OpenCores
URL https://opencores.org/ocsvn/altor32/altor32/trunk

Subversion Repositories altor32

[/] [altor32/] [trunk/] [gcc-x64/] [or1knd-elf/] [or1knd-elf/] [include/] [c++/] [4.8.0/] [tr1/] [bessel_function.tcc] - Blame information for rev 35

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 35 ultra_embe
// Special functions -*- C++ -*-
2
 
3
// Copyright (C) 2006, 2007, 2008, 2009, 2010
4
// Free Software Foundation, Inc.
5
//
6
// This file is part of the GNU ISO C++ Library.  This library is free
7
// software; you can redistribute it and/or modify it under the
8
// terms of the GNU General Public License as published by the
9
// Free Software Foundation; either version 3, or (at your option)
10
// any later version.
11
//
12
// This library is distributed in the hope that it will be useful,
13
// but WITHOUT ANY WARRANTY; without even the implied warranty of
14
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
// GNU General Public License for more details.
16
//
17
// Under Section 7 of GPL version 3, you are granted additional
18
// permissions described in the GCC Runtime Library Exception, version
19
// 3.1, as published by the Free Software Foundation.
20
 
21
// You should have received a copy of the GNU General Public License and
22
// a copy of the GCC Runtime Library Exception along with this program;
23
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24
// .
25
 
26
/** @file tr1/bessel_function.tcc
27
 *  This is an internal header file, included by other library headers.
28
 *  Do not attempt to use it directly. @headername{tr1/cmath}
29
 */
30
 
31
//
32
// ISO C++ 14882 TR1: 5.2  Special functions
33
//
34
 
35
// Written by Edward Smith-Rowland.
36
//
37
// References:
38
//   (1) Handbook of Mathematical Functions,
39
//       ed. Milton Abramowitz and Irene A. Stegun,
40
//       Dover Publications,
41
//       Section 9, pp. 355-434, Section 10 pp. 435-478
42
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
43
//   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
44
//       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
45
//       2nd ed, pp. 240-245
46
 
47
#ifndef _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
48
#define _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 1
49
 
50
#include "special_function_util.h"
51
 
52
namespace std _GLIBCXX_VISIBILITY(default)
53
{
54
namespace tr1
55
{
56
  // [5.2] Special functions
57
 
58
  // Implementation-space details.
59
  namespace __detail
60
  {
61
  _GLIBCXX_BEGIN_NAMESPACE_VERSION
62
 
63
    /**
64
     *   @brief Compute the gamma functions required by the Temme series
65
     *          expansions of @f$ N_\nu(x) @f$ and @f$ K_\nu(x) @f$.
66
     *   @f[
67
     *     \Gamma_1 = \frac{1}{2\mu}
68
     *                [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
69
     *   @f]
70
     *   and
71
     *   @f[
72
     *     \Gamma_2 = \frac{1}{2}
73
     *                [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
74
     *   @f]
75
     *   where @f$ -1/2 <= \mu <= 1/2 @f$ is @f$ \mu = \nu - N @f$ and @f$ N @f$.
76
     *   is the nearest integer to @f$ \nu @f$.
77
     *   The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
78
     *   are returned as well.
79
     *
80
     *   The accuracy requirements on this are exquisite.
81
     *
82
     *   @param __mu     The input parameter of the gamma functions.
83
     *   @param __gam1   The output function \f$ \Gamma_1(\mu) \f$
84
     *   @param __gam2   The output function \f$ \Gamma_2(\mu) \f$
85
     *   @param __gampl  The output function \f$ \Gamma(1 + \mu) \f$
86
     *   @param __gammi  The output function \f$ \Gamma(1 - \mu) \f$
87
     */
88
    template 
89
    void
90
    __gamma_temme(const _Tp __mu,
91
                   _Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi)
92
    {
93
#if _GLIBCXX_USE_C99_MATH_TR1
94
      __gampl = _Tp(1) / std::tr1::tgamma(_Tp(1) + __mu);
95
      __gammi = _Tp(1) / std::tr1::tgamma(_Tp(1) - __mu);
96
#else
97
      __gampl = _Tp(1) / __gamma(_Tp(1) + __mu);
98
      __gammi = _Tp(1) / __gamma(_Tp(1) - __mu);
99
#endif
100
 
101
      if (std::abs(__mu) < std::numeric_limits<_Tp>::epsilon())
102
        __gam1 = -_Tp(__numeric_constants<_Tp>::__gamma_e());
103
      else
104
        __gam1 = (__gammi - __gampl) / (_Tp(2) * __mu);
105
 
106
      __gam2 = (__gammi + __gampl) / (_Tp(2));
107
 
108
      return;
109
    }
110
 
111
 
112
    /**
113
     *   @brief  Compute the Bessel @f$ J_\nu(x) @f$ and Neumann
114
     *           @f$ N_\nu(x) @f$ functions and their first derivatives
115
     *           @f$ J'_\nu(x) @f$ and @f$ N'_\nu(x) @f$ respectively.
116
     *           These four functions are computed together for numerical
117
     *           stability.
118
     *
119
     *   @param  __nu  The order of the Bessel functions.
120
     *   @param  __x   The argument of the Bessel functions.
121
     *   @param  __Jnu  The output Bessel function of the first kind.
122
     *   @param  __Nnu  The output Neumann function (Bessel function of the second kind).
123
     *   @param  __Jpnu  The output derivative of the Bessel function of the first kind.
124
     *   @param  __Npnu  The output derivative of the Neumann function.
125
     */
126
    template 
127
    void
128
    __bessel_jn(const _Tp __nu, const _Tp __x,
129
                _Tp & __Jnu, _Tp & __Nnu, _Tp & __Jpnu, _Tp & __Npnu)
130
    {
131
      if (__x == _Tp(0))
132
        {
133
          if (__nu == _Tp(0))
134
            {
135
              __Jnu = _Tp(1);
136
              __Jpnu = _Tp(0);
137
            }
138
          else if (__nu == _Tp(1))
139
            {
140
              __Jnu = _Tp(0);
141
              __Jpnu = _Tp(0.5L);
142
            }
143
          else
144
            {
145
              __Jnu = _Tp(0);
146
              __Jpnu = _Tp(0);
147
            }
148
          __Nnu = -std::numeric_limits<_Tp>::infinity();
149
          __Npnu = std::numeric_limits<_Tp>::infinity();
150
          return;
151
        }
152
 
153
      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
154
      //  When the multiplier is N i.e.
155
      //  fp_min = N * min()
156
      //  Then J_0 and N_0 tank at x = 8 * N (J_0 = 0 and N_0 = nan)!
157
      //const _Tp __fp_min = _Tp(20) * std::numeric_limits<_Tp>::min();
158
      const _Tp __fp_min = std::sqrt(std::numeric_limits<_Tp>::min());
159
      const int __max_iter = 15000;
160
      const _Tp __x_min = _Tp(2);
161
 
162
      const int __nl = (__x < __x_min
163
                    ? static_cast(__nu + _Tp(0.5L))
164
                    : std::max(0, static_cast(__nu - __x + _Tp(1.5L))));
165
 
166
      const _Tp __mu = __nu - __nl;
167
      const _Tp __mu2 = __mu * __mu;
168
      const _Tp __xi = _Tp(1) / __x;
169
      const _Tp __xi2 = _Tp(2) * __xi;
170
      _Tp __w = __xi2 / __numeric_constants<_Tp>::__pi();
171
      int __isign = 1;
172
      _Tp __h = __nu * __xi;
173
      if (__h < __fp_min)
174
        __h = __fp_min;
175
      _Tp __b = __xi2 * __nu;
176
      _Tp __d = _Tp(0);
177
      _Tp __c = __h;
178
      int __i;
179
      for (__i = 1; __i <= __max_iter; ++__i)
180
        {
181
          __b += __xi2;
182
          __d = __b - __d;
183
          if (std::abs(__d) < __fp_min)
184
            __d = __fp_min;
185
          __c = __b - _Tp(1) / __c;
186
          if (std::abs(__c) < __fp_min)
187
            __c = __fp_min;
188
          __d = _Tp(1) / __d;
189
          const _Tp __del = __c * __d;
190
          __h *= __del;
191
          if (__d < _Tp(0))
192
            __isign = -__isign;
193
          if (std::abs(__del - _Tp(1)) < __eps)
194
            break;
195
        }
196
      if (__i > __max_iter)
197
        std::__throw_runtime_error(__N("Argument x too large in __bessel_jn; "
198
                                       "try asymptotic expansion."));
199
      _Tp __Jnul = __isign * __fp_min;
200
      _Tp __Jpnul = __h * __Jnul;
201
      _Tp __Jnul1 = __Jnul;
202
      _Tp __Jpnu1 = __Jpnul;
203
      _Tp __fact = __nu * __xi;
204
      for ( int __l = __nl; __l >= 1; --__l )
205
        {
206
          const _Tp __Jnutemp = __fact * __Jnul + __Jpnul;
207
          __fact -= __xi;
208
          __Jpnul = __fact * __Jnutemp - __Jnul;
209
          __Jnul = __Jnutemp;
210
        }
211
      if (__Jnul == _Tp(0))
212
        __Jnul = __eps;
213
      _Tp __f= __Jpnul / __Jnul;
214
      _Tp __Nmu, __Nnu1, __Npmu, __Jmu;
215
      if (__x < __x_min)
216
        {
217
          const _Tp __x2 = __x / _Tp(2);
218
          const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
219
          _Tp __fact = (std::abs(__pimu) < __eps
220
                      ? _Tp(1) : __pimu / std::sin(__pimu));
221
          _Tp __d = -std::log(__x2);
222
          _Tp __e = __mu * __d;
223
          _Tp __fact2 = (std::abs(__e) < __eps
224
                       ? _Tp(1) : std::sinh(__e) / __e);
225
          _Tp __gam1, __gam2, __gampl, __gammi;
226
          __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
227
          _Tp __ff = (_Tp(2) / __numeric_constants<_Tp>::__pi())
228
                   * __fact * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
229
          __e = std::exp(__e);
230
          _Tp __p = __e / (__numeric_constants<_Tp>::__pi() * __gampl);
231
          _Tp __q = _Tp(1) / (__e * __numeric_constants<_Tp>::__pi() * __gammi);
232
          const _Tp __pimu2 = __pimu / _Tp(2);
233
          _Tp __fact3 = (std::abs(__pimu2) < __eps
234
                       ? _Tp(1) : std::sin(__pimu2) / __pimu2 );
235
          _Tp __r = __numeric_constants<_Tp>::__pi() * __pimu2 * __fact3 * __fact3;
236
          _Tp __c = _Tp(1);
237
          __d = -__x2 * __x2;
238
          _Tp __sum = __ff + __r * __q;
239
          _Tp __sum1 = __p;
240
          for (__i = 1; __i <= __max_iter; ++__i)
241
            {
242
              __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
243
              __c *= __d / _Tp(__i);
244
              __p /= _Tp(__i) - __mu;
245
              __q /= _Tp(__i) + __mu;
246
              const _Tp __del = __c * (__ff + __r * __q);
247
              __sum += __del;
248
              const _Tp __del1 = __c * __p - __i * __del;
249
              __sum1 += __del1;
250
              if ( std::abs(__del) < __eps * (_Tp(1) + std::abs(__sum)) )
251
                break;
252
            }
253
          if ( __i > __max_iter )
254
            std::__throw_runtime_error(__N("Bessel y series failed to converge "
255
                                           "in __bessel_jn."));
256
          __Nmu = -__sum;
257
          __Nnu1 = -__sum1 * __xi2;
258
          __Npmu = __mu * __xi * __Nmu - __Nnu1;
259
          __Jmu = __w / (__Npmu - __f * __Nmu);
260
        }
261
      else
262
        {
263
          _Tp __a = _Tp(0.25L) - __mu2;
264
          _Tp __q = _Tp(1);
265
          _Tp __p = -__xi / _Tp(2);
266
          _Tp __br = _Tp(2) * __x;
267
          _Tp __bi = _Tp(2);
268
          _Tp __fact = __a * __xi / (__p * __p + __q * __q);
269
          _Tp __cr = __br + __q * __fact;
270
          _Tp __ci = __bi + __p * __fact;
271
          _Tp __den = __br * __br + __bi * __bi;
272
          _Tp __dr = __br / __den;
273
          _Tp __di = -__bi / __den;
274
          _Tp __dlr = __cr * __dr - __ci * __di;
275
          _Tp __dli = __cr * __di + __ci * __dr;
276
          _Tp __temp = __p * __dlr - __q * __dli;
277
          __q = __p * __dli + __q * __dlr;
278
          __p = __temp;
279
          int __i;
280
          for (__i = 2; __i <= __max_iter; ++__i)
281
            {
282
              __a += _Tp(2 * (__i - 1));
283
              __bi += _Tp(2);
284
              __dr = __a * __dr + __br;
285
              __di = __a * __di + __bi;
286
              if (std::abs(__dr) + std::abs(__di) < __fp_min)
287
                __dr = __fp_min;
288
              __fact = __a / (__cr * __cr + __ci * __ci);
289
              __cr = __br + __cr * __fact;
290
              __ci = __bi - __ci * __fact;
291
              if (std::abs(__cr) + std::abs(__ci) < __fp_min)
292
                __cr = __fp_min;
293
              __den = __dr * __dr + __di * __di;
294
              __dr /= __den;
295
              __di /= -__den;
296
              __dlr = __cr * __dr - __ci * __di;
297
              __dli = __cr * __di + __ci * __dr;
298
              __temp = __p * __dlr - __q * __dli;
299
              __q = __p * __dli + __q * __dlr;
300
              __p = __temp;
301
              if (std::abs(__dlr - _Tp(1)) + std::abs(__dli) < __eps)
302
                break;
303
          }
304
          if (__i > __max_iter)
305
            std::__throw_runtime_error(__N("Lentz's method failed "
306
                                           "in __bessel_jn."));
307
          const _Tp __gam = (__p - __f) / __q;
308
          __Jmu = std::sqrt(__w / ((__p - __f) * __gam + __q));
309
#if _GLIBCXX_USE_C99_MATH_TR1
310
          __Jmu = std::tr1::copysign(__Jmu, __Jnul);
311
#else
312
          if (__Jmu * __Jnul < _Tp(0))
313
            __Jmu = -__Jmu;
314
#endif
315
          __Nmu = __gam * __Jmu;
316
          __Npmu = (__p + __q / __gam) * __Nmu;
317
          __Nnu1 = __mu * __xi * __Nmu - __Npmu;
318
      }
319
      __fact = __Jmu / __Jnul;
320
      __Jnu = __fact * __Jnul1;
321
      __Jpnu = __fact * __Jpnu1;
322
      for (__i = 1; __i <= __nl; ++__i)
323
        {
324
          const _Tp __Nnutemp = (__mu + __i) * __xi2 * __Nnu1 - __Nmu;
325
          __Nmu = __Nnu1;
326
          __Nnu1 = __Nnutemp;
327
        }
328
      __Nnu = __Nmu;
329
      __Npnu = __nu * __xi * __Nmu - __Nnu1;
330
 
331
      return;
332
    }
333
 
334
 
335
    /**
336
     *   @brief This routine computes the asymptotic cylindrical Bessel
337
     *          and Neumann functions of order nu: \f$ J_{\nu} \f$,
338
     *          \f$ N_{\nu} \f$.
339
     *
340
     *   References:
341
     *    (1) Handbook of Mathematical Functions,
342
     *        ed. Milton Abramowitz and Irene A. Stegun,
343
     *        Dover Publications,
344
     *        Section 9 p. 364, Equations 9.2.5-9.2.10
345
     *
346
     *   @param  __nu  The order of the Bessel functions.
347
     *   @param  __x   The argument of the Bessel functions.
348
     *   @param  __Jnu  The output Bessel function of the first kind.
349
     *   @param  __Nnu  The output Neumann function (Bessel function of the second kind).
350
     */
351
    template 
352
    void
353
    __cyl_bessel_jn_asymp(const _Tp __nu, const _Tp __x,
354
                          _Tp & __Jnu, _Tp & __Nnu)
355
    {
356
      const _Tp __coef = std::sqrt(_Tp(2)
357
                             / (__numeric_constants<_Tp>::__pi() * __x));
358
      const _Tp __mu   = _Tp(4) * __nu * __nu;
359
      const _Tp __mum1 = __mu - _Tp(1);
360
      const _Tp __mum9 = __mu - _Tp(9);
361
      const _Tp __mum25 = __mu - _Tp(25);
362
      const _Tp __mum49 = __mu - _Tp(49);
363
      const _Tp __xx = _Tp(64) * __x * __x;
364
      const _Tp __P = _Tp(1) - __mum1 * __mum9 / (_Tp(2) * __xx)
365
                    * (_Tp(1) - __mum25 * __mum49 / (_Tp(12) * __xx));
366
      const _Tp __Q = __mum1 / (_Tp(8) * __x)
367
                    * (_Tp(1) - __mum9 * __mum25 / (_Tp(6) * __xx));
368
 
369
      const _Tp __chi = __x - (__nu + _Tp(0.5L))
370
                            * __numeric_constants<_Tp>::__pi_2();
371
      const _Tp __c = std::cos(__chi);
372
      const _Tp __s = std::sin(__chi);
373
 
374
      __Jnu = __coef * (__c * __P - __s * __Q);
375
      __Nnu = __coef * (__s * __P + __c * __Q);
376
 
377
      return;
378
    }
379
 
380
 
381
    /**
382
     *   @brief This routine returns the cylindrical Bessel functions
383
     *          of order \f$ \nu \f$: \f$ J_{\nu} \f$ or \f$ I_{\nu} \f$
384
     *          by series expansion.
385
     *
386
     *   The modified cylindrical Bessel function is:
387
     *   @f[
388
     *    Z_{\nu}(x) = \sum_{k=0}^{\infty}
389
     *              \frac{\sigma^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
390
     *   @f]
391
     *   where \f$ \sigma = +1 \f$ or\f$  -1 \f$ for
392
     *   \f$ Z = I \f$ or \f$ J \f$ respectively.
393
     *
394
     *   See Abramowitz & Stegun, 9.1.10
395
     *       Abramowitz & Stegun, 9.6.7
396
     *    (1) Handbook of Mathematical Functions,
397
     *        ed. Milton Abramowitz and Irene A. Stegun,
398
     *        Dover Publications,
399
     *        Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375
400
     *
401
     *   @param  __nu  The order of the Bessel function.
402
     *   @param  __x   The argument of the Bessel function.
403
     *   @param  __sgn  The sign of the alternate terms
404
     *                  -1 for the Bessel function of the first kind.
405
     *                  +1 for the modified Bessel function of the first kind.
406
     *   @return  The output Bessel function.
407
     */
408
    template 
409
    _Tp
410
    __cyl_bessel_ij_series(const _Tp __nu, const _Tp __x, const _Tp __sgn,
411
                           const unsigned int __max_iter)
412
    {
413
 
414
      const _Tp __x2 = __x / _Tp(2);
415
      _Tp __fact = __nu * std::log(__x2);
416
#if _GLIBCXX_USE_C99_MATH_TR1
417
      __fact -= std::tr1::lgamma(__nu + _Tp(1));
418
#else
419
      __fact -= __log_gamma(__nu + _Tp(1));
420
#endif
421
      __fact = std::exp(__fact);
422
      const _Tp __xx4 = __sgn * __x2 * __x2;
423
      _Tp __Jn = _Tp(1);
424
      _Tp __term = _Tp(1);
425
 
426
      for (unsigned int __i = 1; __i < __max_iter; ++__i)
427
        {
428
          __term *= __xx4 / (_Tp(__i) * (__nu + _Tp(__i)));
429
          __Jn += __term;
430
          if (std::abs(__term / __Jn) < std::numeric_limits<_Tp>::epsilon())
431
            break;
432
        }
433
 
434
      return __fact * __Jn;
435
    }
436
 
437
 
438
    /**
439
     *   @brief  Return the Bessel function of order \f$ \nu \f$:
440
     *           \f$ J_{\nu}(x) \f$.
441
     *
442
     *   The cylindrical Bessel function is:
443
     *   @f[
444
     *    J_{\nu}(x) = \sum_{k=0}^{\infty}
445
     *              \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
446
     *   @f]
447
     *
448
     *   @param  __nu  The order of the Bessel function.
449
     *   @param  __x   The argument of the Bessel function.
450
     *   @return  The output Bessel function.
451
     */
452
    template
453
    _Tp
454
    __cyl_bessel_j(const _Tp __nu, const _Tp __x)
455
    {
456
      if (__nu < _Tp(0) || __x < _Tp(0))
457
        std::__throw_domain_error(__N("Bad argument "
458
                                      "in __cyl_bessel_j."));
459
      else if (__isnan(__nu) || __isnan(__x))
460
        return std::numeric_limits<_Tp>::quiet_NaN();
461
      else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
462
        return __cyl_bessel_ij_series(__nu, __x, -_Tp(1), 200);
463
      else if (__x > _Tp(1000))
464
        {
465
          _Tp __J_nu, __N_nu;
466
          __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
467
          return __J_nu;
468
        }
469
      else
470
        {
471
          _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
472
          __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
473
          return __J_nu;
474
        }
475
    }
476
 
477
 
478
    /**
479
     *   @brief  Return the Neumann function of order \f$ \nu \f$:
480
     *           \f$ N_{\nu}(x) \f$.
481
     *
482
     *   The Neumann function is defined by:
483
     *   @f[
484
     *      N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)}
485
     *                        {\sin \nu\pi}
486
     *   @f]
487
     *   where for integral \f$ \nu = n \f$ a limit is taken:
488
     *   \f$ lim_{\nu \to n} \f$.
489
     *
490
     *   @param  __nu  The order of the Neumann function.
491
     *   @param  __x   The argument of the Neumann function.
492
     *   @return  The output Neumann function.
493
     */
494
    template
495
    _Tp
496
    __cyl_neumann_n(const _Tp __nu, const _Tp __x)
497
    {
498
      if (__nu < _Tp(0) || __x < _Tp(0))
499
        std::__throw_domain_error(__N("Bad argument "
500
                                      "in __cyl_neumann_n."));
501
      else if (__isnan(__nu) || __isnan(__x))
502
        return std::numeric_limits<_Tp>::quiet_NaN();
503
      else if (__x > _Tp(1000))
504
        {
505
          _Tp __J_nu, __N_nu;
506
          __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
507
          return __N_nu;
508
        }
509
      else
510
        {
511
          _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
512
          __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
513
          return __N_nu;
514
        }
515
    }
516
 
517
 
518
    /**
519
     *   @brief  Compute the spherical Bessel @f$ j_n(x) @f$
520
     *           and Neumann @f$ n_n(x) @f$ functions and their first
521
     *           derivatives @f$ j'_n(x) @f$ and @f$ n'_n(x) @f$
522
     *           respectively.
523
     *
524
     *   @param  __n  The order of the spherical Bessel function.
525
     *   @param  __x  The argument of the spherical Bessel function.
526
     *   @param  __j_n  The output spherical Bessel function.
527
     *   @param  __n_n  The output spherical Neumann function.
528
     *   @param  __jp_n The output derivative of the spherical Bessel function.
529
     *   @param  __np_n The output derivative of the spherical Neumann function.
530
     */
531
    template 
532
    void
533
    __sph_bessel_jn(const unsigned int __n, const _Tp __x,
534
                    _Tp & __j_n, _Tp & __n_n, _Tp & __jp_n, _Tp & __np_n)
535
    {
536
      const _Tp __nu = _Tp(__n) + _Tp(0.5L);
537
 
538
      _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
539
      __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
540
 
541
      const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
542
                         / std::sqrt(__x);
543
 
544
      __j_n = __factor * __J_nu;
545
      __n_n = __factor * __N_nu;
546
      __jp_n = __factor * __Jp_nu - __j_n / (_Tp(2) * __x);
547
      __np_n = __factor * __Np_nu - __n_n / (_Tp(2) * __x);
548
 
549
      return;
550
    }
551
 
552
 
553
    /**
554
     *   @brief  Return the spherical Bessel function
555
     *           @f$ j_n(x) @f$ of order n.
556
     *
557
     *   The spherical Bessel function is defined by:
558
     *   @f[
559
     *    j_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x)
560
     *   @f]
561
     *
562
     *   @param  __n  The order of the spherical Bessel function.
563
     *   @param  __x  The argument of the spherical Bessel function.
564
     *   @return  The output spherical Bessel function.
565
     */
566
    template 
567
    _Tp
568
    __sph_bessel(const unsigned int __n, const _Tp __x)
569
    {
570
      if (__x < _Tp(0))
571
        std::__throw_domain_error(__N("Bad argument "
572
                                      "in __sph_bessel."));
573
      else if (__isnan(__x))
574
        return std::numeric_limits<_Tp>::quiet_NaN();
575
      else if (__x == _Tp(0))
576
        {
577
          if (__n == 0)
578
            return _Tp(1);
579
          else
580
            return _Tp(0);
581
        }
582
      else
583
        {
584
          _Tp __j_n, __n_n, __jp_n, __np_n;
585
          __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
586
          return __j_n;
587
        }
588
    }
589
 
590
 
591
    /**
592
     *   @brief  Return the spherical Neumann function
593
     *           @f$ n_n(x) @f$.
594
     *
595
     *   The spherical Neumann function is defined by:
596
     *   @f[
597
     *    n_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x)
598
     *   @f]
599
     *
600
     *   @param  __n  The order of the spherical Neumann function.
601
     *   @param  __x  The argument of the spherical Neumann function.
602
     *   @return  The output spherical Neumann function.
603
     */
604
    template 
605
    _Tp
606
    __sph_neumann(const unsigned int __n, const _Tp __x)
607
    {
608
      if (__x < _Tp(0))
609
        std::__throw_domain_error(__N("Bad argument "
610
                                      "in __sph_neumann."));
611
      else if (__isnan(__x))
612
        return std::numeric_limits<_Tp>::quiet_NaN();
613
      else if (__x == _Tp(0))
614
        return -std::numeric_limits<_Tp>::infinity();
615
      else
616
        {
617
          _Tp __j_n, __n_n, __jp_n, __np_n;
618
          __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
619
          return __n_n;
620
        }
621
    }
622
 
623
  _GLIBCXX_END_NAMESPACE_VERSION
624
  } // namespace std::tr1::__detail
625
}
626
}
627
 
628
#endif // _GLIBCXX_TR1_BESSEL_FUNCTION_TCC

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.