1 |
35 |
ultra_embe |
// Special functions -*- C++ -*-
|
2 |
|
|
|
3 |
|
|
// Copyright (C) 2006, 2007, 2008, 2009, 2010
|
4 |
|
|
// Free Software Foundation, Inc.
|
5 |
|
|
//
|
6 |
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
7 |
|
|
// software; you can redistribute it and/or modify it under the
|
8 |
|
|
// terms of the GNU General Public License as published by the
|
9 |
|
|
// Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
// any later version.
|
11 |
|
|
//
|
12 |
|
|
// This library is distributed in the hope that it will be useful,
|
13 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
// GNU General Public License for more details.
|
16 |
|
|
//
|
17 |
|
|
// Under Section 7 of GPL version 3, you are granted additional
|
18 |
|
|
// permissions described in the GCC Runtime Library Exception, version
|
19 |
|
|
// 3.1, as published by the Free Software Foundation.
|
20 |
|
|
|
21 |
|
|
// You should have received a copy of the GNU General Public License and
|
22 |
|
|
// a copy of the GCC Runtime Library Exception along with this program;
|
23 |
|
|
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
24 |
|
|
// .
|
25 |
|
|
|
26 |
|
|
/** @file tr1/ell_integral.tcc
|
27 |
|
|
* This is an internal header file, included by other library headers.
|
28 |
|
|
* Do not attempt to use it directly. @headername{tr1/cmath}
|
29 |
|
|
*/
|
30 |
|
|
|
31 |
|
|
//
|
32 |
|
|
// ISO C++ 14882 TR1: 5.2 Special functions
|
33 |
|
|
//
|
34 |
|
|
|
35 |
|
|
// Written by Edward Smith-Rowland based on:
|
36 |
|
|
// (1) B. C. Carlson Numer. Math. 33, 1 (1979)
|
37 |
|
|
// (2) B. C. Carlson, Special Functions of Applied Mathematics (1977)
|
38 |
|
|
// (3) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
39 |
|
|
// (4) Numerical Recipes in C, 2nd ed, by W. H. Press, S. A. Teukolsky,
|
40 |
|
|
// W. T. Vetterling, B. P. Flannery, Cambridge University Press
|
41 |
|
|
// (1992), pp. 261-269
|
42 |
|
|
|
43 |
|
|
#ifndef _GLIBCXX_TR1_ELL_INTEGRAL_TCC
|
44 |
|
|
#define _GLIBCXX_TR1_ELL_INTEGRAL_TCC 1
|
45 |
|
|
|
46 |
|
|
namespace std _GLIBCXX_VISIBILITY(default)
|
47 |
|
|
{
|
48 |
|
|
namespace tr1
|
49 |
|
|
{
|
50 |
|
|
// [5.2] Special functions
|
51 |
|
|
|
52 |
|
|
// Implementation-space details.
|
53 |
|
|
namespace __detail
|
54 |
|
|
{
|
55 |
|
|
_GLIBCXX_BEGIN_NAMESPACE_VERSION
|
56 |
|
|
|
57 |
|
|
/**
|
58 |
|
|
* @brief Return the Carlson elliptic function @f$ R_F(x,y,z) @f$
|
59 |
|
|
* of the first kind.
|
60 |
|
|
*
|
61 |
|
|
* The Carlson elliptic function of the first kind is defined by:
|
62 |
|
|
* @f[
|
63 |
|
|
* R_F(x,y,z) = \frac{1}{2} \int_0^\infty
|
64 |
|
|
* \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}}
|
65 |
|
|
* @f]
|
66 |
|
|
*
|
67 |
|
|
* @param __x The first of three symmetric arguments.
|
68 |
|
|
* @param __y The second of three symmetric arguments.
|
69 |
|
|
* @param __z The third of three symmetric arguments.
|
70 |
|
|
* @return The Carlson elliptic function of the first kind.
|
71 |
|
|
*/
|
72 |
|
|
template
|
73 |
|
|
_Tp
|
74 |
|
|
__ellint_rf(const _Tp __x, const _Tp __y, const _Tp __z)
|
75 |
|
|
{
|
76 |
|
|
const _Tp __min = std::numeric_limits<_Tp>::min();
|
77 |
|
|
const _Tp __max = std::numeric_limits<_Tp>::max();
|
78 |
|
|
const _Tp __lolim = _Tp(5) * __min;
|
79 |
|
|
const _Tp __uplim = __max / _Tp(5);
|
80 |
|
|
|
81 |
|
|
if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
|
82 |
|
|
std::__throw_domain_error(__N("Argument less than zero "
|
83 |
|
|
"in __ellint_rf."));
|
84 |
|
|
else if (__x + __y < __lolim || __x + __z < __lolim
|
85 |
|
|
|| __y + __z < __lolim)
|
86 |
|
|
std::__throw_domain_error(__N("Argument too small in __ellint_rf"));
|
87 |
|
|
else
|
88 |
|
|
{
|
89 |
|
|
const _Tp __c0 = _Tp(1) / _Tp(4);
|
90 |
|
|
const _Tp __c1 = _Tp(1) / _Tp(24);
|
91 |
|
|
const _Tp __c2 = _Tp(1) / _Tp(10);
|
92 |
|
|
const _Tp __c3 = _Tp(3) / _Tp(44);
|
93 |
|
|
const _Tp __c4 = _Tp(1) / _Tp(14);
|
94 |
|
|
|
95 |
|
|
_Tp __xn = __x;
|
96 |
|
|
_Tp __yn = __y;
|
97 |
|
|
_Tp __zn = __z;
|
98 |
|
|
|
99 |
|
|
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
100 |
|
|
const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6));
|
101 |
|
|
_Tp __mu;
|
102 |
|
|
_Tp __xndev, __yndev, __zndev;
|
103 |
|
|
|
104 |
|
|
const unsigned int __max_iter = 100;
|
105 |
|
|
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
|
106 |
|
|
{
|
107 |
|
|
__mu = (__xn + __yn + __zn) / _Tp(3);
|
108 |
|
|
__xndev = 2 - (__mu + __xn) / __mu;
|
109 |
|
|
__yndev = 2 - (__mu + __yn) / __mu;
|
110 |
|
|
__zndev = 2 - (__mu + __zn) / __mu;
|
111 |
|
|
_Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
|
112 |
|
|
__epsilon = std::max(__epsilon, std::abs(__zndev));
|
113 |
|
|
if (__epsilon < __errtol)
|
114 |
|
|
break;
|
115 |
|
|
const _Tp __xnroot = std::sqrt(__xn);
|
116 |
|
|
const _Tp __ynroot = std::sqrt(__yn);
|
117 |
|
|
const _Tp __znroot = std::sqrt(__zn);
|
118 |
|
|
const _Tp __lambda = __xnroot * (__ynroot + __znroot)
|
119 |
|
|
+ __ynroot * __znroot;
|
120 |
|
|
__xn = __c0 * (__xn + __lambda);
|
121 |
|
|
__yn = __c0 * (__yn + __lambda);
|
122 |
|
|
__zn = __c0 * (__zn + __lambda);
|
123 |
|
|
}
|
124 |
|
|
|
125 |
|
|
const _Tp __e2 = __xndev * __yndev - __zndev * __zndev;
|
126 |
|
|
const _Tp __e3 = __xndev * __yndev * __zndev;
|
127 |
|
|
const _Tp __s = _Tp(1) + (__c1 * __e2 - __c2 - __c3 * __e3) * __e2
|
128 |
|
|
+ __c4 * __e3;
|
129 |
|
|
|
130 |
|
|
return __s / std::sqrt(__mu);
|
131 |
|
|
}
|
132 |
|
|
}
|
133 |
|
|
|
134 |
|
|
|
135 |
|
|
/**
|
136 |
|
|
* @brief Return the complete elliptic integral of the first kind
|
137 |
|
|
* @f$ K(k) @f$ by series expansion.
|
138 |
|
|
*
|
139 |
|
|
* The complete elliptic integral of the first kind is defined as
|
140 |
|
|
* @f[
|
141 |
|
|
* K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
|
142 |
|
|
* {\sqrt{1 - k^2sin^2\theta}}
|
143 |
|
|
* @f]
|
144 |
|
|
*
|
145 |
|
|
* This routine is not bad as long as |k| is somewhat smaller than 1
|
146 |
|
|
* but is not is good as the Carlson elliptic integral formulation.
|
147 |
|
|
*
|
148 |
|
|
* @param __k The argument of the complete elliptic function.
|
149 |
|
|
* @return The complete elliptic function of the first kind.
|
150 |
|
|
*/
|
151 |
|
|
template
|
152 |
|
|
_Tp
|
153 |
|
|
__comp_ellint_1_series(const _Tp __k)
|
154 |
|
|
{
|
155 |
|
|
|
156 |
|
|
const _Tp __kk = __k * __k;
|
157 |
|
|
|
158 |
|
|
_Tp __term = __kk / _Tp(4);
|
159 |
|
|
_Tp __sum = _Tp(1) + __term;
|
160 |
|
|
|
161 |
|
|
const unsigned int __max_iter = 1000;
|
162 |
|
|
for (unsigned int __i = 2; __i < __max_iter; ++__i)
|
163 |
|
|
{
|
164 |
|
|
__term *= (2 * __i - 1) * __kk / (2 * __i);
|
165 |
|
|
if (__term < std::numeric_limits<_Tp>::epsilon())
|
166 |
|
|
break;
|
167 |
|
|
__sum += __term;
|
168 |
|
|
}
|
169 |
|
|
|
170 |
|
|
return __numeric_constants<_Tp>::__pi_2() * __sum;
|
171 |
|
|
}
|
172 |
|
|
|
173 |
|
|
|
174 |
|
|
/**
|
175 |
|
|
* @brief Return the complete elliptic integral of the first kind
|
176 |
|
|
* @f$ K(k) @f$ using the Carlson formulation.
|
177 |
|
|
*
|
178 |
|
|
* The complete elliptic integral of the first kind is defined as
|
179 |
|
|
* @f[
|
180 |
|
|
* K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
|
181 |
|
|
* {\sqrt{1 - k^2 sin^2\theta}}
|
182 |
|
|
* @f]
|
183 |
|
|
* where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the
|
184 |
|
|
* first kind.
|
185 |
|
|
*
|
186 |
|
|
* @param __k The argument of the complete elliptic function.
|
187 |
|
|
* @return The complete elliptic function of the first kind.
|
188 |
|
|
*/
|
189 |
|
|
template
|
190 |
|
|
_Tp
|
191 |
|
|
__comp_ellint_1(const _Tp __k)
|
192 |
|
|
{
|
193 |
|
|
|
194 |
|
|
if (__isnan(__k))
|
195 |
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
196 |
|
|
else if (std::abs(__k) >= _Tp(1))
|
197 |
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
198 |
|
|
else
|
199 |
|
|
return __ellint_rf(_Tp(0), _Tp(1) - __k * __k, _Tp(1));
|
200 |
|
|
}
|
201 |
|
|
|
202 |
|
|
|
203 |
|
|
/**
|
204 |
|
|
* @brief Return the incomplete elliptic integral of the first kind
|
205 |
|
|
* @f$ F(k,\phi) @f$ using the Carlson formulation.
|
206 |
|
|
*
|
207 |
|
|
* The incomplete elliptic integral of the first kind is defined as
|
208 |
|
|
* @f[
|
209 |
|
|
* F(k,\phi) = \int_0^{\phi}\frac{d\theta}
|
210 |
|
|
* {\sqrt{1 - k^2 sin^2\theta}}
|
211 |
|
|
* @f]
|
212 |
|
|
*
|
213 |
|
|
* @param __k The argument of the elliptic function.
|
214 |
|
|
* @param __phi The integral limit argument of the elliptic function.
|
215 |
|
|
* @return The elliptic function of the first kind.
|
216 |
|
|
*/
|
217 |
|
|
template
|
218 |
|
|
_Tp
|
219 |
|
|
__ellint_1(const _Tp __k, const _Tp __phi)
|
220 |
|
|
{
|
221 |
|
|
|
222 |
|
|
if (__isnan(__k) || __isnan(__phi))
|
223 |
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
224 |
|
|
else if (std::abs(__k) > _Tp(1))
|
225 |
|
|
std::__throw_domain_error(__N("Bad argument in __ellint_1."));
|
226 |
|
|
else
|
227 |
|
|
{
|
228 |
|
|
// Reduce phi to -pi/2 < phi < +pi/2.
|
229 |
|
|
const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
|
230 |
|
|
+ _Tp(0.5L));
|
231 |
|
|
const _Tp __phi_red = __phi
|
232 |
|
|
- __n * __numeric_constants<_Tp>::__pi();
|
233 |
|
|
|
234 |
|
|
const _Tp __s = std::sin(__phi_red);
|
235 |
|
|
const _Tp __c = std::cos(__phi_red);
|
236 |
|
|
|
237 |
|
|
const _Tp __F = __s
|
238 |
|
|
* __ellint_rf(__c * __c,
|
239 |
|
|
_Tp(1) - __k * __k * __s * __s, _Tp(1));
|
240 |
|
|
|
241 |
|
|
if (__n == 0)
|
242 |
|
|
return __F;
|
243 |
|
|
else
|
244 |
|
|
return __F + _Tp(2) * __n * __comp_ellint_1(__k);
|
245 |
|
|
}
|
246 |
|
|
}
|
247 |
|
|
|
248 |
|
|
|
249 |
|
|
/**
|
250 |
|
|
* @brief Return the complete elliptic integral of the second kind
|
251 |
|
|
* @f$ E(k) @f$ by series expansion.
|
252 |
|
|
*
|
253 |
|
|
* The complete elliptic integral of the second kind is defined as
|
254 |
|
|
* @f[
|
255 |
|
|
* E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
|
256 |
|
|
* @f]
|
257 |
|
|
*
|
258 |
|
|
* This routine is not bad as long as |k| is somewhat smaller than 1
|
259 |
|
|
* but is not is good as the Carlson elliptic integral formulation.
|
260 |
|
|
*
|
261 |
|
|
* @param __k The argument of the complete elliptic function.
|
262 |
|
|
* @return The complete elliptic function of the second kind.
|
263 |
|
|
*/
|
264 |
|
|
template
|
265 |
|
|
_Tp
|
266 |
|
|
__comp_ellint_2_series(const _Tp __k)
|
267 |
|
|
{
|
268 |
|
|
|
269 |
|
|
const _Tp __kk = __k * __k;
|
270 |
|
|
|
271 |
|
|
_Tp __term = __kk;
|
272 |
|
|
_Tp __sum = __term;
|
273 |
|
|
|
274 |
|
|
const unsigned int __max_iter = 1000;
|
275 |
|
|
for (unsigned int __i = 2; __i < __max_iter; ++__i)
|
276 |
|
|
{
|
277 |
|
|
const _Tp __i2m = 2 * __i - 1;
|
278 |
|
|
const _Tp __i2 = 2 * __i;
|
279 |
|
|
__term *= __i2m * __i2m * __kk / (__i2 * __i2);
|
280 |
|
|
if (__term < std::numeric_limits<_Tp>::epsilon())
|
281 |
|
|
break;
|
282 |
|
|
__sum += __term / __i2m;
|
283 |
|
|
}
|
284 |
|
|
|
285 |
|
|
return __numeric_constants<_Tp>::__pi_2() * (_Tp(1) - __sum);
|
286 |
|
|
}
|
287 |
|
|
|
288 |
|
|
|
289 |
|
|
/**
|
290 |
|
|
* @brief Return the Carlson elliptic function of the second kind
|
291 |
|
|
* @f$ R_D(x,y,z) = R_J(x,y,z,z) @f$ where
|
292 |
|
|
* @f$ R_J(x,y,z,p) @f$ is the Carlson elliptic function
|
293 |
|
|
* of the third kind.
|
294 |
|
|
*
|
295 |
|
|
* The Carlson elliptic function of the second kind is defined by:
|
296 |
|
|
* @f[
|
297 |
|
|
* R_D(x,y,z) = \frac{3}{2} \int_0^\infty
|
298 |
|
|
* \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{3/2}}
|
299 |
|
|
* @f]
|
300 |
|
|
*
|
301 |
|
|
* Based on Carlson's algorithms:
|
302 |
|
|
* - B. C. Carlson Numer. Math. 33, 1 (1979)
|
303 |
|
|
* - B. C. Carlson, Special Functions of Applied Mathematics (1977)
|
304 |
|
|
* - Numerical Recipes in C, 2nd ed, pp. 261-269,
|
305 |
|
|
* by Press, Teukolsky, Vetterling, Flannery (1992)
|
306 |
|
|
*
|
307 |
|
|
* @param __x The first of two symmetric arguments.
|
308 |
|
|
* @param __y The second of two symmetric arguments.
|
309 |
|
|
* @param __z The third argument.
|
310 |
|
|
* @return The Carlson elliptic function of the second kind.
|
311 |
|
|
*/
|
312 |
|
|
template
|
313 |
|
|
_Tp
|
314 |
|
|
__ellint_rd(const _Tp __x, const _Tp __y, const _Tp __z)
|
315 |
|
|
{
|
316 |
|
|
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
317 |
|
|
const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
|
318 |
|
|
const _Tp __min = std::numeric_limits<_Tp>::min();
|
319 |
|
|
const _Tp __max = std::numeric_limits<_Tp>::max();
|
320 |
|
|
const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3));
|
321 |
|
|
const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3));
|
322 |
|
|
|
323 |
|
|
if (__x < _Tp(0) || __y < _Tp(0))
|
324 |
|
|
std::__throw_domain_error(__N("Argument less than zero "
|
325 |
|
|
"in __ellint_rd."));
|
326 |
|
|
else if (__x + __y < __lolim || __z < __lolim)
|
327 |
|
|
std::__throw_domain_error(__N("Argument too small "
|
328 |
|
|
"in __ellint_rd."));
|
329 |
|
|
else
|
330 |
|
|
{
|
331 |
|
|
const _Tp __c0 = _Tp(1) / _Tp(4);
|
332 |
|
|
const _Tp __c1 = _Tp(3) / _Tp(14);
|
333 |
|
|
const _Tp __c2 = _Tp(1) / _Tp(6);
|
334 |
|
|
const _Tp __c3 = _Tp(9) / _Tp(22);
|
335 |
|
|
const _Tp __c4 = _Tp(3) / _Tp(26);
|
336 |
|
|
|
337 |
|
|
_Tp __xn = __x;
|
338 |
|
|
_Tp __yn = __y;
|
339 |
|
|
_Tp __zn = __z;
|
340 |
|
|
_Tp __sigma = _Tp(0);
|
341 |
|
|
_Tp __power4 = _Tp(1);
|
342 |
|
|
|
343 |
|
|
_Tp __mu;
|
344 |
|
|
_Tp __xndev, __yndev, __zndev;
|
345 |
|
|
|
346 |
|
|
const unsigned int __max_iter = 100;
|
347 |
|
|
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
|
348 |
|
|
{
|
349 |
|
|
__mu = (__xn + __yn + _Tp(3) * __zn) / _Tp(5);
|
350 |
|
|
__xndev = (__mu - __xn) / __mu;
|
351 |
|
|
__yndev = (__mu - __yn) / __mu;
|
352 |
|
|
__zndev = (__mu - __zn) / __mu;
|
353 |
|
|
_Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
|
354 |
|
|
__epsilon = std::max(__epsilon, std::abs(__zndev));
|
355 |
|
|
if (__epsilon < __errtol)
|
356 |
|
|
break;
|
357 |
|
|
_Tp __xnroot = std::sqrt(__xn);
|
358 |
|
|
_Tp __ynroot = std::sqrt(__yn);
|
359 |
|
|
_Tp __znroot = std::sqrt(__zn);
|
360 |
|
|
_Tp __lambda = __xnroot * (__ynroot + __znroot)
|
361 |
|
|
+ __ynroot * __znroot;
|
362 |
|
|
__sigma += __power4 / (__znroot * (__zn + __lambda));
|
363 |
|
|
__power4 *= __c0;
|
364 |
|
|
__xn = __c0 * (__xn + __lambda);
|
365 |
|
|
__yn = __c0 * (__yn + __lambda);
|
366 |
|
|
__zn = __c0 * (__zn + __lambda);
|
367 |
|
|
}
|
368 |
|
|
|
369 |
|
|
// Note: __ea is an SPU badname.
|
370 |
|
|
_Tp __eaa = __xndev * __yndev;
|
371 |
|
|
_Tp __eb = __zndev * __zndev;
|
372 |
|
|
_Tp __ec = __eaa - __eb;
|
373 |
|
|
_Tp __ed = __eaa - _Tp(6) * __eb;
|
374 |
|
|
_Tp __ef = __ed + __ec + __ec;
|
375 |
|
|
_Tp __s1 = __ed * (-__c1 + __c3 * __ed
|
376 |
|
|
/ _Tp(3) - _Tp(3) * __c4 * __zndev * __ef
|
377 |
|
|
/ _Tp(2));
|
378 |
|
|
_Tp __s2 = __zndev
|
379 |
|
|
* (__c2 * __ef
|
380 |
|
|
+ __zndev * (-__c3 * __ec - __zndev * __c4 - __eaa));
|
381 |
|
|
|
382 |
|
|
return _Tp(3) * __sigma + __power4 * (_Tp(1) + __s1 + __s2)
|
383 |
|
|
/ (__mu * std::sqrt(__mu));
|
384 |
|
|
}
|
385 |
|
|
}
|
386 |
|
|
|
387 |
|
|
|
388 |
|
|
/**
|
389 |
|
|
* @brief Return the complete elliptic integral of the second kind
|
390 |
|
|
* @f$ E(k) @f$ using the Carlson formulation.
|
391 |
|
|
*
|
392 |
|
|
* The complete elliptic integral of the second kind is defined as
|
393 |
|
|
* @f[
|
394 |
|
|
* E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
|
395 |
|
|
* @f]
|
396 |
|
|
*
|
397 |
|
|
* @param __k The argument of the complete elliptic function.
|
398 |
|
|
* @return The complete elliptic function of the second kind.
|
399 |
|
|
*/
|
400 |
|
|
template
|
401 |
|
|
_Tp
|
402 |
|
|
__comp_ellint_2(const _Tp __k)
|
403 |
|
|
{
|
404 |
|
|
|
405 |
|
|
if (__isnan(__k))
|
406 |
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
407 |
|
|
else if (std::abs(__k) == 1)
|
408 |
|
|
return _Tp(1);
|
409 |
|
|
else if (std::abs(__k) > _Tp(1))
|
410 |
|
|
std::__throw_domain_error(__N("Bad argument in __comp_ellint_2."));
|
411 |
|
|
else
|
412 |
|
|
{
|
413 |
|
|
const _Tp __kk = __k * __k;
|
414 |
|
|
|
415 |
|
|
return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
|
416 |
|
|
- __kk * __ellint_rd(_Tp(0), _Tp(1) - __kk, _Tp(1)) / _Tp(3);
|
417 |
|
|
}
|
418 |
|
|
}
|
419 |
|
|
|
420 |
|
|
|
421 |
|
|
/**
|
422 |
|
|
* @brief Return the incomplete elliptic integral of the second kind
|
423 |
|
|
* @f$ E(k,\phi) @f$ using the Carlson formulation.
|
424 |
|
|
*
|
425 |
|
|
* The incomplete elliptic integral of the second kind is defined as
|
426 |
|
|
* @f[
|
427 |
|
|
* E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta}
|
428 |
|
|
* @f]
|
429 |
|
|
*
|
430 |
|
|
* @param __k The argument of the elliptic function.
|
431 |
|
|
* @param __phi The integral limit argument of the elliptic function.
|
432 |
|
|
* @return The elliptic function of the second kind.
|
433 |
|
|
*/
|
434 |
|
|
template
|
435 |
|
|
_Tp
|
436 |
|
|
__ellint_2(const _Tp __k, const _Tp __phi)
|
437 |
|
|
{
|
438 |
|
|
|
439 |
|
|
if (__isnan(__k) || __isnan(__phi))
|
440 |
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
441 |
|
|
else if (std::abs(__k) > _Tp(1))
|
442 |
|
|
std::__throw_domain_error(__N("Bad argument in __ellint_2."));
|
443 |
|
|
else
|
444 |
|
|
{
|
445 |
|
|
// Reduce phi to -pi/2 < phi < +pi/2.
|
446 |
|
|
const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
|
447 |
|
|
+ _Tp(0.5L));
|
448 |
|
|
const _Tp __phi_red = __phi
|
449 |
|
|
- __n * __numeric_constants<_Tp>::__pi();
|
450 |
|
|
|
451 |
|
|
const _Tp __kk = __k * __k;
|
452 |
|
|
const _Tp __s = std::sin(__phi_red);
|
453 |
|
|
const _Tp __ss = __s * __s;
|
454 |
|
|
const _Tp __sss = __ss * __s;
|
455 |
|
|
const _Tp __c = std::cos(__phi_red);
|
456 |
|
|
const _Tp __cc = __c * __c;
|
457 |
|
|
|
458 |
|
|
const _Tp __E = __s
|
459 |
|
|
* __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
|
460 |
|
|
- __kk * __sss
|
461 |
|
|
* __ellint_rd(__cc, _Tp(1) - __kk * __ss, _Tp(1))
|
462 |
|
|
/ _Tp(3);
|
463 |
|
|
|
464 |
|
|
if (__n == 0)
|
465 |
|
|
return __E;
|
466 |
|
|
else
|
467 |
|
|
return __E + _Tp(2) * __n * __comp_ellint_2(__k);
|
468 |
|
|
}
|
469 |
|
|
}
|
470 |
|
|
|
471 |
|
|
|
472 |
|
|
/**
|
473 |
|
|
* @brief Return the Carlson elliptic function
|
474 |
|
|
* @f$ R_C(x,y) = R_F(x,y,y) @f$ where @f$ R_F(x,y,z) @f$
|
475 |
|
|
* is the Carlson elliptic function of the first kind.
|
476 |
|
|
*
|
477 |
|
|
* The Carlson elliptic function is defined by:
|
478 |
|
|
* @f[
|
479 |
|
|
* R_C(x,y) = \frac{1}{2} \int_0^\infty
|
480 |
|
|
* \frac{dt}{(t + x)^{1/2}(t + y)}
|
481 |
|
|
* @f]
|
482 |
|
|
*
|
483 |
|
|
* Based on Carlson's algorithms:
|
484 |
|
|
* - B. C. Carlson Numer. Math. 33, 1 (1979)
|
485 |
|
|
* - B. C. Carlson, Special Functions of Applied Mathematics (1977)
|
486 |
|
|
* - Numerical Recipes in C, 2nd ed, pp. 261-269,
|
487 |
|
|
* by Press, Teukolsky, Vetterling, Flannery (1992)
|
488 |
|
|
*
|
489 |
|
|
* @param __x The first argument.
|
490 |
|
|
* @param __y The second argument.
|
491 |
|
|
* @return The Carlson elliptic function.
|
492 |
|
|
*/
|
493 |
|
|
template
|
494 |
|
|
_Tp
|
495 |
|
|
__ellint_rc(const _Tp __x, const _Tp __y)
|
496 |
|
|
{
|
497 |
|
|
const _Tp __min = std::numeric_limits<_Tp>::min();
|
498 |
|
|
const _Tp __max = std::numeric_limits<_Tp>::max();
|
499 |
|
|
const _Tp __lolim = _Tp(5) * __min;
|
500 |
|
|
const _Tp __uplim = __max / _Tp(5);
|
501 |
|
|
|
502 |
|
|
if (__x < _Tp(0) || __y < _Tp(0) || __x + __y < __lolim)
|
503 |
|
|
std::__throw_domain_error(__N("Argument less than zero "
|
504 |
|
|
"in __ellint_rc."));
|
505 |
|
|
else
|
506 |
|
|
{
|
507 |
|
|
const _Tp __c0 = _Tp(1) / _Tp(4);
|
508 |
|
|
const _Tp __c1 = _Tp(1) / _Tp(7);
|
509 |
|
|
const _Tp __c2 = _Tp(9) / _Tp(22);
|
510 |
|
|
const _Tp __c3 = _Tp(3) / _Tp(10);
|
511 |
|
|
const _Tp __c4 = _Tp(3) / _Tp(8);
|
512 |
|
|
|
513 |
|
|
_Tp __xn = __x;
|
514 |
|
|
_Tp __yn = __y;
|
515 |
|
|
|
516 |
|
|
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
517 |
|
|
const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6));
|
518 |
|
|
_Tp __mu;
|
519 |
|
|
_Tp __sn;
|
520 |
|
|
|
521 |
|
|
const unsigned int __max_iter = 100;
|
522 |
|
|
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
|
523 |
|
|
{
|
524 |
|
|
__mu = (__xn + _Tp(2) * __yn) / _Tp(3);
|
525 |
|
|
__sn = (__yn + __mu) / __mu - _Tp(2);
|
526 |
|
|
if (std::abs(__sn) < __errtol)
|
527 |
|
|
break;
|
528 |
|
|
const _Tp __lambda = _Tp(2) * std::sqrt(__xn) * std::sqrt(__yn)
|
529 |
|
|
+ __yn;
|
530 |
|
|
__xn = __c0 * (__xn + __lambda);
|
531 |
|
|
__yn = __c0 * (__yn + __lambda);
|
532 |
|
|
}
|
533 |
|
|
|
534 |
|
|
_Tp __s = __sn * __sn
|
535 |
|
|
* (__c3 + __sn*(__c1 + __sn * (__c4 + __sn * __c2)));
|
536 |
|
|
|
537 |
|
|
return (_Tp(1) + __s) / std::sqrt(__mu);
|
538 |
|
|
}
|
539 |
|
|
}
|
540 |
|
|
|
541 |
|
|
|
542 |
|
|
/**
|
543 |
|
|
* @brief Return the Carlson elliptic function @f$ R_J(x,y,z,p) @f$
|
544 |
|
|
* of the third kind.
|
545 |
|
|
*
|
546 |
|
|
* The Carlson elliptic function of the third kind is defined by:
|
547 |
|
|
* @f[
|
548 |
|
|
* R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty
|
549 |
|
|
* \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}(t + p)}
|
550 |
|
|
* @f]
|
551 |
|
|
*
|
552 |
|
|
* Based on Carlson's algorithms:
|
553 |
|
|
* - B. C. Carlson Numer. Math. 33, 1 (1979)
|
554 |
|
|
* - B. C. Carlson, Special Functions of Applied Mathematics (1977)
|
555 |
|
|
* - Numerical Recipes in C, 2nd ed, pp. 261-269,
|
556 |
|
|
* by Press, Teukolsky, Vetterling, Flannery (1992)
|
557 |
|
|
*
|
558 |
|
|
* @param __x The first of three symmetric arguments.
|
559 |
|
|
* @param __y The second of three symmetric arguments.
|
560 |
|
|
* @param __z The third of three symmetric arguments.
|
561 |
|
|
* @param __p The fourth argument.
|
562 |
|
|
* @return The Carlson elliptic function of the fourth kind.
|
563 |
|
|
*/
|
564 |
|
|
template
|
565 |
|
|
_Tp
|
566 |
|
|
__ellint_rj(const _Tp __x, const _Tp __y, const _Tp __z, const _Tp __p)
|
567 |
|
|
{
|
568 |
|
|
const _Tp __min = std::numeric_limits<_Tp>::min();
|
569 |
|
|
const _Tp __max = std::numeric_limits<_Tp>::max();
|
570 |
|
|
const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3));
|
571 |
|
|
const _Tp __uplim = _Tp(0.3L)
|
572 |
|
|
* std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3));
|
573 |
|
|
|
574 |
|
|
if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
|
575 |
|
|
std::__throw_domain_error(__N("Argument less than zero "
|
576 |
|
|
"in __ellint_rj."));
|
577 |
|
|
else if (__x + __y < __lolim || __x + __z < __lolim
|
578 |
|
|
|| __y + __z < __lolim || __p < __lolim)
|
579 |
|
|
std::__throw_domain_error(__N("Argument too small "
|
580 |
|
|
"in __ellint_rj"));
|
581 |
|
|
else
|
582 |
|
|
{
|
583 |
|
|
const _Tp __c0 = _Tp(1) / _Tp(4);
|
584 |
|
|
const _Tp __c1 = _Tp(3) / _Tp(14);
|
585 |
|
|
const _Tp __c2 = _Tp(1) / _Tp(3);
|
586 |
|
|
const _Tp __c3 = _Tp(3) / _Tp(22);
|
587 |
|
|
const _Tp __c4 = _Tp(3) / _Tp(26);
|
588 |
|
|
|
589 |
|
|
_Tp __xn = __x;
|
590 |
|
|
_Tp __yn = __y;
|
591 |
|
|
_Tp __zn = __z;
|
592 |
|
|
_Tp __pn = __p;
|
593 |
|
|
_Tp __sigma = _Tp(0);
|
594 |
|
|
_Tp __power4 = _Tp(1);
|
595 |
|
|
|
596 |
|
|
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
597 |
|
|
const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
|
598 |
|
|
|
599 |
|
|
_Tp __lambda, __mu;
|
600 |
|
|
_Tp __xndev, __yndev, __zndev, __pndev;
|
601 |
|
|
|
602 |
|
|
const unsigned int __max_iter = 100;
|
603 |
|
|
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
|
604 |
|
|
{
|
605 |
|
|
__mu = (__xn + __yn + __zn + _Tp(2) * __pn) / _Tp(5);
|
606 |
|
|
__xndev = (__mu - __xn) / __mu;
|
607 |
|
|
__yndev = (__mu - __yn) / __mu;
|
608 |
|
|
__zndev = (__mu - __zn) / __mu;
|
609 |
|
|
__pndev = (__mu - __pn) / __mu;
|
610 |
|
|
_Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
|
611 |
|
|
__epsilon = std::max(__epsilon, std::abs(__zndev));
|
612 |
|
|
__epsilon = std::max(__epsilon, std::abs(__pndev));
|
613 |
|
|
if (__epsilon < __errtol)
|
614 |
|
|
break;
|
615 |
|
|
const _Tp __xnroot = std::sqrt(__xn);
|
616 |
|
|
const _Tp __ynroot = std::sqrt(__yn);
|
617 |
|
|
const _Tp __znroot = std::sqrt(__zn);
|
618 |
|
|
const _Tp __lambda = __xnroot * (__ynroot + __znroot)
|
619 |
|
|
+ __ynroot * __znroot;
|
620 |
|
|
const _Tp __alpha1 = __pn * (__xnroot + __ynroot + __znroot)
|
621 |
|
|
+ __xnroot * __ynroot * __znroot;
|
622 |
|
|
const _Tp __alpha2 = __alpha1 * __alpha1;
|
623 |
|
|
const _Tp __beta = __pn * (__pn + __lambda)
|
624 |
|
|
* (__pn + __lambda);
|
625 |
|
|
__sigma += __power4 * __ellint_rc(__alpha2, __beta);
|
626 |
|
|
__power4 *= __c0;
|
627 |
|
|
__xn = __c0 * (__xn + __lambda);
|
628 |
|
|
__yn = __c0 * (__yn + __lambda);
|
629 |
|
|
__zn = __c0 * (__zn + __lambda);
|
630 |
|
|
__pn = __c0 * (__pn + __lambda);
|
631 |
|
|
}
|
632 |
|
|
|
633 |
|
|
// Note: __ea is an SPU badname.
|
634 |
|
|
_Tp __eaa = __xndev * (__yndev + __zndev) + __yndev * __zndev;
|
635 |
|
|
_Tp __eb = __xndev * __yndev * __zndev;
|
636 |
|
|
_Tp __ec = __pndev * __pndev;
|
637 |
|
|
_Tp __e2 = __eaa - _Tp(3) * __ec;
|
638 |
|
|
_Tp __e3 = __eb + _Tp(2) * __pndev * (__eaa - __ec);
|
639 |
|
|
_Tp __s1 = _Tp(1) + __e2 * (-__c1 + _Tp(3) * __c3 * __e2 / _Tp(4)
|
640 |
|
|
- _Tp(3) * __c4 * __e3 / _Tp(2));
|
641 |
|
|
_Tp __s2 = __eb * (__c2 / _Tp(2)
|
642 |
|
|
+ __pndev * (-__c3 - __c3 + __pndev * __c4));
|
643 |
|
|
_Tp __s3 = __pndev * __eaa * (__c2 - __pndev * __c3)
|
644 |
|
|
- __c2 * __pndev * __ec;
|
645 |
|
|
|
646 |
|
|
return _Tp(3) * __sigma + __power4 * (__s1 + __s2 + __s3)
|
647 |
|
|
/ (__mu * std::sqrt(__mu));
|
648 |
|
|
}
|
649 |
|
|
}
|
650 |
|
|
|
651 |
|
|
|
652 |
|
|
/**
|
653 |
|
|
* @brief Return the complete elliptic integral of the third kind
|
654 |
|
|
* @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ using the
|
655 |
|
|
* Carlson formulation.
|
656 |
|
|
*
|
657 |
|
|
* The complete elliptic integral of the third kind is defined as
|
658 |
|
|
* @f[
|
659 |
|
|
* \Pi(k,\nu) = \int_0^{\pi/2}
|
660 |
|
|
* \frac{d\theta}
|
661 |
|
|
* {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}}
|
662 |
|
|
* @f]
|
663 |
|
|
*
|
664 |
|
|
* @param __k The argument of the elliptic function.
|
665 |
|
|
* @param __nu The second argument of the elliptic function.
|
666 |
|
|
* @return The complete elliptic function of the third kind.
|
667 |
|
|
*/
|
668 |
|
|
template
|
669 |
|
|
_Tp
|
670 |
|
|
__comp_ellint_3(const _Tp __k, const _Tp __nu)
|
671 |
|
|
{
|
672 |
|
|
|
673 |
|
|
if (__isnan(__k) || __isnan(__nu))
|
674 |
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
675 |
|
|
else if (__nu == _Tp(1))
|
676 |
|
|
return std::numeric_limits<_Tp>::infinity();
|
677 |
|
|
else if (std::abs(__k) > _Tp(1))
|
678 |
|
|
std::__throw_domain_error(__N("Bad argument in __comp_ellint_3."));
|
679 |
|
|
else
|
680 |
|
|
{
|
681 |
|
|
const _Tp __kk = __k * __k;
|
682 |
|
|
|
683 |
|
|
return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
|
684 |
|
|
- __nu
|
685 |
|
|
* __ellint_rj(_Tp(0), _Tp(1) - __kk, _Tp(1), _Tp(1) + __nu)
|
686 |
|
|
/ _Tp(3);
|
687 |
|
|
}
|
688 |
|
|
}
|
689 |
|
|
|
690 |
|
|
|
691 |
|
|
/**
|
692 |
|
|
* @brief Return the incomplete elliptic integral of the third kind
|
693 |
|
|
* @f$ \Pi(k,\nu,\phi) @f$ using the Carlson formulation.
|
694 |
|
|
*
|
695 |
|
|
* The incomplete elliptic integral of the third kind is defined as
|
696 |
|
|
* @f[
|
697 |
|
|
* \Pi(k,\nu,\phi) = \int_0^{\phi}
|
698 |
|
|
* \frac{d\theta}
|
699 |
|
|
* {(1 - \nu \sin^2\theta)
|
700 |
|
|
* \sqrt{1 - k^2 \sin^2\theta}}
|
701 |
|
|
* @f]
|
702 |
|
|
*
|
703 |
|
|
* @param __k The argument of the elliptic function.
|
704 |
|
|
* @param __nu The second argument of the elliptic function.
|
705 |
|
|
* @param __phi The integral limit argument of the elliptic function.
|
706 |
|
|
* @return The elliptic function of the third kind.
|
707 |
|
|
*/
|
708 |
|
|
template
|
709 |
|
|
_Tp
|
710 |
|
|
__ellint_3(const _Tp __k, const _Tp __nu, const _Tp __phi)
|
711 |
|
|
{
|
712 |
|
|
|
713 |
|
|
if (__isnan(__k) || __isnan(__nu) || __isnan(__phi))
|
714 |
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
715 |
|
|
else if (std::abs(__k) > _Tp(1))
|
716 |
|
|
std::__throw_domain_error(__N("Bad argument in __ellint_3."));
|
717 |
|
|
else
|
718 |
|
|
{
|
719 |
|
|
// Reduce phi to -pi/2 < phi < +pi/2.
|
720 |
|
|
const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
|
721 |
|
|
+ _Tp(0.5L));
|
722 |
|
|
const _Tp __phi_red = __phi
|
723 |
|
|
- __n * __numeric_constants<_Tp>::__pi();
|
724 |
|
|
|
725 |
|
|
const _Tp __kk = __k * __k;
|
726 |
|
|
const _Tp __s = std::sin(__phi_red);
|
727 |
|
|
const _Tp __ss = __s * __s;
|
728 |
|
|
const _Tp __sss = __ss * __s;
|
729 |
|
|
const _Tp __c = std::cos(__phi_red);
|
730 |
|
|
const _Tp __cc = __c * __c;
|
731 |
|
|
|
732 |
|
|
const _Tp __Pi = __s
|
733 |
|
|
* __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
|
734 |
|
|
- __nu * __sss
|
735 |
|
|
* __ellint_rj(__cc, _Tp(1) - __kk * __ss, _Tp(1),
|
736 |
|
|
_Tp(1) + __nu * __ss) / _Tp(3);
|
737 |
|
|
|
738 |
|
|
if (__n == 0)
|
739 |
|
|
return __Pi;
|
740 |
|
|
else
|
741 |
|
|
return __Pi + _Tp(2) * __n * __comp_ellint_3(__k, __nu);
|
742 |
|
|
}
|
743 |
|
|
}
|
744 |
|
|
|
745 |
|
|
_GLIBCXX_END_NAMESPACE_VERSION
|
746 |
|
|
} // namespace std::tr1::__detail
|
747 |
|
|
}
|
748 |
|
|
}
|
749 |
|
|
|
750 |
|
|
#endif // _GLIBCXX_TR1_ELL_INTEGRAL_TCC
|
751 |
|
|
|