OpenCores
URL https://opencores.org/ocsvn/altor32/altor32/trunk

Subversion Repositories altor32

[/] [altor32/] [trunk/] [gcc-x64/] [or1knd-elf/] [or1knd-elf/] [include/] [c++/] [4.8.0/] [tr1/] [beta_function.tcc] - Blame information for rev 35

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 35 ultra_embe
// Special functions -*- C++ -*-
2
 
3
// Copyright (C) 2006, 2007, 2008, 2009, 2010
4
// Free Software Foundation, Inc.
5
//
6
// This file is part of the GNU ISO C++ Library.  This library is free
7
// software; you can redistribute it and/or modify it under the
8
// terms of the GNU General Public License as published by the
9
// Free Software Foundation; either version 3, or (at your option)
10
// any later version.
11
//
12
// This library is distributed in the hope that it will be useful,
13
// but WITHOUT ANY WARRANTY; without even the implied warranty of
14
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
// GNU General Public License for more details.
16
//
17
// Under Section 7 of GPL version 3, you are granted additional
18
// permissions described in the GCC Runtime Library Exception, version
19
// 3.1, as published by the Free Software Foundation.
20
 
21
// You should have received a copy of the GNU General Public License and
22
// a copy of the GCC Runtime Library Exception along with this program;
23
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24
// .
25
 
26
/** @file tr1/beta_function.tcc
27
 *  This is an internal header file, included by other library headers.
28
 *  Do not attempt to use it directly. @headername{tr1/cmath}
29
 */
30
 
31
//
32
// ISO C++ 14882 TR1: 5.2  Special functions
33
//
34
 
35
// Written by Edward Smith-Rowland based on:
36
//   (1) Handbook of Mathematical Functions,
37
//       ed. Milton Abramowitz and Irene A. Stegun,
38
//       Dover Publications,
39
//       Section 6, pp. 253-266
40
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
41
//   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
42
//       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
43
//       2nd ed, pp. 213-216
44
//   (4) Gamma, Exploring Euler's Constant, Julian Havil,
45
//       Princeton, 2003.
46
 
47
#ifndef _GLIBCXX_TR1_BETA_FUNCTION_TCC
48
#define _GLIBCXX_TR1_BETA_FUNCTION_TCC 1
49
 
50
namespace std _GLIBCXX_VISIBILITY(default)
51
{
52
namespace tr1
53
{
54
  // [5.2] Special functions
55
 
56
  // Implementation-space details.
57
  namespace __detail
58
  {
59
  _GLIBCXX_BEGIN_NAMESPACE_VERSION
60
 
61
    /**
62
     *   @brief  Return the beta function: \f$B(x,y)\f$.
63
     *
64
     *   The beta function is defined by
65
     *   @f[
66
     *     B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
67
     *   @f]
68
     *
69
     *   @param __x The first argument of the beta function.
70
     *   @param __y The second argument of the beta function.
71
     *   @return  The beta function.
72
     */
73
    template
74
    _Tp
75
    __beta_gamma(_Tp __x, _Tp __y)
76
    {
77
 
78
      _Tp __bet;
79
#if _GLIBCXX_USE_C99_MATH_TR1
80
      if (__x > __y)
81
        {
82
          __bet = std::tr1::tgamma(__x)
83
                / std::tr1::tgamma(__x + __y);
84
          __bet *= std::tr1::tgamma(__y);
85
        }
86
      else
87
        {
88
          __bet = std::tr1::tgamma(__y)
89
                / std::tr1::tgamma(__x + __y);
90
          __bet *= std::tr1::tgamma(__x);
91
        }
92
#else
93
      if (__x > __y)
94
        {
95
          __bet = __gamma(__x) / __gamma(__x + __y);
96
          __bet *= __gamma(__y);
97
        }
98
      else
99
        {
100
          __bet = __gamma(__y) / __gamma(__x + __y);
101
          __bet *= __gamma(__x);
102
        }
103
#endif
104
 
105
      return __bet;
106
    }
107
 
108
    /**
109
     *   @brief  Return the beta function \f$B(x,y)\f$ using
110
     *           the log gamma functions.
111
     *
112
     *   The beta function is defined by
113
     *   @f[
114
     *     B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
115
     *   @f]
116
     *
117
     *   @param __x The first argument of the beta function.
118
     *   @param __y The second argument of the beta function.
119
     *   @return  The beta function.
120
     */
121
    template
122
    _Tp
123
    __beta_lgamma(_Tp __x, _Tp __y)
124
    {
125
#if _GLIBCXX_USE_C99_MATH_TR1
126
      _Tp __bet = std::tr1::lgamma(__x)
127
                + std::tr1::lgamma(__y)
128
                - std::tr1::lgamma(__x + __y);
129
#else
130
      _Tp __bet = __log_gamma(__x)
131
                + __log_gamma(__y)
132
                - __log_gamma(__x + __y);
133
#endif
134
      __bet = std::exp(__bet);
135
      return __bet;
136
    }
137
 
138
 
139
    /**
140
     *   @brief  Return the beta function \f$B(x,y)\f$ using
141
     *           the product form.
142
     *
143
     *   The beta function is defined by
144
     *   @f[
145
     *     B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
146
     *   @f]
147
     *
148
     *   @param __x The first argument of the beta function.
149
     *   @param __y The second argument of the beta function.
150
     *   @return  The beta function.
151
     */
152
    template
153
    _Tp
154
    __beta_product(_Tp __x, _Tp __y)
155
    {
156
 
157
      _Tp __bet = (__x + __y) / (__x * __y);
158
 
159
      unsigned int __max_iter = 1000000;
160
      for (unsigned int __k = 1; __k < __max_iter; ++__k)
161
        {
162
          _Tp __term = (_Tp(1) + (__x + __y) / __k)
163
                     / ((_Tp(1) + __x / __k) * (_Tp(1) + __y / __k));
164
          __bet *= __term;
165
        }
166
 
167
      return __bet;
168
    }
169
 
170
 
171
    /**
172
     *   @brief  Return the beta function \f$ B(x,y) \f$.
173
     *
174
     *   The beta function is defined by
175
     *   @f[
176
     *     B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
177
     *   @f]
178
     *
179
     *   @param __x The first argument of the beta function.
180
     *   @param __y The second argument of the beta function.
181
     *   @return  The beta function.
182
     */
183
    template
184
    inline _Tp
185
    __beta(_Tp __x, _Tp __y)
186
    {
187
      if (__isnan(__x) || __isnan(__y))
188
        return std::numeric_limits<_Tp>::quiet_NaN();
189
      else
190
        return __beta_lgamma(__x, __y);
191
    }
192
 
193
  _GLIBCXX_END_NAMESPACE_VERSION
194
  } // namespace std::tr1::__detail
195
}
196
}
197
 
198
#endif // __GLIBCXX_TR1_BETA_FUNCTION_TCC

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.