1 |
2 |
schengopen |
////////////////////////////////////////////////////////////////// ////
|
2 |
|
|
//// ////
|
3 |
|
|
//// AES Decryption Core for FPGA ////
|
4 |
|
|
//// ////
|
5 |
|
|
//// This file is part of the AES Decryption Core for FPGA project ////
|
6 |
|
|
//// http://www.opencores.org/cores/xxx/ ////
|
7 |
|
|
//// ////
|
8 |
|
|
//// Description ////
|
9 |
|
|
//// Implementation of AES Decryption Core for FPGA according to ////
|
10 |
|
|
//// core specification document. ////
|
11 |
|
|
//// ////
|
12 |
|
|
//// To Do: ////
|
13 |
|
|
//// - ////
|
14 |
|
|
//// ////
|
15 |
|
|
//// Author(s): ////
|
16 |
|
|
//// - scheng, schengopencores@opencores.org ////
|
17 |
|
|
//// ////
|
18 |
|
|
//////////////////////////////////////////////////////////////////////
|
19 |
|
|
//// ////
|
20 |
|
|
//// Copyright (C) 2009 Authors and OPENCORES.ORG ////
|
21 |
|
|
//// ////
|
22 |
|
|
//// This source file may be used and distributed without ////
|
23 |
|
|
//// restriction provided that this copyright statement is not ////
|
24 |
|
|
//// removed from the file and that any derivative work contains ////
|
25 |
|
|
//// the original copyright notice and the associated disclaimer. ////
|
26 |
|
|
//// ////
|
27 |
|
|
//// This source file is free software; you can redistribute it ////
|
28 |
|
|
//// and/or modify it under the terms of the GNU Lesser General ////
|
29 |
|
|
//// Public License as published by the Free Software Foundation; ////
|
30 |
|
|
//// either version 2.1 of the License, or (at your option) any ////
|
31 |
|
|
//// later version. ////
|
32 |
|
|
//// ////
|
33 |
|
|
//// This source is distributed in the hope that it will be ////
|
34 |
|
|
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
|
35 |
|
|
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
|
36 |
|
|
//// PURPOSE. See the GNU Lesser General Public License for more ////
|
37 |
|
|
//// details. ////
|
38 |
|
|
//// ////
|
39 |
|
|
//// You should have received a copy of the GNU Lesser General ////
|
40 |
|
|
//// Public License along with this source; if not, download it ////
|
41 |
|
|
//// from http://www.opencores.org/lgpl.shtml ////
|
42 |
|
|
//// //// ///
|
43 |
|
|
///////////////////////////////////////////////////////////////////
|
44 |
|
|
//// ////
|
45 |
|
|
//// 192-bit key expander ////
|
46 |
|
|
//// ////
|
47 |
|
|
//// The key expansion algorithm is described in section 5.2 of the ////
|
48 |
|
|
//// FIPS-197 spec. This file implements the case for 192-bit key ////
|
49 |
|
|
//// only. ////
|
50 |
|
|
//// ////
|
51 |
|
|
////////////////////////////////////////////////////////////////////////
|
52 |
|
|
|
53 |
|
|
module KeyExpand192(
|
54 |
|
|
// 192-bit key expander
|
55 |
|
|
|
56 |
|
|
input [0:191] kt,
|
57 |
|
|
input kt_vld, // Active high input informing key expander that a valid new key is present at kt.
|
58 |
|
|
output kt_rdy, // Active high output indicates key expander ready to accept new key
|
59 |
|
|
|
60 |
|
|
output [0:127] rkey, // Note : rkey is always 128 bit regardless the crypto key length
|
61 |
|
|
output rkey_vld, // Active high output indicates valid roundkey available at rkey[0:127]
|
62 |
|
|
output rkey_last, // High for 1 clock cycle, indicates last roundkey available at rkey[0:127].
|
63 |
|
|
|
64 |
|
|
input clk,
|
65 |
|
|
input rst
|
66 |
|
|
);
|
67 |
|
|
|
68 |
|
|
// Registers holding the calculated roundkeys
|
69 |
|
|
logic [0:31] w0;
|
70 |
|
|
logic [0:31] w1;
|
71 |
|
|
logic [0:31] w2;
|
72 |
|
|
logic [0:31] w3;
|
73 |
|
|
logic [0:31] w4;
|
74 |
|
|
logic [0:31] w5;
|
75 |
|
|
logic [0:31] w6;
|
76 |
|
|
logic [0:31] w7;
|
77 |
|
|
|
78 |
|
|
logic [0:127] mux_rkey;
|
79 |
|
|
|
80 |
|
|
logic [0:3] keyexp_state; // Key expansion state machine
|
81 |
|
|
logic [0:7] Rcon; // Round constant. See FIPS-197 section 5.3.
|
82 |
|
|
|
83 |
|
|
wire [0:31] subword_out;
|
84 |
|
|
wire [0:31] rotword_out;
|
85 |
|
|
wire [0:31] rotword_in;
|
86 |
|
|
|
87 |
|
|
wire keyexp_state_0; // '1' indicates key expansion state machine at state 0 (initial state)
|
88 |
|
|
wire keyexp_state_12; // '1' indicates key expansion state machine at state 12 (last state)
|
89 |
|
|
|
90 |
|
|
// Do not remove the "keep" and "max_fanout" attribute. They are there to force the synthesizer
|
91 |
|
|
// to infer independent logic for next_w*, instead of deriving next_w1 from next_w0, ...and
|
92 |
|
|
// so on. See the definitions of next_w* below. This is to avoid getting a chain of LUTs, which reduces Fmax.
|
93 |
|
|
(* keep = "true", max_fanout = 1 *) wire [0:31] next_w2;
|
94 |
|
|
(* keep = "true", max_fanout = 1 *) wire [0:31] next_w3;
|
95 |
|
|
(* keep = "true", max_fanout = 1 *) wire [0:31] next_w4;
|
96 |
|
|
(* keep = "true", max_fanout = 1 *) wire [0:31] next_w5;
|
97 |
|
|
(* keep = "true", max_fanout = 1 *) wire [0:31] next_w6;
|
98 |
|
|
(* keep = "true", max_fanout = 1 *) wire [0:31] next_w7;
|
99 |
|
|
|
100 |
|
|
|
101 |
|
|
assign rotword_in = (keyexp_state_0)? kt[160:191] : w7;
|
102 |
|
|
RotWord RotWord_u(.din(rotword_in), .dout(rotword_out));
|
103 |
|
|
SubWord SubWord_u(.din(rotword_out), .dout(subword_out));
|
104 |
|
|
|
105 |
|
|
assign next_w2 = (keyexp_state_0)? (subword_out ^ {Rcon,24'h000000} ^ kt[0+:32]) : (subword_out ^ {Rcon,24'h000000} ^ w2);
|
106 |
|
|
assign next_w3 = (keyexp_state_0)? (subword_out ^ {Rcon,24'h000000} ^ kt[0+:32] ^ kt[32+:32]) : (subword_out ^ {Rcon,24'h000000} ^ w2 ^ w3);
|
107 |
|
|
assign next_w4 = (keyexp_state_0)? (subword_out ^ {Rcon,24'h000000} ^ kt[0+:32] ^ kt[32+:32] ^ kt[64+:32]) : (subword_out ^ {Rcon,24'h000000} ^ w2 ^ w3 ^ w4);
|
108 |
|
|
assign next_w5 = (keyexp_state_0)? (subword_out ^ {Rcon,24'h000000} ^ kt[0+:32] ^ kt[32+:32] ^ kt[64+:32] ^ kt[96+:32]) : (subword_out ^ {Rcon,24'h000000} ^ w2 ^ w3 ^ w4 ^ w5);
|
109 |
|
|
assign next_w6 = (keyexp_state_0)? (subword_out ^ {Rcon,24'h000000} ^ kt[0+:32] ^ kt[32+:32] ^ kt[64+:32] ^ kt[96+:32] ^ kt[128+:32]) : (subword_out ^ {Rcon,24'h000000} ^ w2 ^ w3 ^ w4 ^ w5 ^ w6);
|
110 |
|
|
assign next_w7 = (keyexp_state_0)? (subword_out ^ {Rcon,24'h000000} ^ kt[0+:32] ^ kt[32+:32] ^ kt[64+:32] ^ kt[96+:32] ^ kt[128+:32] ^ kt[160+:32]) : (subword_out ^ {Rcon,24'h000000} ^ w2 ^ w3 ^ w4 ^ w5 ^ w6 ^ w7);
|
111 |
|
|
|
112 |
|
|
assign rkey = mux_rkey;
|
113 |
|
|
assign kt_rdy = keyexp_state_0; // Only accept new key in initial state.
|
114 |
|
|
assign rkey_vld = ~keyexp_state_0 | kt_vld;
|
115 |
|
|
assign rkey_last = keyexp_state_12;
|
116 |
|
|
assign keyexp_state_0 = (keyexp_state == 0);
|
117 |
|
|
assign keyexp_state_12 = (keyexp_state == 12);
|
118 |
|
|
|
119 |
|
|
// Key Expansion state machine
|
120 |
|
|
always_ff @(posedge clk)
|
121 |
|
|
begin
|
122 |
|
|
if (rst)
|
123 |
|
|
begin
|
124 |
|
|
keyexp_state <= 0; // Reset to initial state
|
125 |
|
|
Rcon <= 8'h01;
|
126 |
|
|
end
|
127 |
|
|
else
|
128 |
|
|
unique case (keyexp_state)
|
129 |
|
|
|
130 |
|
|
if (kt_vld)
|
131 |
|
|
begin
|
132 |
|
|
keyexp_state <= keyexp_state + 1;
|
133 |
|
|
{w0,w1} <= kt[128:191];
|
134 |
|
|
{w2,w3,w4,w5,w6,w7} <= {next_w2,next_w3,next_w4,next_w5,next_w6,next_w7};
|
135 |
|
|
Rcon <= (Rcon[0])? (Rcon << 1) ^ 8'h1b : (Rcon << 1); // Advance to next Rcon value. Rcon[0] is msb.
|
136 |
|
|
end
|
137 |
|
|
2,3,5,6,8,9,11 :
|
138 |
|
|
// Proceed to next state and update roundkey register
|
139 |
|
|
begin
|
140 |
|
|
keyexp_state <= keyexp_state + 1;
|
141 |
|
|
{w0,w1} <= {w6,w7};
|
142 |
|
|
{w2,w3,w4,w5,w6,w7} <= {next_w2,next_w3,next_w4,next_w5,next_w6,next_w7};
|
143 |
|
|
Rcon <= (Rcon[0])? (Rcon << 1) ^ 8'h1b : (Rcon << 1); // Advance to next Rcon value. Rcon[0] is msb.
|
144 |
|
|
end
|
145 |
|
|
1,4,7,10 :
|
146 |
|
|
// Proceed to next state, no update to roundkey register
|
147 |
|
|
begin
|
148 |
|
|
keyexp_state <= keyexp_state + 1;
|
149 |
|
|
end
|
150 |
|
|
12: // Wrap back to initial state
|
151 |
|
|
begin
|
152 |
|
|
keyexp_state <= 0;
|
153 |
|
|
Rcon <= 8'h01;
|
154 |
|
|
end
|
155 |
|
|
endcase
|
156 |
|
|
end
|
157 |
|
|
|
158 |
|
|
// Pick the right slices from the round key registers w0-w7 to form the current
|
159 |
|
|
// round key.
|
160 |
|
|
always_comb
|
161 |
|
|
begin
|
162 |
|
|
unique case (keyexp_state)
|
163 |
|
|
|
164 |
|
|
1,4,7,10: mux_rkey <= {w0,w1,w2,w3};
|
165 |
|
|
2,5,8,11: mux_rkey <= {w4,w5,w6,w7};
|
166 |
|
|
3,6,9,12: mux_rkey <= {w2,w3,w4,w5};
|
167 |
|
|
endcase
|
168 |
|
|
end
|
169 |
|
|
|
170 |
|
|
endmodule
|