1 |
2 |
srmcqueen |
----------------------------------------------------------------------
|
2 |
|
|
---- ----
|
3 |
|
|
---- Modular Multiplier ----
|
4 |
|
|
---- RSA Public Key Cryptography IP Core ----
|
5 |
|
|
---- ----
|
6 |
|
|
---- This file is part of the BasicRSA project ----
|
7 |
|
|
---- http://www.opencores.org/ ----
|
8 |
|
|
---- ----
|
9 |
|
|
---- To Do: ----
|
10 |
|
|
---- - Speed and efficiency improvements ----
|
11 |
|
|
---- - Possible revisions for good engineering/coding practices ----
|
12 |
|
|
---- ----
|
13 |
|
|
---- Author(s): ----
|
14 |
|
|
---- - Steven R. McQueen, srmcqueen@opencores.org ----
|
15 |
|
|
---- ----
|
16 |
|
|
----------------------------------------------------------------------
|
17 |
|
|
---- ----
|
18 |
|
|
---- Copyright (C) 2003 Steven R. McQueen ----
|
19 |
|
|
---- ----
|
20 |
|
|
---- This source file may be used and distributed without ----
|
21 |
|
|
---- restriction provided that this copyright statement is not ----
|
22 |
|
|
---- removed from the file and that any derivative work contains ----
|
23 |
|
|
---- the original copyright notice and the associated disclaimer. ----
|
24 |
|
|
---- ----
|
25 |
|
|
---- This source file is free software; you can redistribute it ----
|
26 |
|
|
---- and/or modify it under the terms of the GNU Lesser General ----
|
27 |
|
|
---- Public License as published by the Free Software Foundation; ----
|
28 |
|
|
---- either version 2.1 of the License, or (at your option) any ----
|
29 |
|
|
---- later version. ----
|
30 |
|
|
---- ----
|
31 |
|
|
---- This source is distributed in the hope that it will be ----
|
32 |
|
|
---- useful, but WITHOUT ANY WARRANTY; without even the implied ----
|
33 |
|
|
---- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ----
|
34 |
|
|
---- PURPOSE. See the GNU Lesser General Public License for more ----
|
35 |
|
|
---- details. ----
|
36 |
|
|
---- ----
|
37 |
|
|
---- You should have received a copy of the GNU Lesser General ----
|
38 |
|
|
---- Public License along with this source; if not, download it ----
|
39 |
|
|
---- from http://www.opencores.org/lgpl.shtml ----
|
40 |
|
|
---- ----
|
41 |
|
|
----------------------------------------------------------------------
|
42 |
|
|
--
|
43 |
|
|
-- CVS Revision History
|
44 |
|
|
--
|
45 |
|
|
-- $Log: not supported by cvs2svn $
|
46 |
|
|
--
|
47 |
|
|
|
48 |
|
|
-- This module implements the modular multiplier for the RSA Public Key Cypher. It expects
|
49 |
|
|
-- to receive a multiplicand on th MPAND bus, a multiplier on the MPLIER bus, and a modulus
|
50 |
|
|
-- on the MODULUS bus. The multiplier and multiplicand must have a value less than the modulus.
|
51 |
|
|
--
|
52 |
|
|
-- A Shift-and-Add algorithm is used in this module. For each bit of the multiplier, the
|
53 |
|
|
-- multiplicand value is shifted. For each '1' bit of the multiplier, the shifted multiplicand
|
54 |
|
|
-- value is added to the product. To ensure that the product is always expressed as a remainder
|
55 |
|
|
-- two subtractions are performed on the product, P2 = P1-modulus, and P3 = P1-(2*modulus).
|
56 |
|
|
-- The high-order bits of these results are used to determine whether P sould be copied from
|
57 |
|
|
-- P1, P2, or P3.
|
58 |
|
|
--
|
59 |
|
|
-- The operation ends when all '1' bits in the multiplier have been used.
|
60 |
|
|
--
|
61 |
|
|
-- Comments, questions and suggestions may be directed to the author at srmcqueen@mcqueentech.com.
|
62 |
|
|
|
63 |
|
|
|
64 |
|
|
library IEEE;
|
65 |
|
|
use IEEE.STD_LOGIC_1164.ALL;
|
66 |
|
|
use IEEE.STD_LOGIC_ARITH.ALL;
|
67 |
|
|
use IEEE.STD_LOGIC_UNSIGNED.ALL;
|
68 |
|
|
|
69 |
|
|
-- Uncomment the following lines to use the declarations that are
|
70 |
|
|
-- provided for instantiating Xilinx primitive components.
|
71 |
|
|
--library UNISIM;
|
72 |
|
|
--use UNISIM.VComponents.all;
|
73 |
|
|
|
74 |
|
|
entity modmult is
|
75 |
|
|
Generic (MPWID: integer := 32);
|
76 |
|
|
Port ( mpand : in std_logic_vector(MPWID-1 downto 0);
|
77 |
|
|
mplier : in std_logic_vector(MPWID-1 downto 0);
|
78 |
|
|
modulus : in std_logic_vector(MPWID-1 downto 0);
|
79 |
|
|
product : out std_logic_vector(MPWID-1 downto 0);
|
80 |
|
|
clk : in std_logic;
|
81 |
|
|
ds : in std_logic;
|
82 |
|
|
reset : in std_logic;
|
83 |
|
|
ready : out std_logic);
|
84 |
|
|
end modmult;
|
85 |
|
|
|
86 |
|
|
architecture modmult1 of modmult is
|
87 |
|
|
|
88 |
|
|
signal mpreg: std_logic_vector(MPWID-1 downto 0);
|
89 |
|
|
signal mcreg, mcreg1, mcreg2: std_logic_vector(MPWID+1 downto 0);
|
90 |
|
|
signal modreg1, modreg2: std_logic_vector(MPWID+1 downto 0);
|
91 |
|
|
signal prodreg, prodreg1, prodreg2, prodreg3, prodreg4: std_logic_vector(MPWID+1 downto 0);
|
92 |
|
|
|
93 |
|
|
--signal count: integer;
|
94 |
|
|
signal modstate: std_logic_vector(1 downto 0);
|
95 |
|
|
signal first: std_logic;
|
96 |
|
|
|
97 |
|
|
begin
|
98 |
|
|
|
99 |
|
|
-- final result...
|
100 |
|
|
product <= prodreg4(MPWID-1 downto 0);
|
101 |
|
|
|
102 |
|
|
-- add shifted value if place bit is '1', copy original if place bit is '0'
|
103 |
|
|
with mpreg(0) select
|
104 |
|
|
prodreg1 <= prodreg + mcreg when '1',
|
105 |
|
|
prodreg when others;
|
106 |
|
|
|
107 |
|
|
-- subtract modulus and subtract modulus * 2.
|
108 |
|
|
prodreg2 <= prodreg1 - modreg1;
|
109 |
|
|
prodreg3 <= prodreg1 - modreg2;
|
110 |
|
|
|
111 |
|
|
-- negative results mean that we subtracted too much...
|
112 |
|
|
modstate <= prodreg3(mpwid+1) & prodreg2(mpwid+1);
|
113 |
|
|
|
114 |
|
|
-- select the correct modular result and copy it....
|
115 |
|
|
with modstate select
|
116 |
|
|
prodreg4 <= prodreg1 when "11",
|
117 |
|
|
prodreg2 when "10",
|
118 |
|
|
prodreg3 when others;
|
119 |
|
|
|
120 |
|
|
-- meanwhile, subtract the modulus from the shifted multiplicand...
|
121 |
|
|
mcreg1 <= mcreg - modreg1;
|
122 |
|
|
|
123 |
|
|
-- select the correct modular value and copy it.
|
124 |
|
|
with mcreg1(MPWID) select
|
125 |
|
|
mcreg2 <= mcreg when '1',
|
126 |
|
|
mcreg1 when others;
|
127 |
|
|
|
128 |
|
|
ready <= first;
|
129 |
|
|
|
130 |
|
|
combine: process (clk, first, ds, mpreg, reset) is
|
131 |
|
|
|
132 |
|
|
begin
|
133 |
|
|
|
134 |
|
|
if reset = '1' then
|
135 |
|
|
first <= '1';
|
136 |
|
|
elsif rising_edge(clk) then
|
137 |
|
|
if first = '1' then
|
138 |
|
|
-- First time through, set up registers to start multiplication procedure
|
139 |
|
|
-- Input values are sampled only once
|
140 |
|
|
if ds = '1' then
|
141 |
|
|
mpreg <= mplier;
|
142 |
|
|
mcreg <= "00" & mpand;
|
143 |
|
|
modreg1 <= "00" & modulus;
|
144 |
|
|
modreg2 <= '0' & modulus & '0';
|
145 |
|
|
prodreg <= (others => '0');
|
146 |
|
|
first <= '0';
|
147 |
|
|
end if;
|
148 |
|
|
else
|
149 |
|
|
-- when all bits have been shifted out of the multiplicand, operation is over
|
150 |
|
|
-- Note: this leads to at least one waste cycle per multiplication
|
151 |
|
|
if mpreg = 0 then
|
152 |
|
|
first <= '1';
|
153 |
|
|
else
|
154 |
|
|
-- shift the multiplicand left one bit
|
155 |
|
|
mcreg <= mcreg2(MPWID downto 0) & '0';
|
156 |
|
|
-- shift the multiplier right one bit
|
157 |
|
|
mpreg <= '0' & mpreg(MPWID-1 downto 1);
|
158 |
|
|
-- copy intermediate product
|
159 |
|
|
prodreg <= prodreg4;
|
160 |
|
|
end if;
|
161 |
|
|
end if;
|
162 |
|
|
end if;
|
163 |
|
|
|
164 |
|
|
end process combine;
|
165 |
|
|
|
166 |
|
|
end modmult1;
|