1 |
35 |
ultra_embe |
/* Definitions of floating-point access for GNU compiler.
|
2 |
|
|
Copyright (C) 1989, 1991, 1994, 1996, 1997, 1998, 1999,
|
3 |
|
|
2000, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#ifndef GCC_REAL_H
|
23 |
|
|
#define GCC_REAL_H
|
24 |
|
|
|
25 |
|
|
#include "machmode.h"
|
26 |
|
|
|
27 |
|
|
/* An expanded form of the represented number. */
|
28 |
|
|
|
29 |
|
|
/* Enumerate the special cases of numbers that we encounter. */
|
30 |
|
|
enum real_value_class {
|
31 |
|
|
rvc_zero,
|
32 |
|
|
rvc_normal,
|
33 |
|
|
rvc_inf,
|
34 |
|
|
rvc_nan
|
35 |
|
|
};
|
36 |
|
|
|
37 |
|
|
#define SIGNIFICAND_BITS (128 + HOST_BITS_PER_LONG)
|
38 |
|
|
#define EXP_BITS (32 - 6)
|
39 |
|
|
#define MAX_EXP ((1 << (EXP_BITS - 1)) - 1)
|
40 |
|
|
#define SIGSZ (SIGNIFICAND_BITS / HOST_BITS_PER_LONG)
|
41 |
|
|
#define SIG_MSB ((unsigned long)1 << (HOST_BITS_PER_LONG - 1))
|
42 |
|
|
|
43 |
|
|
struct GTY(()) real_value {
|
44 |
|
|
/* Use the same underlying type for all bit-fields, so as to make
|
45 |
|
|
sure they're packed together, otherwise REAL_VALUE_TYPE_SIZE will
|
46 |
|
|
be miscomputed. */
|
47 |
|
|
unsigned int /* ENUM_BITFIELD (real_value_class) */ cl : 2;
|
48 |
|
|
unsigned int decimal : 1;
|
49 |
|
|
unsigned int sign : 1;
|
50 |
|
|
unsigned int signalling : 1;
|
51 |
|
|
unsigned int canonical : 1;
|
52 |
|
|
unsigned int uexp : EXP_BITS;
|
53 |
|
|
unsigned long sig[SIGSZ];
|
54 |
|
|
};
|
55 |
|
|
|
56 |
|
|
#define REAL_EXP(REAL) \
|
57 |
|
|
((int)((REAL)->uexp ^ (unsigned int)(1 << (EXP_BITS - 1))) \
|
58 |
|
|
- (1 << (EXP_BITS - 1)))
|
59 |
|
|
#define SET_REAL_EXP(REAL, EXP) \
|
60 |
|
|
((REAL)->uexp = ((unsigned int)(EXP) & (unsigned int)((1 << EXP_BITS) - 1)))
|
61 |
|
|
|
62 |
|
|
/* Various headers condition prototypes on #ifdef REAL_VALUE_TYPE, so it
|
63 |
|
|
needs to be a macro. We do need to continue to have a structure tag
|
64 |
|
|
so that other headers can forward declare it. */
|
65 |
|
|
#define REAL_VALUE_TYPE struct real_value
|
66 |
|
|
|
67 |
|
|
/* We store a REAL_VALUE_TYPE into an rtx, and we do this by putting it in
|
68 |
|
|
consecutive "w" slots. Moreover, we've got to compute the number of "w"
|
69 |
|
|
slots at preprocessor time, which means we can't use sizeof. Guess. */
|
70 |
|
|
|
71 |
|
|
#define REAL_VALUE_TYPE_SIZE (SIGNIFICAND_BITS + 32)
|
72 |
|
|
#define REAL_WIDTH \
|
73 |
|
|
(REAL_VALUE_TYPE_SIZE/HOST_BITS_PER_WIDE_INT \
|
74 |
|
|
+ (REAL_VALUE_TYPE_SIZE%HOST_BITS_PER_WIDE_INT ? 1 : 0)) /* round up */
|
75 |
|
|
|
76 |
|
|
/* Verify the guess. */
|
77 |
|
|
extern char test_real_width
|
78 |
|
|
[sizeof(REAL_VALUE_TYPE) <= REAL_WIDTH*sizeof(HOST_WIDE_INT) ? 1 : -1];
|
79 |
|
|
|
80 |
|
|
/* Calculate the format for CONST_DOUBLE. We need as many slots as
|
81 |
|
|
are necessary to overlay a REAL_VALUE_TYPE on them. This could be
|
82 |
|
|
as many as four (32-bit HOST_WIDE_INT, 128-bit REAL_VALUE_TYPE).
|
83 |
|
|
|
84 |
|
|
A number of places assume that there are always at least two 'w'
|
85 |
|
|
slots in a CONST_DOUBLE, so we provide them even if one would suffice. */
|
86 |
|
|
|
87 |
|
|
#if REAL_WIDTH == 1
|
88 |
|
|
# define CONST_DOUBLE_FORMAT "ww"
|
89 |
|
|
#else
|
90 |
|
|
# if REAL_WIDTH == 2
|
91 |
|
|
# define CONST_DOUBLE_FORMAT "ww"
|
92 |
|
|
# else
|
93 |
|
|
# if REAL_WIDTH == 3
|
94 |
|
|
# define CONST_DOUBLE_FORMAT "www"
|
95 |
|
|
# else
|
96 |
|
|
# if REAL_WIDTH == 4
|
97 |
|
|
# define CONST_DOUBLE_FORMAT "wwww"
|
98 |
|
|
# else
|
99 |
|
|
# if REAL_WIDTH == 5
|
100 |
|
|
# define CONST_DOUBLE_FORMAT "wwwww"
|
101 |
|
|
# else
|
102 |
|
|
# if REAL_WIDTH == 6
|
103 |
|
|
# define CONST_DOUBLE_FORMAT "wwwwww"
|
104 |
|
|
# else
|
105 |
|
|
#error "REAL_WIDTH > 6 not supported"
|
106 |
|
|
# endif
|
107 |
|
|
# endif
|
108 |
|
|
# endif
|
109 |
|
|
# endif
|
110 |
|
|
# endif
|
111 |
|
|
#endif
|
112 |
|
|
|
113 |
|
|
|
114 |
|
|
/* Describes the properties of the specific target format in use. */
|
115 |
|
|
struct real_format
|
116 |
|
|
{
|
117 |
|
|
/* Move to and from the target bytes. */
|
118 |
|
|
void (*encode) (const struct real_format *, long *,
|
119 |
|
|
const REAL_VALUE_TYPE *);
|
120 |
|
|
void (*decode) (const struct real_format *, REAL_VALUE_TYPE *,
|
121 |
|
|
const long *);
|
122 |
|
|
|
123 |
|
|
/* The radix of the exponent and digits of the significand. */
|
124 |
|
|
int b;
|
125 |
|
|
|
126 |
|
|
/* Size of the significand in digits of radix B. */
|
127 |
|
|
int p;
|
128 |
|
|
|
129 |
|
|
/* Size of the significant of a NaN, in digits of radix B. */
|
130 |
|
|
int pnan;
|
131 |
|
|
|
132 |
|
|
/* The minimum negative integer, x, such that b**(x-1) is normalized. */
|
133 |
|
|
int emin;
|
134 |
|
|
|
135 |
|
|
/* The maximum integer, x, such that b**(x-1) is representable. */
|
136 |
|
|
int emax;
|
137 |
|
|
|
138 |
|
|
/* The bit position of the sign bit, for determining whether a value
|
139 |
|
|
is positive/negative, or -1 for a complex encoding. */
|
140 |
|
|
int signbit_ro;
|
141 |
|
|
|
142 |
|
|
/* The bit position of the sign bit, for changing the sign of a number,
|
143 |
|
|
or -1 for a complex encoding. */
|
144 |
|
|
int signbit_rw;
|
145 |
|
|
|
146 |
|
|
/* Default rounding mode for operations on this format. */
|
147 |
|
|
bool round_towards_zero;
|
148 |
|
|
bool has_sign_dependent_rounding;
|
149 |
|
|
|
150 |
|
|
/* Properties of the format. */
|
151 |
|
|
bool has_nans;
|
152 |
|
|
bool has_inf;
|
153 |
|
|
bool has_denorm;
|
154 |
|
|
bool has_signed_zero;
|
155 |
|
|
bool qnan_msb_set;
|
156 |
|
|
bool canonical_nan_lsbs_set;
|
157 |
|
|
};
|
158 |
|
|
|
159 |
|
|
|
160 |
|
|
/* The target format used for each floating point mode.
|
161 |
|
|
Float modes are followed by decimal float modes, with entries for
|
162 |
|
|
float modes indexed by (MODE - first float mode), and entries for
|
163 |
|
|
decimal float modes indexed by (MODE - first decimal float mode) +
|
164 |
|
|
the number of float modes. */
|
165 |
|
|
extern const struct real_format *
|
166 |
|
|
real_format_for_mode[MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1
|
167 |
|
|
+ MAX_MODE_DECIMAL_FLOAT - MIN_MODE_DECIMAL_FLOAT + 1];
|
168 |
|
|
|
169 |
|
|
#define REAL_MODE_FORMAT(MODE) \
|
170 |
|
|
(real_format_for_mode[DECIMAL_FLOAT_MODE_P (MODE) \
|
171 |
|
|
? (((MODE) - MIN_MODE_DECIMAL_FLOAT) \
|
172 |
|
|
+ (MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1)) \
|
173 |
|
|
: ((MODE) - MIN_MODE_FLOAT)])
|
174 |
|
|
|
175 |
|
|
#define FLOAT_MODE_FORMAT(MODE) \
|
176 |
|
|
(REAL_MODE_FORMAT (SCALAR_FLOAT_MODE_P (MODE)? (MODE) \
|
177 |
|
|
: GET_MODE_INNER (MODE)))
|
178 |
|
|
|
179 |
|
|
/* The following macro determines whether the floating point format is
|
180 |
|
|
composite, i.e. may contain non-consecutive mantissa bits, in which
|
181 |
|
|
case compile-time FP overflow may not model run-time overflow. */
|
182 |
|
|
#define MODE_COMPOSITE_P(MODE) \
|
183 |
|
|
(FLOAT_MODE_P (MODE) \
|
184 |
|
|
&& FLOAT_MODE_FORMAT (MODE)->pnan < FLOAT_MODE_FORMAT (MODE)->p)
|
185 |
|
|
|
186 |
|
|
/* Accessor macros for format properties. */
|
187 |
|
|
#define MODE_HAS_NANS(MODE) \
|
188 |
|
|
(FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_nans)
|
189 |
|
|
#define MODE_HAS_INFINITIES(MODE) \
|
190 |
|
|
(FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_inf)
|
191 |
|
|
#define MODE_HAS_SIGNED_ZEROS(MODE) \
|
192 |
|
|
(FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_signed_zero)
|
193 |
|
|
#define MODE_HAS_SIGN_DEPENDENT_ROUNDING(MODE) \
|
194 |
|
|
(FLOAT_MODE_P (MODE) \
|
195 |
|
|
&& FLOAT_MODE_FORMAT (MODE)->has_sign_dependent_rounding)
|
196 |
|
|
|
197 |
|
|
/* True if the given mode has a NaN representation and the treatment of
|
198 |
|
|
NaN operands is important. Certain optimizations, such as folding
|
199 |
|
|
x * 0 into 0, are not correct for NaN operands, and are normally
|
200 |
|
|
disabled for modes with NaNs. The user can ask for them to be
|
201 |
|
|
done anyway using the -funsafe-math-optimizations switch. */
|
202 |
|
|
#define HONOR_NANS(MODE) \
|
203 |
|
|
(MODE_HAS_NANS (MODE) && !flag_finite_math_only)
|
204 |
|
|
|
205 |
|
|
/* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */
|
206 |
|
|
#define HONOR_SNANS(MODE) (flag_signaling_nans && HONOR_NANS (MODE))
|
207 |
|
|
|
208 |
|
|
/* As for HONOR_NANS, but true if the mode can represent infinity and
|
209 |
|
|
the treatment of infinite values is important. */
|
210 |
|
|
#define HONOR_INFINITIES(MODE) \
|
211 |
|
|
(MODE_HAS_INFINITIES (MODE) && !flag_finite_math_only)
|
212 |
|
|
|
213 |
|
|
/* Like HONOR_NANS, but true if the given mode distinguishes between
|
214 |
|
|
positive and negative zero, and the sign of zero is important. */
|
215 |
|
|
#define HONOR_SIGNED_ZEROS(MODE) \
|
216 |
|
|
(MODE_HAS_SIGNED_ZEROS (MODE) && flag_signed_zeros)
|
217 |
|
|
|
218 |
|
|
/* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
|
219 |
|
|
and the rounding mode is important. */
|
220 |
|
|
#define HONOR_SIGN_DEPENDENT_ROUNDING(MODE) \
|
221 |
|
|
(MODE_HAS_SIGN_DEPENDENT_ROUNDING (MODE) && flag_rounding_math)
|
222 |
|
|
|
223 |
|
|
/* Declare functions in real.c. */
|
224 |
|
|
|
225 |
|
|
/* Binary or unary arithmetic on tree_code. */
|
226 |
|
|
extern bool real_arithmetic (REAL_VALUE_TYPE *, int, const REAL_VALUE_TYPE *,
|
227 |
|
|
const REAL_VALUE_TYPE *);
|
228 |
|
|
|
229 |
|
|
/* Compare reals by tree_code. */
|
230 |
|
|
extern bool real_compare (int, const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
|
231 |
|
|
|
232 |
|
|
/* Determine whether a floating-point value X is infinite. */
|
233 |
|
|
extern bool real_isinf (const REAL_VALUE_TYPE *);
|
234 |
|
|
|
235 |
|
|
/* Determine whether a floating-point value X is a NaN. */
|
236 |
|
|
extern bool real_isnan (const REAL_VALUE_TYPE *);
|
237 |
|
|
|
238 |
|
|
/* Determine whether a floating-point value X is finite. */
|
239 |
|
|
extern bool real_isfinite (const REAL_VALUE_TYPE *);
|
240 |
|
|
|
241 |
|
|
/* Determine whether a floating-point value X is negative. */
|
242 |
|
|
extern bool real_isneg (const REAL_VALUE_TYPE *);
|
243 |
|
|
|
244 |
|
|
/* Determine whether a floating-point value X is minus zero. */
|
245 |
|
|
extern bool real_isnegzero (const REAL_VALUE_TYPE *);
|
246 |
|
|
|
247 |
|
|
/* Compare two floating-point objects for bitwise identity. */
|
248 |
|
|
extern bool real_identical (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
|
249 |
|
|
|
250 |
|
|
/* Extend or truncate to a new mode. */
|
251 |
|
|
extern void real_convert (REAL_VALUE_TYPE *, enum machine_mode,
|
252 |
|
|
const REAL_VALUE_TYPE *);
|
253 |
|
|
|
254 |
|
|
/* Return true if truncating to NEW is exact. */
|
255 |
|
|
extern bool exact_real_truncate (enum machine_mode, const REAL_VALUE_TYPE *);
|
256 |
|
|
|
257 |
|
|
/* Render R as a decimal floating point constant. */
|
258 |
|
|
extern void real_to_decimal (char *, const REAL_VALUE_TYPE *, size_t,
|
259 |
|
|
size_t, int);
|
260 |
|
|
|
261 |
|
|
/* Render R as a decimal floating point constant, rounded so as to be
|
262 |
|
|
parsed back to the same value when interpreted in mode MODE. */
|
263 |
|
|
extern void real_to_decimal_for_mode (char *, const REAL_VALUE_TYPE *, size_t,
|
264 |
|
|
size_t, int, enum machine_mode);
|
265 |
|
|
|
266 |
|
|
/* Render R as a hexadecimal floating point constant. */
|
267 |
|
|
extern void real_to_hexadecimal (char *, const REAL_VALUE_TYPE *,
|
268 |
|
|
size_t, size_t, int);
|
269 |
|
|
|
270 |
|
|
/* Render R as an integer. */
|
271 |
|
|
extern HOST_WIDE_INT real_to_integer (const REAL_VALUE_TYPE *);
|
272 |
|
|
extern void real_to_integer2 (HOST_WIDE_INT *, HOST_WIDE_INT *,
|
273 |
|
|
const REAL_VALUE_TYPE *);
|
274 |
|
|
|
275 |
|
|
/* Initialize R from a decimal or hexadecimal string. Return -1 if
|
276 |
|
|
the value underflows, +1 if overflows, and 0 otherwise. */
|
277 |
|
|
extern int real_from_string (REAL_VALUE_TYPE *, const char *);
|
278 |
|
|
/* Wrapper to allow different internal representation for decimal floats. */
|
279 |
|
|
extern void real_from_string3 (REAL_VALUE_TYPE *, const char *, enum machine_mode);
|
280 |
|
|
|
281 |
|
|
/* Initialize R from an integer pair HIGH/LOW. */
|
282 |
|
|
extern void real_from_integer (REAL_VALUE_TYPE *, enum machine_mode,
|
283 |
|
|
unsigned HOST_WIDE_INT, HOST_WIDE_INT, int);
|
284 |
|
|
|
285 |
|
|
extern long real_to_target_fmt (long *, const REAL_VALUE_TYPE *,
|
286 |
|
|
const struct real_format *);
|
287 |
|
|
extern long real_to_target (long *, const REAL_VALUE_TYPE *, enum machine_mode);
|
288 |
|
|
|
289 |
|
|
extern void real_from_target_fmt (REAL_VALUE_TYPE *, const long *,
|
290 |
|
|
const struct real_format *);
|
291 |
|
|
extern void real_from_target (REAL_VALUE_TYPE *, const long *,
|
292 |
|
|
enum machine_mode);
|
293 |
|
|
|
294 |
|
|
extern void real_inf (REAL_VALUE_TYPE *);
|
295 |
|
|
|
296 |
|
|
extern bool real_nan (REAL_VALUE_TYPE *, const char *, int, enum machine_mode);
|
297 |
|
|
|
298 |
|
|
extern void real_maxval (REAL_VALUE_TYPE *, int, enum machine_mode);
|
299 |
|
|
|
300 |
|
|
extern void real_2expN (REAL_VALUE_TYPE *, int, enum machine_mode);
|
301 |
|
|
|
302 |
|
|
extern unsigned int real_hash (const REAL_VALUE_TYPE *);
|
303 |
|
|
|
304 |
|
|
|
305 |
|
|
/* Target formats defined in real.c. */
|
306 |
|
|
extern const struct real_format ieee_single_format;
|
307 |
|
|
extern const struct real_format mips_single_format;
|
308 |
|
|
extern const struct real_format motorola_single_format;
|
309 |
|
|
extern const struct real_format spu_single_format;
|
310 |
|
|
extern const struct real_format ieee_double_format;
|
311 |
|
|
extern const struct real_format mips_double_format;
|
312 |
|
|
extern const struct real_format motorola_double_format;
|
313 |
|
|
extern const struct real_format ieee_extended_motorola_format;
|
314 |
|
|
extern const struct real_format ieee_extended_intel_96_format;
|
315 |
|
|
extern const struct real_format ieee_extended_intel_96_round_53_format;
|
316 |
|
|
extern const struct real_format ieee_extended_intel_128_format;
|
317 |
|
|
extern const struct real_format ibm_extended_format;
|
318 |
|
|
extern const struct real_format mips_extended_format;
|
319 |
|
|
extern const struct real_format ieee_quad_format;
|
320 |
|
|
extern const struct real_format mips_quad_format;
|
321 |
|
|
extern const struct real_format vax_f_format;
|
322 |
|
|
extern const struct real_format vax_d_format;
|
323 |
|
|
extern const struct real_format vax_g_format;
|
324 |
|
|
extern const struct real_format real_internal_format;
|
325 |
|
|
extern const struct real_format decimal_single_format;
|
326 |
|
|
extern const struct real_format decimal_double_format;
|
327 |
|
|
extern const struct real_format decimal_quad_format;
|
328 |
|
|
extern const struct real_format ieee_half_format;
|
329 |
|
|
extern const struct real_format arm_half_format;
|
330 |
|
|
|
331 |
|
|
|
332 |
|
|
/* ====================================================================== */
|
333 |
|
|
/* Crap. */
|
334 |
|
|
|
335 |
|
|
#define REAL_ARITHMETIC(value, code, d1, d2) \
|
336 |
|
|
real_arithmetic (&(value), code, &(d1), &(d2))
|
337 |
|
|
|
338 |
|
|
#define REAL_VALUES_IDENTICAL(x, y) real_identical (&(x), &(y))
|
339 |
|
|
#define REAL_VALUES_EQUAL(x, y) real_compare (EQ_EXPR, &(x), &(y))
|
340 |
|
|
#define REAL_VALUES_LESS(x, y) real_compare (LT_EXPR, &(x), &(y))
|
341 |
|
|
|
342 |
|
|
/* Determine whether a floating-point value X is infinite. */
|
343 |
|
|
#define REAL_VALUE_ISINF(x) real_isinf (&(x))
|
344 |
|
|
|
345 |
|
|
/* Determine whether a floating-point value X is a NaN. */
|
346 |
|
|
#define REAL_VALUE_ISNAN(x) real_isnan (&(x))
|
347 |
|
|
|
348 |
|
|
/* Determine whether a floating-point value X is negative. */
|
349 |
|
|
#define REAL_VALUE_NEGATIVE(x) real_isneg (&(x))
|
350 |
|
|
|
351 |
|
|
/* Determine whether a floating-point value X is minus zero. */
|
352 |
|
|
#define REAL_VALUE_MINUS_ZERO(x) real_isnegzero (&(x))
|
353 |
|
|
|
354 |
|
|
/* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */
|
355 |
|
|
#define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) \
|
356 |
|
|
real_to_target (OUT, &(IN), \
|
357 |
|
|
mode_for_size (LONG_DOUBLE_TYPE_SIZE, MODE_FLOAT, 0))
|
358 |
|
|
|
359 |
|
|
#define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \
|
360 |
|
|
real_to_target (OUT, &(IN), mode_for_size (64, MODE_FLOAT, 0))
|
361 |
|
|
|
362 |
|
|
/* IN is a REAL_VALUE_TYPE. OUT is a long. */
|
363 |
|
|
#define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \
|
364 |
|
|
((OUT) = real_to_target (NULL, &(IN), mode_for_size (32, MODE_FLOAT, 0)))
|
365 |
|
|
|
366 |
|
|
#define REAL_VALUE_FROM_INT(r, lo, hi, mode) \
|
367 |
|
|
real_from_integer (&(r), mode, lo, hi, 0)
|
368 |
|
|
|
369 |
|
|
#define REAL_VALUE_FROM_UNSIGNED_INT(r, lo, hi, mode) \
|
370 |
|
|
real_from_integer (&(r), mode, lo, hi, 1)
|
371 |
|
|
|
372 |
|
|
/* Real values to IEEE 754 decimal floats. */
|
373 |
|
|
|
374 |
|
|
/* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */
|
375 |
|
|
#define REAL_VALUE_TO_TARGET_DECIMAL128(IN, OUT) \
|
376 |
|
|
real_to_target (OUT, &(IN), mode_for_size (128, MODE_DECIMAL_FLOAT, 0))
|
377 |
|
|
|
378 |
|
|
#define REAL_VALUE_TO_TARGET_DECIMAL64(IN, OUT) \
|
379 |
|
|
real_to_target (OUT, &(IN), mode_for_size (64, MODE_DECIMAL_FLOAT, 0))
|
380 |
|
|
|
381 |
|
|
/* IN is a REAL_VALUE_TYPE. OUT is a long. */
|
382 |
|
|
#define REAL_VALUE_TO_TARGET_DECIMAL32(IN, OUT) \
|
383 |
|
|
((OUT) = real_to_target (NULL, &(IN), mode_for_size (32, MODE_DECIMAL_FLOAT, 0)))
|
384 |
|
|
|
385 |
|
|
extern REAL_VALUE_TYPE real_value_truncate (enum machine_mode,
|
386 |
|
|
REAL_VALUE_TYPE);
|
387 |
|
|
|
388 |
|
|
#define REAL_VALUE_TO_INT(plow, phigh, r) \
|
389 |
|
|
real_to_integer2 (plow, phigh, &(r))
|
390 |
|
|
|
391 |
|
|
extern REAL_VALUE_TYPE real_value_negate (const REAL_VALUE_TYPE *);
|
392 |
|
|
extern REAL_VALUE_TYPE real_value_abs (const REAL_VALUE_TYPE *);
|
393 |
|
|
|
394 |
|
|
extern int significand_size (enum machine_mode);
|
395 |
|
|
|
396 |
|
|
extern REAL_VALUE_TYPE real_from_string2 (const char *, enum machine_mode);
|
397 |
|
|
|
398 |
|
|
#define REAL_VALUE_ATOF(s, m) \
|
399 |
|
|
real_from_string2 (s, m)
|
400 |
|
|
|
401 |
|
|
#define CONST_DOUBLE_ATOF(s, m) \
|
402 |
|
|
CONST_DOUBLE_FROM_REAL_VALUE (real_from_string2 (s, m), m)
|
403 |
|
|
|
404 |
|
|
#define REAL_VALUE_FIX(r) \
|
405 |
|
|
real_to_integer (&(r))
|
406 |
|
|
|
407 |
|
|
/* ??? Not quite right. */
|
408 |
|
|
#define REAL_VALUE_UNSIGNED_FIX(r) \
|
409 |
|
|
real_to_integer (&(r))
|
410 |
|
|
|
411 |
|
|
/* ??? These were added for Paranoia support. */
|
412 |
|
|
|
413 |
|
|
/* Return floor log2(R). */
|
414 |
|
|
extern int real_exponent (const REAL_VALUE_TYPE *);
|
415 |
|
|
|
416 |
|
|
/* R = A * 2**EXP. */
|
417 |
|
|
extern void real_ldexp (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
|
418 |
|
|
|
419 |
|
|
/* **** End of software floating point emulator interface macros **** */
|
420 |
|
|
|
421 |
|
|
/* Constant real values 0, 1, 2, -1 and 0.5. */
|
422 |
|
|
|
423 |
|
|
extern REAL_VALUE_TYPE dconst0;
|
424 |
|
|
extern REAL_VALUE_TYPE dconst1;
|
425 |
|
|
extern REAL_VALUE_TYPE dconst2;
|
426 |
|
|
extern REAL_VALUE_TYPE dconstm1;
|
427 |
|
|
extern REAL_VALUE_TYPE dconsthalf;
|
428 |
|
|
|
429 |
|
|
#define dconst_e() (*dconst_e_ptr ())
|
430 |
|
|
#define dconst_third() (*dconst_third_ptr ())
|
431 |
|
|
#define dconst_sqrt2() (*dconst_sqrt2_ptr ())
|
432 |
|
|
|
433 |
|
|
/* Function to return the real value special constant 'e'. */
|
434 |
|
|
extern const REAL_VALUE_TYPE * dconst_e_ptr (void);
|
435 |
|
|
|
436 |
|
|
/* Returns the special REAL_VALUE_TYPE corresponding to 1/3. */
|
437 |
|
|
extern const REAL_VALUE_TYPE * dconst_third_ptr (void);
|
438 |
|
|
|
439 |
|
|
/* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */
|
440 |
|
|
extern const REAL_VALUE_TYPE * dconst_sqrt2_ptr (void);
|
441 |
|
|
|
442 |
|
|
/* Function to return a real value (not a tree node)
|
443 |
|
|
from a given integer constant. */
|
444 |
|
|
REAL_VALUE_TYPE real_value_from_int_cst (const_tree, const_tree);
|
445 |
|
|
|
446 |
|
|
/* Given a CONST_DOUBLE in FROM, store into TO the value it represents. */
|
447 |
|
|
#define REAL_VALUE_FROM_CONST_DOUBLE(to, from) \
|
448 |
|
|
((to) = *CONST_DOUBLE_REAL_VALUE (from))
|
449 |
|
|
|
450 |
|
|
/* Return a CONST_DOUBLE with value R and mode M. */
|
451 |
|
|
#define CONST_DOUBLE_FROM_REAL_VALUE(r, m) \
|
452 |
|
|
const_double_from_real_value (r, m)
|
453 |
|
|
extern rtx const_double_from_real_value (REAL_VALUE_TYPE, enum machine_mode);
|
454 |
|
|
|
455 |
|
|
/* Replace R by 1/R in the given machine mode, if the result is exact. */
|
456 |
|
|
extern bool exact_real_inverse (enum machine_mode, REAL_VALUE_TYPE *);
|
457 |
|
|
|
458 |
|
|
/* Return true if arithmetic on values in IMODE that were promoted
|
459 |
|
|
from values in TMODE is equivalent to direct arithmetic on values
|
460 |
|
|
in TMODE. */
|
461 |
|
|
bool real_can_shorten_arithmetic (enum machine_mode, enum machine_mode);
|
462 |
|
|
|
463 |
|
|
/* In tree.c: wrap up a REAL_VALUE_TYPE in a tree node. */
|
464 |
|
|
extern tree build_real (tree, REAL_VALUE_TYPE);
|
465 |
|
|
|
466 |
|
|
/* Calculate R as the square root of X in the given machine mode. */
|
467 |
|
|
extern bool real_sqrt (REAL_VALUE_TYPE *, enum machine_mode,
|
468 |
|
|
const REAL_VALUE_TYPE *);
|
469 |
|
|
|
470 |
|
|
/* Calculate R as X raised to the integer exponent N in mode MODE. */
|
471 |
|
|
extern bool real_powi (REAL_VALUE_TYPE *, enum machine_mode,
|
472 |
|
|
const REAL_VALUE_TYPE *, HOST_WIDE_INT);
|
473 |
|
|
|
474 |
|
|
/* Standard round to integer value functions. */
|
475 |
|
|
extern void real_trunc (REAL_VALUE_TYPE *, enum machine_mode,
|
476 |
|
|
const REAL_VALUE_TYPE *);
|
477 |
|
|
extern void real_floor (REAL_VALUE_TYPE *, enum machine_mode,
|
478 |
|
|
const REAL_VALUE_TYPE *);
|
479 |
|
|
extern void real_ceil (REAL_VALUE_TYPE *, enum machine_mode,
|
480 |
|
|
const REAL_VALUE_TYPE *);
|
481 |
|
|
extern void real_round (REAL_VALUE_TYPE *, enum machine_mode,
|
482 |
|
|
const REAL_VALUE_TYPE *);
|
483 |
|
|
|
484 |
|
|
/* Set the sign of R to the sign of X. */
|
485 |
|
|
extern void real_copysign (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
|
486 |
|
|
|
487 |
|
|
/* Check whether the real constant value given is an integer. */
|
488 |
|
|
extern bool real_isinteger (const REAL_VALUE_TYPE *c, enum machine_mode mode);
|
489 |
|
|
|
490 |
|
|
/* Write into BUF the maximum representable finite floating-point
|
491 |
|
|
number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
|
492 |
|
|
float string. BUF must be large enough to contain the result. */
|
493 |
|
|
extern void get_max_float (const struct real_format *, char *, size_t);
|
494 |
|
|
#endif /* ! GCC_REAL_H */
|