#
|
133 |
|
|
if ( !$is_bitmap ) {
|
134 |
|
|
$address = $mem_start_address; # initialize address pointer
|
135 |
|
|
|
136 |
|
|
# create hexadecimal data records of pixel data for each line of the screen
|
137 |
|
|
for ( $r = 0 ; $r < $screen_height ; $r++ ) {
|
138 |
|
|
|
139 |
|
|
# clear the RGB values for the pixels in this row of the image
|
140 |
|
|
@row_r = ();
|
141 |
|
|
@row_g = ();
|
142 |
|
|
@row_b = ();
|
143 |
|
|
|
144 |
|
|
#
|
145 |
|
|
# Read the current line of pixel data from the image file until all the lines are processed.
|
146 |
|
|
# Once all image lines are processed, the RGB arrays for any further screen lines will be left with
|
147 |
|
|
# all zeroes (blank pixels). If there are more image lines than screen lines, then the excess
|
148 |
|
|
# image lines will be ignored.
|
149 |
|
|
#
|
150 |
|
|
|
151 |
|
|
for ( $c = 0 ; $r < $image_height && $c < $image_width ; $c++ ) {
|
152 |
|
|
if ($is_color) {
|
153 |
|
|
|
154 |
|
|
# read RGB values for the current pixel
|
155 |
|
|
if ($is_text) {
|
156 |
|
|
|
157 |
|
|
# RGB values are stored as decimal number text strings
|
158 |
|
|
# if the data array is empty, then refill it with data from lines of the image data file
|
159 |
|
|
while(@data == 0){
|
160 |
|
|
$t = <IN>; # get a line from the file
|
161 |
|
|
$t =~ s/^\s+//; # strip off leading whitespace
|
162 |
|
|
$t =~ s/\s+$//; # strip off trailing whitespace
|
163 |
|
|
@data = split(/\s+/,$t); # split the rest into individual numbers and store them in the array
|
164 |
|
|
}
|
165 |
|
|
$row_r[$c] = shift @data; # extract next number from array and store it in the current pixel's red component
|
166 |
|
|
|
167 |
|
|
# now get the value of the green component
|
168 |
|
|
while(@data == 0){
|
169 |
|
|
$t = <IN>;
|
170 |
|
|
$t =~ s/^\s+//;
|
171 |
|
|
$t =~ s/\s+$//;
|
172 |
|
|
@data = split(/\s+/,$t);
|
173 |
|
|
}
|
174 |
|
|
$row_g[$c] = shift @data;
|
175 |
|
|
|
176 |
|
|
# finally, get the value of the blue component
|
177 |
|
|
while(@data == 0){
|
178 |
|
|
$t = <IN>;
|
179 |
|
|
$t =~ s/^\s+//;
|
180 |
|
|
$t =~ s/\s+$//;
|
181 |
|
|
@data = split(/\s+/,$t);
|
182 |
|
|
}
|
183 |
|
|
$row_b[$c] = shift @data;
|
184 |
|
|
}
|
185 |
|
|
else {
|
186 |
|
|
|
187 |
|
|
# RGB values are stored as bytes of binary data
|
188 |
|
|
read( IN, $t, 1 );
|
189 |
|
|
$row_r[$c] = ord($t); # store the value of the red component for this pixel
|
190 |
|
|
read( IN, $t, 1 );
|
191 |
|
|
$row_g[$c] = ord($t); # store the value of the green component
|
192 |
|
|
read( IN, $t, 1 );
|
193 |
|
|
$row_b[$c] = ord($t); # store the value of the blue component
|
194 |
|
|
}
|
195 |
|
|
}
|
196 |
|
|
else {
|
197 |
|
|
|
198 |
|
|
# read gray value for the current pixel
|
199 |
|
|
if ($is_text) {
|
200 |
|
|
|
201 |
|
|
# gray value is stored as a decimal number text string
|
202 |
|
|
# if the data array is empty, then refill it with data from lines of the image data file
|
203 |
|
|
while(@data == 0){
|
204 |
|
|
$t = <IN>; # get a line from the file
|
205 |
|
|
$t =~ s/^\s+//; # strip off leading whitespace
|
206 |
|
|
$t =~ s/\s+$//; # strip off trailing whitespace
|
207 |
|
|
@data = split(/\s+/,$t); # split the rest into individual numbers and store them in the array
|
208 |
|
|
}
|
209 |
|
|
$row_r[$c] = shift @data; # extract next number from array and store it in the current pixel's red component
|
210 |
|
|
}
|
211 |
|
|
else {
|
212 |
|
|
|
213 |
|
|
# gray value is stored as a byte of binary data
|
214 |
|
|
read( IN, $t, 1 );
|
215 |
|
|
$row_r[$c] = ord($t); # store the value of the red component for this pixel
|
216 |
|
|
}
|
217 |
|
|
|
218 |
|
|
# gray value is created by making the green and blue components identical to the red component
|
219 |
|
|
$row_g[$c] = $row_r[$c];
|
220 |
|
|
$row_b[$c] = $row_r[$c];
|
221 |
|
|
}
|
222 |
|
|
|
223 |
|
|
# scale the RGB components of each image pixel so they fit the color depth of the screen
|
224 |
|
|
$row_r[$c] = ( $row_r[$c] >> ( $num_img_pixel_bits - $num_r_bits ) ) & ( ( 1 << $num_r_bits ) - 1 );
|
225 |
|
|
$row_g[$c] = ( $row_g[$c] >> ( $num_img_pixel_bits - $num_g_bits ) ) & ( ( 1 << $num_g_bits ) - 1 );
|
226 |
|
|
$row_b[$c] = ( $row_b[$c] >> ( $num_img_pixel_bits - $num_b_bits ) ) & ( ( 1 << $num_b_bits ) - 1 );
|
227 |
|
|
}
|
228 |
|
|
|
229 |
|
|
#
|
230 |
|
|
# Now create the hex records in XES hex format for the current row of pixel RGB data.
|
231 |
|
|
# Read the pixel RGB values from the current line of image data until all the pixels are processed.
|
232 |
|
|
# Once all image pixels are processed, the RGB values for any further screen pixels will be read as
|
233 |
|
|
# all zeroes (blank pixels). But if there are more image pixels than screen pixels, then the excess
|
234 |
|
|
# image pixelss will be ignored.
|
235 |
|
|
#
|
236 |
|
|
|
237 |
|
|
$hex_record = ""; # start with an empty hex record
|
238 |
|
|
$nbytes = 0; # number of bytes of data in the hex record
|
239 |
|
|
$mem_word = 0; # current word to be stored in memory (composed of packed pixels)
|
240 |
|
|
$npixels = 0; # number of pixels packed into a word of memory
|
241 |
|
|
for ( $c = 0 ; $c < $screen_width ; $c++ ) {
|
242 |
|
|
|
243 |
|
|
# pack the RGB components for the current pixel into a single pixel value with red, green, blue
|
244 |
|
|
# data arranged from the most to least significant bit
|
245 |
|
|
$pixel_value = ( $row_r[$c] << ($num_g_bits+$num_b_bits) ) | ( $row_g[$c] << $num_b_bits ) | $row_b[$c];
|
246 |
|
|
|
247 |
|
|
# pack the pixel value into the memory word
|
248 |
|
|
$mem_word = $mem_word | ( $pixel_value << ( $pixel_width * $npixels ) );
|
249 |
|
|
$npixels++; # increment the number of pixels currently stored in the memory word
|
250 |
|
|
|
251 |
|
|
# if the memory word is full, then append it to the hex record
|
252 |
|
|
if ( $pixel_width * $npixels >= $mem_width ) {
|
253 |
|
|
|
254 |
|
|
# divide the memory word into bytes, starting with the least-significant, and append them
|
255 |
|
|
# into a string that proceeds from the most-to-least significant
|
256 |
|
|
for ( $hex = "", $w = 0 ; $w < $mem_width ; $w += 8 ) {
|
257 |
|
|
$hex = sprintf( " %02X%s", $mem_word & 0xFF, $hex ); # put the current byte at the head of the string
|
258 |
|
|
$mem_word = $mem_word >> 8; # shift the current byte off the end of the memory word
|
259 |
|
|
$nbytes++; # increment the number of bytes stored in the hex record
|
260 |
|
|
}
|
261 |
|
|
$hex_record .= $hex; # append the hex data for the current memory word to the hex record
|
262 |
|
|
$npixels = 0; # all pixels were removed from the memory word
|
263 |
|
|
$mem_word = 0;
|
264 |
|
|
|
265 |
|
|
# create a complete hex record if enough bytes have been appended
|
266 |
|
|
if ( $nbytes >= 16 || (($address+$nbytes) & 0xF)==0 ) {
|
267 |
|
|
printf OUT "+ %02X %08X%s\n", $nbytes, $address, $hex_record; # prepend record length and address
|
268 |
|
|
$address += $nbytes; # compute the address for the next hex record
|
269 |
|
|
$hex_record = ""; # clear the string for the next hex record
|
270 |
|
|
$nbytes = 0; # no bytes in the new hex record
|
271 |
|
|
}
|
272 |
|
|
}
|
273 |
|
|
}
|
274 |
|
|
|
275 |
|
|
# take care of any partial memory words that were in-process at the end of the line
|
276 |
|
|
if ( $npixels > 0 ) {
|
277 |
|
|
|
278 |
|
|
# divide the memory word into bytes, starting with the least-significant, and append them
|
279 |
|
|
# into a string that proceeds from the most-to-least significant
|
280 |
|
|
for ( $hex = "", $w = 0 ; $w < $mem_width ; $w += 8 ) {
|
281 |
|
|
$hex = sprintf( " %02X%s", $mem_word & 0xFF, $hex );
|
282 |
|
|
$mem_word = $mem_word >> 8;
|
283 |
|
|
$nbytes++;
|
284 |
|
|
}
|
285 |
|
|
$hex_record .= $hex;
|
286 |
|
|
$npixels = 0;
|
287 |
|
|
}
|
288 |
|
|
|
289 |
|
|
# take care of any partial hex records that were in process at the end of a line
|
290 |
|
|
if ( $nbytes > 0 ) {
|
291 |
|
|
printf OUT "+ %02X %08X%s\n", $nbytes, $address, $hex_record;
|
292 |
|
|
$address += $nbytes;
|
293 |
|
|
$hex_record = "";
|
294 |
|
|
$nbytes = 0;
|
295 |
|
|
}
|
296 |
|
|
}
|
297 |
|
|
}
|
298 |
|
|
|
299 |
|
|
|
300 |
|
|
|
301 |
|
|
|
302 |
|
|
=pod
|
303 |
|
|
|
304 |
|
|
|
305 |
|
|
=head1 NAME
|
306 |
|
|
|
307 |
|
|
img2xes - Convert various types of image files into an XES-formatted hexadecimal data file
|
308 |
|
|
|
309 |
|
|
|
310 |
|
|
=head1 SYNOPSIS
|
311 |
|
|
|
312 |
|
|
perl img2xes.pl [B<-width>=I<integer>] [B<-x>=I<integer>]
|
313 |
|
|
[B<-height>=I<integer>] [B<-y>=I<integer>]
|
314 |
|
|
[B<-depth>=I<string>] [B<-pixelwidth>=I<number>] [B<-memwidth>=I<number>]
|
315 |
|
|
[B<-address>=I<integer>] [B<-ifile>=I<filename>] [B<-ofile>=I<filename>]
|
316 |
|
|
|
317 |
|
|
perl img2xes.pl B<-help>
|
318 |
|
|
|
319 |
|
|
|
320 |
|
|
=head1 DESCRIPTION
|
321 |
|
|
|
322 |
|
|
B<img2xes> converts image files into hexadecimal data files in the XES format.
|
323 |
|
|
These hex files can be downloaded into the memory on an XS Board and displayed
|
324 |
|
|
on a VGA monitor.
|
325 |
|
|
|
326 |
|
|
|
327 |
|
|
=head1 OPTIONS
|
328 |
|
|
|
329 |
|
|
=over 4
|
330 |
|
|
|
331 |
|
|
=item B<-width> I<integer>
|
332 |
|
|
|
333 |
|
|
Sets width of the image (in pixels) that will be displayed on the VGA monitor. This is not necessarily
|
334 |
|
|
the same as the width of the image in the image file. The default value is 800.
|
335 |
|
|
|
336 |
|
|
=item B<-x> I<integer>
|
337 |
|
|
|
338 |
|
|
Same as the B<-width> option.
|
339 |
|
|
|
340 |
|
|
=item B<-height> I<integer>
|
341 |
|
|
|
342 |
|
|
Sets height of the image (in scanlines) that will be displayed on the VGA monitor. This is not necessarily
|
343 |
|
|
the same as the height of the image in the image file. The default value is 600.
|
344 |
|
|
|
345 |
|
|
=item B<-y> I<integer>
|
346 |
|
|
|
347 |
|
|
Same as the B<-height> option.
|
348 |
|
|
|
349 |
|
|
=item B<-depth> I<string>
|
350 |
|
|
|
351 |
|
|
Sets the depth of the image that will be displayed on the VGA monitor. This is not necessarily
|
352 |
|
|
the same as the depth of the image in the image file. The depth is expressed as a string with the
|
353 |
|
|
format I<R+G+B> where R, G and B are the number of bits of resolution of the red, green and blue
|
354 |
|
|
components of the colors displayed on the monitor. The default value is 3+2+3.
|
355 |
|
|
|
356 |
|
|
=item B<-pixelwidth> I<integer>
|
357 |
|
|
|
358 |
|
|
Sets the width (in bits) of a pixel. A pixel should be at least R+G+B bits wide. The default value is 8.
|
359 |
|
|
|
360 |
|
|
=item B<-memwidth> I<integer>
|
361 |
|
|
|
362 |
|
|
Sets the width (in bits) of the memory word that contains one or more pixels. The memory width should be
|
363 |
|
|
at least as wide as the pixels. The default value is 16.
|
364 |
|
|
|
365 |
|
|
=item B<-address> I<hex or octal address>
|
366 |
|
|
|
367 |
|
|
Sets the starting address in memory for the hexadecimal image data. The image data proceeds upward from there.
|
368 |
|
|
The address is interpreted as an octal number unless you precede it with an initial "0x" to indicate
|
369 |
|
|
it is a hexadecimal address. The default value is 0.
|
370 |
|
|
|
371 |
|
|
=item B<-ifile> I<filename>
|
372 |
|
|
|
373 |
|
|
Gives the name of the file containing the image data. The suffix of I<filename> is used to determine the
|
374 |
|
|
type of the image data as follows:
|
375 |
|
|
|
376 |
|
|
=over
|
377 |
|
|
|
378 |
|
|
=item B<.bmp> Windows bitmap file.
|
379 |
|
|
|
380 |
|
|
=item B<.png> PNG file.
|
381 |
|
|
|
382 |
|
|
=item B<.gif> GIF file.
|
383 |
|
|
|
384 |
|
|
=item B<.tif> TIF file.
|
385 |
|
|
|
386 |
|
|
=item B<.jpeg>, B<.jpg> JPEG file.
|
387 |
|
|
|
388 |
|
|
=item B<.pgm> Portable gray-map file.
|
389 |
|
|
|
390 |
|
|
=item B<.ppm> Portable pixel-map file.
|
391 |
|
|
|
392 |
|
|
=item B<.pnm> Portable any-map file.
|
393 |
|
|
|
394 |
|
|
=back
|
395 |
|
|
|
396 |
|
|
If B<-ifile> is not used, then the image data is read from the standard input and is assumed to be in
|
397 |
|
|
portable any-map format.
|
398 |
|
|
|
399 |
|
|
=item B<-ofile> I<filename>
|
400 |
|
|
|
401 |
|
|
Gives the name of the file where the XES-formatted hexadecimal data will be stored. If B<-ofile> is not used,
|
402 |
|
|
then the hexadecimal data is written to the standard output.
|
403 |
|
|
|
404 |
|
|
=back
|
405 |
|
|
|
406 |
|
|
|
407 |
|
|
=head1 DIAGNOSTICS
|
408 |
|
|
|
409 |
|
|
B<img2xes> will abort if it does not recognize the suffix of the input image file or if the following
|
410 |
|
|
contraint is not met:
|
411 |
|
|
|
412 |
|
|
=over
|
413 |
|
|
|
414 |
|
|
R+G+B <= pixel width <= memory width
|
415 |
|
|
|
416 |
|
|
=back
|
417 |
|
|
|
418 |
|
|
|
419 |
|
|
=head1 EXAMPLES
|
420 |
|
|
|
421 |
|
|
For the XSA Boards using the VGA generator circuit described in
|
422 |
|
|
http://www.xess.com/appnotes/an-101204-vgagen.pdf, here are the commands to convert a JPEG file
|
423 |
|
|
and produce an S<800 x 600> display with
|
424 |
|
|
pixel widths of 4, 8 and 16. (We will not explicitly set some options since the default settings
|
425 |
|
|
will work in this case)
|
426 |
|
|
|
427 |
|
|
=over
|
428 |
|
|
|
429 |
|
|
perl img2xes.pl -depth 1+1+1 -pixelwidth 4 -ifile image.jpg -ofile image.xes
|
430 |
|
|
|
431 |
|
|
perl img2xes.pl -depth 3+2+3 -pixelwidth 8 -ifile image.jpg -ofile image.xes
|
432 |
|
|
|
433 |
|
|
perl img2xes.pl -depth 3+3+3 -pixelwidth 16 -ifile image.jpg -ofile image.xes
|
434 |
|
|
|
435 |
|
|
=back
|
436 |
|
|
|
437 |
|
|
To display a PNG file on a S<1024 x 768> display, then do this:
|
438 |
|
|
|
439 |
|
|
=over
|
440 |
|
|
|
441 |
|
|
perl img2xes.pl -x 1024 -y 768 -depth 1+1+1 -pixelwidth 4 -ifile image.png -ofile image.xes
|
442 |
|
|
|
443 |
|
|
perl img2xes.pl -x 1024 -y 768 -depth 3+2+3 -pixelwidth 8 -ifile image.png -ofile image.xes
|
444 |
|
|
|
445 |
|
|
perl img2xes.pl -x 1024 -y 768 -depth 3+3+3 -pixelwidth 16 -ifile image.png -ofile image.xes
|
446 |
|
|
|
447 |
|
|
=back
|
448 |
|
|
|
449 |
|
|
|
450 |
|
|
=head1 ENVIRONMENT
|
451 |
|
|
|
452 |
|
|
B<img2xes> requires a perl interpreter for its execution. You can get a free perl interpreter
|
453 |
|
|
for Windows at www.activestate.com. You already have a perl interpreter if you are running
|
454 |
|
|
linux, solaris or unix.
|
455 |
|
|
|
456 |
|
|
B<img2xes> requires the I<netpbm> suite of image conversion programs in order to convert
|
457 |
|
|
the various image file formats.
|
458 |
|
|
You can get these from http://netpbm.sourceforge.net.
|
459 |
|
|
Once installed, you need to place the I<netpbm> directory in your path or store
|
460 |
|
|
it directly in the C<$netpbm_bin_dir> variable in F<img2xes.pl>.
|
461 |
|
|
|
462 |
|
|
|
463 |
|
|
=head1 FILES
|
464 |
|
|
|
465 |
|
|
None.
|
466 |
|
|
|
467 |
|
|
|
468 |
|
|
=head1 CAVEATS
|
469 |
|
|
|
470 |
|
|
None.
|
471 |
|
|
|
472 |
|
|
|
473 |
|
|
=head1 BUGS
|
474 |
|
|
|
475 |
|
|
Portable bitmap files (.pbm) are not handled, yet.
|
476 |
|
|
|
477 |
|
|
|
478 |
|
|
=head1 RESTRICTIONS
|
479 |
|
|
|
480 |
|
|
None.
|
481 |
|
|
|
482 |
|
|
|
483 |
|
|
=head1 NOTES
|
484 |
|
|
|
485 |
|
|
B<img2xes> takes the red, green and blue component values of each pixel in the image file and
|
486 |
|
|
does the following:
|
487 |
|
|
|
488 |
|
|
=over
|
489 |
|
|
|
490 |
|
|
=item 1.
|
491 |
|
|
|
492 |
|
|
Each color component is truncated to the number of bits specified for that component by the B<-depth> option.
|
493 |
|
|
|
494 |
|
|
=item 2.
|
495 |
|
|
|
496 |
|
|
The truncated color components are concatenated with the blue component in the least-significant bit positions,
|
497 |
|
|
the red component in the most-significant bit positions, and the green component in between.
|
498 |
|
|
|
499 |
|
|
=item 3.
|
500 |
|
|
|
501 |
|
|
The concatenated components are placed into the least-significant bit positions of a pixel field whose
|
502 |
|
|
width is set using the B<-pixelwidth> option. Any unused bits in the upper portion of the pixel field
|
503 |
|
|
are set to zero.
|
504 |
|
|
|
505 |
|
|
=item 4.
|
506 |
|
|
|
507 |
|
|
Pixel fields are concatenated until no more will fit into a memory word whose width is set using the
|
508 |
|
|
B<-memwidth> option. Pixel I<N> occupies the least-significant bit positions while
|
509 |
|
|
pixels I<N+1>, I<N+2>, ... occupy successively more-significant bit positions in the memory word.
|
510 |
|
|
|
511 |
|
|
=item 5.
|
512 |
|
|
|
513 |
|
|
The memory word is chopped into eight-bit bytes and output as two-digit hexadecimal values starting
|
514 |
|
|
with the most-significant byte and proceeding to the least-significant byte.
|
515 |
|
|
|
516 |
|
|
=back
|
517 |
|
|
|
518 |
|
|
|
519 |
|
|
=head1 SEE ALSO
|
520 |
|
|
|
521 |
|
|
The most-current version of B<img2xes.pl> can be found at http://wwww.xess.com/ho07000.html.
|
522 |
|
|
|
523 |
|
|
|
524 |
|
|
=head1 AUTHOR
|
525 |
|
|
|
526 |
|
|
Dave Vanden Bout, X Engineering Software Systems Corp.
|
527 |
|
|
|
528 |
|
|
Send bug reports to bugs@xess.com.
|
529 |
|
|
|
530 |
|
|
|
531 |
|
|
=head1 COPYRIGHT AND LICENSE
|
532 |
|
|
|
533 |
|
|
Copyright 2004 by X Engineering Software Systems Corporation.
|
534 |
|
|
|
535 |
|
|
This library is free software; you may redistribute it and/or modify
|
536 |
|
|
it under the same terms as Perl itself.
|
537 |
|
|
|
538 |
|
|
|
539 |
|
|
=head1 HISTORY
|
540 |
|
|
|
541 |
|
|
10/12/04 - Version 1.0
|
542 |
|
|
|
543 |
|
|
|
544 |
|
|
=cut
|
545 |
|
|
|