1 |
35 |
ultra_embe |
// Special functions -*- C++ -*-
|
2 |
|
|
|
3 |
|
|
// Copyright (C) 2006, 2007, 2008, 2009, 2010
|
4 |
|
|
// Free Software Foundation, Inc.
|
5 |
|
|
//
|
6 |
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
7 |
|
|
// software; you can redistribute it and/or modify it under the
|
8 |
|
|
// terms of the GNU General Public License as published by the
|
9 |
|
|
// Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
// any later version.
|
11 |
|
|
//
|
12 |
|
|
// This library is distributed in the hope that it will be useful,
|
13 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
// GNU General Public License for more details.
|
16 |
|
|
//
|
17 |
|
|
// Under Section 7 of GPL version 3, you are granted additional
|
18 |
|
|
// permissions described in the GCC Runtime Library Exception, version
|
19 |
|
|
// 3.1, as published by the Free Software Foundation.
|
20 |
|
|
|
21 |
|
|
// You should have received a copy of the GNU General Public License and
|
22 |
|
|
// a copy of the GCC Runtime Library Exception along with this program;
|
23 |
|
|
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
24 |
|
|
// .
|
25 |
|
|
|
26 |
|
|
/** @file tr1/hypergeometric.tcc
|
27 |
|
|
* This is an internal header file, included by other library headers.
|
28 |
|
|
* Do not attempt to use it directly. @headername{tr1/cmath}
|
29 |
|
|
*/
|
30 |
|
|
|
31 |
|
|
//
|
32 |
|
|
// ISO C++ 14882 TR1: 5.2 Special functions
|
33 |
|
|
//
|
34 |
|
|
|
35 |
|
|
// Written by Edward Smith-Rowland based:
|
36 |
|
|
// (1) Handbook of Mathematical Functions,
|
37 |
|
|
// ed. Milton Abramowitz and Irene A. Stegun,
|
38 |
|
|
// Dover Publications,
|
39 |
|
|
// Section 6, pp. 555-566
|
40 |
|
|
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
41 |
|
|
|
42 |
|
|
#ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
|
43 |
|
|
#define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1
|
44 |
|
|
|
45 |
|
|
namespace std _GLIBCXX_VISIBILITY(default)
|
46 |
|
|
{
|
47 |
|
|
namespace tr1
|
48 |
|
|
{
|
49 |
|
|
// [5.2] Special functions
|
50 |
|
|
|
51 |
|
|
// Implementation-space details.
|
52 |
|
|
namespace __detail
|
53 |
|
|
{
|
54 |
|
|
_GLIBCXX_BEGIN_NAMESPACE_VERSION
|
55 |
|
|
|
56 |
|
|
/**
|
57 |
|
|
* @brief This routine returns the confluent hypergeometric function
|
58 |
|
|
* by series expansion.
|
59 |
|
|
*
|
60 |
|
|
* @f[
|
61 |
|
|
* _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)}
|
62 |
|
|
* \sum_{n=0}^{\infty}
|
63 |
|
|
* \frac{\Gamma(a+n)}{\Gamma(c+n)}
|
64 |
|
|
* \frac{x^n}{n!}
|
65 |
|
|
* @f]
|
66 |
|
|
*
|
67 |
|
|
* If a and b are integers and a < 0 and either b > 0 or b < a
|
68 |
|
|
* then the series is a polynomial with a finite number of
|
69 |
|
|
* terms. If b is an integer and b <= 0 the confluent
|
70 |
|
|
* hypergeometric function is undefined.
|
71 |
|
|
*
|
72 |
|
|
* @param __a The "numerator" parameter.
|
73 |
|
|
* @param __c The "denominator" parameter.
|
74 |
|
|
* @param __x The argument of the confluent hypergeometric function.
|
75 |
|
|
* @return The confluent hypergeometric function.
|
76 |
|
|
*/
|
77 |
|
|
template
|
78 |
|
|
_Tp
|
79 |
|
|
__conf_hyperg_series(const _Tp __a, const _Tp __c, const _Tp __x)
|
80 |
|
|
{
|
81 |
|
|
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
82 |
|
|
|
83 |
|
|
_Tp __term = _Tp(1);
|
84 |
|
|
_Tp __Fac = _Tp(1);
|
85 |
|
|
const unsigned int __max_iter = 100000;
|
86 |
|
|
unsigned int __i;
|
87 |
|
|
for (__i = 0; __i < __max_iter; ++__i)
|
88 |
|
|
{
|
89 |
|
|
__term *= (__a + _Tp(__i)) * __x
|
90 |
|
|
/ ((__c + _Tp(__i)) * _Tp(1 + __i));
|
91 |
|
|
if (std::abs(__term) < __eps)
|
92 |
|
|
{
|
93 |
|
|
break;
|
94 |
|
|
}
|
95 |
|
|
__Fac += __term;
|
96 |
|
|
}
|
97 |
|
|
if (__i == __max_iter)
|
98 |
|
|
std::__throw_runtime_error(__N("Series failed to converge "
|
99 |
|
|
"in __conf_hyperg_series."));
|
100 |
|
|
|
101 |
|
|
return __Fac;
|
102 |
|
|
}
|
103 |
|
|
|
104 |
|
|
|
105 |
|
|
/**
|
106 |
|
|
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
|
107 |
|
|
* by an iterative procedure described in
|
108 |
|
|
* Luke, Algorithms for the Computation of Mathematical Functions.
|
109 |
|
|
*
|
110 |
|
|
* Like the case of the 2F1 rational approximations, these are
|
111 |
|
|
* probably guaranteed to converge for x < 0, barring gross
|
112 |
|
|
* numerical instability in the pre-asymptotic regime.
|
113 |
|
|
*/
|
114 |
|
|
template
|
115 |
|
|
_Tp
|
116 |
|
|
__conf_hyperg_luke(const _Tp __a, const _Tp __c, const _Tp __xin)
|
117 |
|
|
{
|
118 |
|
|
const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
|
119 |
|
|
const int __nmax = 20000;
|
120 |
|
|
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
121 |
|
|
const _Tp __x = -__xin;
|
122 |
|
|
const _Tp __x3 = __x * __x * __x;
|
123 |
|
|
const _Tp __t0 = __a / __c;
|
124 |
|
|
const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c);
|
125 |
|
|
const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1)));
|
126 |
|
|
_Tp __F = _Tp(1);
|
127 |
|
|
_Tp __prec;
|
128 |
|
|
|
129 |
|
|
_Tp __Bnm3 = _Tp(1);
|
130 |
|
|
_Tp __Bnm2 = _Tp(1) + __t1 * __x;
|
131 |
|
|
_Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
|
132 |
|
|
|
133 |
|
|
_Tp __Anm3 = _Tp(1);
|
134 |
|
|
_Tp __Anm2 = __Bnm2 - __t0 * __x;
|
135 |
|
|
_Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
|
136 |
|
|
+ __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
|
137 |
|
|
|
138 |
|
|
int __n = 3;
|
139 |
|
|
while(1)
|
140 |
|
|
{
|
141 |
|
|
_Tp __npam1 = _Tp(__n - 1) + __a;
|
142 |
|
|
_Tp __npcm1 = _Tp(__n - 1) + __c;
|
143 |
|
|
_Tp __npam2 = _Tp(__n - 2) + __a;
|
144 |
|
|
_Tp __npcm2 = _Tp(__n - 2) + __c;
|
145 |
|
|
_Tp __tnm1 = _Tp(2 * __n - 1);
|
146 |
|
|
_Tp __tnm3 = _Tp(2 * __n - 3);
|
147 |
|
|
_Tp __tnm5 = _Tp(2 * __n - 5);
|
148 |
|
|
_Tp __F1 = (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1);
|
149 |
|
|
_Tp __F2 = (_Tp(__n) + __a) * __npam1
|
150 |
|
|
/ (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
|
151 |
|
|
_Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a)
|
152 |
|
|
/ (_Tp(8) * __tnm3 * __tnm3 * __tnm5
|
153 |
|
|
* (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
|
154 |
|
|
_Tp __E = -__npam1 * (_Tp(__n - 1) - __c)
|
155 |
|
|
/ (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
|
156 |
|
|
|
157 |
|
|
_Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
|
158 |
|
|
+ (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
|
159 |
|
|
_Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
|
160 |
|
|
+ (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
|
161 |
|
|
_Tp __r = __An / __Bn;
|
162 |
|
|
|
163 |
|
|
__prec = std::abs((__F - __r) / __F);
|
164 |
|
|
__F = __r;
|
165 |
|
|
|
166 |
|
|
if (__prec < __eps || __n > __nmax)
|
167 |
|
|
break;
|
168 |
|
|
|
169 |
|
|
if (std::abs(__An) > __big || std::abs(__Bn) > __big)
|
170 |
|
|
{
|
171 |
|
|
__An /= __big;
|
172 |
|
|
__Bn /= __big;
|
173 |
|
|
__Anm1 /= __big;
|
174 |
|
|
__Bnm1 /= __big;
|
175 |
|
|
__Anm2 /= __big;
|
176 |
|
|
__Bnm2 /= __big;
|
177 |
|
|
__Anm3 /= __big;
|
178 |
|
|
__Bnm3 /= __big;
|
179 |
|
|
}
|
180 |
|
|
else if (std::abs(__An) < _Tp(1) / __big
|
181 |
|
|
|| std::abs(__Bn) < _Tp(1) / __big)
|
182 |
|
|
{
|
183 |
|
|
__An *= __big;
|
184 |
|
|
__Bn *= __big;
|
185 |
|
|
__Anm1 *= __big;
|
186 |
|
|
__Bnm1 *= __big;
|
187 |
|
|
__Anm2 *= __big;
|
188 |
|
|
__Bnm2 *= __big;
|
189 |
|
|
__Anm3 *= __big;
|
190 |
|
|
__Bnm3 *= __big;
|
191 |
|
|
}
|
192 |
|
|
|
193 |
|
|
++__n;
|
194 |
|
|
__Bnm3 = __Bnm2;
|
195 |
|
|
__Bnm2 = __Bnm1;
|
196 |
|
|
__Bnm1 = __Bn;
|
197 |
|
|
__Anm3 = __Anm2;
|
198 |
|
|
__Anm2 = __Anm1;
|
199 |
|
|
__Anm1 = __An;
|
200 |
|
|
}
|
201 |
|
|
|
202 |
|
|
if (__n >= __nmax)
|
203 |
|
|
std::__throw_runtime_error(__N("Iteration failed to converge "
|
204 |
|
|
"in __conf_hyperg_luke."));
|
205 |
|
|
|
206 |
|
|
return __F;
|
207 |
|
|
}
|
208 |
|
|
|
209 |
|
|
|
210 |
|
|
/**
|
211 |
|
|
* @brief Return the confluent hypogeometric function
|
212 |
|
|
* @f$ _1F_1(a;c;x) @f$.
|
213 |
|
|
*
|
214 |
|
|
* @todo Handle b == nonpositive integer blowup - return NaN.
|
215 |
|
|
*
|
216 |
|
|
* @param __a The @a numerator parameter.
|
217 |
|
|
* @param __c The @a denominator parameter.
|
218 |
|
|
* @param __x The argument of the confluent hypergeometric function.
|
219 |
|
|
* @return The confluent hypergeometric function.
|
220 |
|
|
*/
|
221 |
|
|
template
|
222 |
|
|
inline _Tp
|
223 |
|
|
__conf_hyperg(const _Tp __a, const _Tp __c, const _Tp __x)
|
224 |
|
|
{
|
225 |
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
226 |
|
|
const _Tp __c_nint = std::tr1::nearbyint(__c);
|
227 |
|
|
#else
|
228 |
|
|
const _Tp __c_nint = static_cast(__c + _Tp(0.5L));
|
229 |
|
|
#endif
|
230 |
|
|
if (__isnan(__a) || __isnan(__c) || __isnan(__x))
|
231 |
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
232 |
|
|
else if (__c_nint == __c && __c_nint <= 0)
|
233 |
|
|
return std::numeric_limits<_Tp>::infinity();
|
234 |
|
|
else if (__a == _Tp(0))
|
235 |
|
|
return _Tp(1);
|
236 |
|
|
else if (__c == __a)
|
237 |
|
|
return std::exp(__x);
|
238 |
|
|
else if (__x < _Tp(0))
|
239 |
|
|
return __conf_hyperg_luke(__a, __c, __x);
|
240 |
|
|
else
|
241 |
|
|
return __conf_hyperg_series(__a, __c, __x);
|
242 |
|
|
}
|
243 |
|
|
|
244 |
|
|
|
245 |
|
|
/**
|
246 |
|
|
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
|
247 |
|
|
* by series expansion.
|
248 |
|
|
*
|
249 |
|
|
* The hypogeometric function is defined by
|
250 |
|
|
* @f[
|
251 |
|
|
* _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
|
252 |
|
|
* \sum_{n=0}^{\infty}
|
253 |
|
|
* \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
|
254 |
|
|
* \frac{x^n}{n!}
|
255 |
|
|
* @f]
|
256 |
|
|
*
|
257 |
|
|
* This works and it's pretty fast.
|
258 |
|
|
*
|
259 |
|
|
* @param __a The first @a numerator parameter.
|
260 |
|
|
* @param __a The second @a numerator parameter.
|
261 |
|
|
* @param __c The @a denominator parameter.
|
262 |
|
|
* @param __x The argument of the confluent hypergeometric function.
|
263 |
|
|
* @return The confluent hypergeometric function.
|
264 |
|
|
*/
|
265 |
|
|
template
|
266 |
|
|
_Tp
|
267 |
|
|
__hyperg_series(const _Tp __a, const _Tp __b,
|
268 |
|
|
const _Tp __c, const _Tp __x)
|
269 |
|
|
{
|
270 |
|
|
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
271 |
|
|
|
272 |
|
|
_Tp __term = _Tp(1);
|
273 |
|
|
_Tp __Fabc = _Tp(1);
|
274 |
|
|
const unsigned int __max_iter = 100000;
|
275 |
|
|
unsigned int __i;
|
276 |
|
|
for (__i = 0; __i < __max_iter; ++__i)
|
277 |
|
|
{
|
278 |
|
|
__term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x
|
279 |
|
|
/ ((__c + _Tp(__i)) * _Tp(1 + __i));
|
280 |
|
|
if (std::abs(__term) < __eps)
|
281 |
|
|
{
|
282 |
|
|
break;
|
283 |
|
|
}
|
284 |
|
|
__Fabc += __term;
|
285 |
|
|
}
|
286 |
|
|
if (__i == __max_iter)
|
287 |
|
|
std::__throw_runtime_error(__N("Series failed to converge "
|
288 |
|
|
"in __hyperg_series."));
|
289 |
|
|
|
290 |
|
|
return __Fabc;
|
291 |
|
|
}
|
292 |
|
|
|
293 |
|
|
|
294 |
|
|
/**
|
295 |
|
|
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
|
296 |
|
|
* by an iterative procedure described in
|
297 |
|
|
* Luke, Algorithms for the Computation of Mathematical Functions.
|
298 |
|
|
*/
|
299 |
|
|
template
|
300 |
|
|
_Tp
|
301 |
|
|
__hyperg_luke(const _Tp __a, const _Tp __b, const _Tp __c,
|
302 |
|
|
const _Tp __xin)
|
303 |
|
|
{
|
304 |
|
|
const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
|
305 |
|
|
const int __nmax = 20000;
|
306 |
|
|
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
307 |
|
|
const _Tp __x = -__xin;
|
308 |
|
|
const _Tp __x3 = __x * __x * __x;
|
309 |
|
|
const _Tp __t0 = __a * __b / __c;
|
310 |
|
|
const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c);
|
311 |
|
|
const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2))
|
312 |
|
|
/ (_Tp(2) * (__c + _Tp(1)));
|
313 |
|
|
|
314 |
|
|
_Tp __F = _Tp(1);
|
315 |
|
|
|
316 |
|
|
_Tp __Bnm3 = _Tp(1);
|
317 |
|
|
_Tp __Bnm2 = _Tp(1) + __t1 * __x;
|
318 |
|
|
_Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
|
319 |
|
|
|
320 |
|
|
_Tp __Anm3 = _Tp(1);
|
321 |
|
|
_Tp __Anm2 = __Bnm2 - __t0 * __x;
|
322 |
|
|
_Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
|
323 |
|
|
+ __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
|
324 |
|
|
|
325 |
|
|
int __n = 3;
|
326 |
|
|
while (1)
|
327 |
|
|
{
|
328 |
|
|
const _Tp __npam1 = _Tp(__n - 1) + __a;
|
329 |
|
|
const _Tp __npbm1 = _Tp(__n - 1) + __b;
|
330 |
|
|
const _Tp __npcm1 = _Tp(__n - 1) + __c;
|
331 |
|
|
const _Tp __npam2 = _Tp(__n - 2) + __a;
|
332 |
|
|
const _Tp __npbm2 = _Tp(__n - 2) + __b;
|
333 |
|
|
const _Tp __npcm2 = _Tp(__n - 2) + __c;
|
334 |
|
|
const _Tp __tnm1 = _Tp(2 * __n - 1);
|
335 |
|
|
const _Tp __tnm3 = _Tp(2 * __n - 3);
|
336 |
|
|
const _Tp __tnm5 = _Tp(2 * __n - 5);
|
337 |
|
|
const _Tp __n2 = __n * __n;
|
338 |
|
|
const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n
|
339 |
|
|
+ _Tp(2) - __a * __b - _Tp(2) * (__a + __b))
|
340 |
|
|
/ (_Tp(2) * __tnm3 * __npcm1);
|
341 |
|
|
const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n
|
342 |
|
|
+ _Tp(2) - __a * __b) * __npam1 * __npbm1
|
343 |
|
|
/ (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
|
344 |
|
|
const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1
|
345 |
|
|
* (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b))
|
346 |
|
|
/ (_Tp(8) * __tnm3 * __tnm3 * __tnm5
|
347 |
|
|
* (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
|
348 |
|
|
const _Tp __E = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c)
|
349 |
|
|
/ (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
|
350 |
|
|
|
351 |
|
|
_Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
|
352 |
|
|
+ (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
|
353 |
|
|
_Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
|
354 |
|
|
+ (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
|
355 |
|
|
const _Tp __r = __An / __Bn;
|
356 |
|
|
|
357 |
|
|
const _Tp __prec = std::abs((__F - __r) / __F);
|
358 |
|
|
__F = __r;
|
359 |
|
|
|
360 |
|
|
if (__prec < __eps || __n > __nmax)
|
361 |
|
|
break;
|
362 |
|
|
|
363 |
|
|
if (std::abs(__An) > __big || std::abs(__Bn) > __big)
|
364 |
|
|
{
|
365 |
|
|
__An /= __big;
|
366 |
|
|
__Bn /= __big;
|
367 |
|
|
__Anm1 /= __big;
|
368 |
|
|
__Bnm1 /= __big;
|
369 |
|
|
__Anm2 /= __big;
|
370 |
|
|
__Bnm2 /= __big;
|
371 |
|
|
__Anm3 /= __big;
|
372 |
|
|
__Bnm3 /= __big;
|
373 |
|
|
}
|
374 |
|
|
else if (std::abs(__An) < _Tp(1) / __big
|
375 |
|
|
|| std::abs(__Bn) < _Tp(1) / __big)
|
376 |
|
|
{
|
377 |
|
|
__An *= __big;
|
378 |
|
|
__Bn *= __big;
|
379 |
|
|
__Anm1 *= __big;
|
380 |
|
|
__Bnm1 *= __big;
|
381 |
|
|
__Anm2 *= __big;
|
382 |
|
|
__Bnm2 *= __big;
|
383 |
|
|
__Anm3 *= __big;
|
384 |
|
|
__Bnm3 *= __big;
|
385 |
|
|
}
|
386 |
|
|
|
387 |
|
|
++__n;
|
388 |
|
|
__Bnm3 = __Bnm2;
|
389 |
|
|
__Bnm2 = __Bnm1;
|
390 |
|
|
__Bnm1 = __Bn;
|
391 |
|
|
__Anm3 = __Anm2;
|
392 |
|
|
__Anm2 = __Anm1;
|
393 |
|
|
__Anm1 = __An;
|
394 |
|
|
}
|
395 |
|
|
|
396 |
|
|
if (__n >= __nmax)
|
397 |
|
|
std::__throw_runtime_error(__N("Iteration failed to converge "
|
398 |
|
|
"in __hyperg_luke."));
|
399 |
|
|
|
400 |
|
|
return __F;
|
401 |
|
|
}
|
402 |
|
|
|
403 |
|
|
|
404 |
|
|
/**
|
405 |
|
|
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
|
406 |
|
|
* by the reflection formulae in Abramowitz & Stegun formula
|
407 |
|
|
* 15.3.6 for d = c - a - b not integral and formula 15.3.11 for
|
408 |
|
|
* d = c - a - b integral. This assumes a, b, c != negative
|
409 |
|
|
* integer.
|
410 |
|
|
*
|
411 |
|
|
* The hypogeometric function is defined by
|
412 |
|
|
* @f[
|
413 |
|
|
* _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
|
414 |
|
|
* \sum_{n=0}^{\infty}
|
415 |
|
|
* \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
|
416 |
|
|
* \frac{x^n}{n!}
|
417 |
|
|
* @f]
|
418 |
|
|
*
|
419 |
|
|
* The reflection formula for nonintegral @f$ d = c - a - b @f$ is:
|
420 |
|
|
* @f[
|
421 |
|
|
* _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)}
|
422 |
|
|
* _2F_1(a,b;1-d;1-x)
|
423 |
|
|
* + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)}
|
424 |
|
|
* _2F_1(c-a,c-b;1+d;1-x)
|
425 |
|
|
* @f]
|
426 |
|
|
*
|
427 |
|
|
* The reflection formula for integral @f$ m = c - a - b @f$ is:
|
428 |
|
|
* @f[
|
429 |
|
|
* _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)}
|
430 |
|
|
* \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
|
431 |
|
|
* -
|
432 |
|
|
* @f]
|
433 |
|
|
*/
|
434 |
|
|
template
|
435 |
|
|
_Tp
|
436 |
|
|
__hyperg_reflect(const _Tp __a, const _Tp __b, const _Tp __c,
|
437 |
|
|
const _Tp __x)
|
438 |
|
|
{
|
439 |
|
|
const _Tp __d = __c - __a - __b;
|
440 |
|
|
const int __intd = std::floor(__d + _Tp(0.5L));
|
441 |
|
|
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
442 |
|
|
const _Tp __toler = _Tp(1000) * __eps;
|
443 |
|
|
const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max());
|
444 |
|
|
const bool __d_integer = (std::abs(__d - __intd) < __toler);
|
445 |
|
|
|
446 |
|
|
if (__d_integer)
|
447 |
|
|
{
|
448 |
|
|
const _Tp __ln_omx = std::log(_Tp(1) - __x);
|
449 |
|
|
const _Tp __ad = std::abs(__d);
|
450 |
|
|
_Tp __F1, __F2;
|
451 |
|
|
|
452 |
|
|
_Tp __d1, __d2;
|
453 |
|
|
if (__d >= _Tp(0))
|
454 |
|
|
{
|
455 |
|
|
__d1 = __d;
|
456 |
|
|
__d2 = _Tp(0);
|
457 |
|
|
}
|
458 |
|
|
else
|
459 |
|
|
{
|
460 |
|
|
__d1 = _Tp(0);
|
461 |
|
|
__d2 = __d;
|
462 |
|
|
}
|
463 |
|
|
|
464 |
|
|
const _Tp __lng_c = __log_gamma(__c);
|
465 |
|
|
|
466 |
|
|
// Evaluate F1.
|
467 |
|
|
if (__ad < __eps)
|
468 |
|
|
{
|
469 |
|
|
// d = c - a - b = 0.
|
470 |
|
|
__F1 = _Tp(0);
|
471 |
|
|
}
|
472 |
|
|
else
|
473 |
|
|
{
|
474 |
|
|
|
475 |
|
|
bool __ok_d1 = true;
|
476 |
|
|
_Tp __lng_ad, __lng_ad1, __lng_bd1;
|
477 |
|
|
__try
|
478 |
|
|
{
|
479 |
|
|
__lng_ad = __log_gamma(__ad);
|
480 |
|
|
__lng_ad1 = __log_gamma(__a + __d1);
|
481 |
|
|
__lng_bd1 = __log_gamma(__b + __d1);
|
482 |
|
|
}
|
483 |
|
|
__catch(...)
|
484 |
|
|
{
|
485 |
|
|
__ok_d1 = false;
|
486 |
|
|
}
|
487 |
|
|
|
488 |
|
|
if (__ok_d1)
|
489 |
|
|
{
|
490 |
|
|
/* Gamma functions in the denominator are ok.
|
491 |
|
|
* Proceed with evaluation.
|
492 |
|
|
*/
|
493 |
|
|
_Tp __sum1 = _Tp(1);
|
494 |
|
|
_Tp __term = _Tp(1);
|
495 |
|
|
_Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx
|
496 |
|
|
- __lng_ad1 - __lng_bd1;
|
497 |
|
|
|
498 |
|
|
/* Do F1 sum.
|
499 |
|
|
*/
|
500 |
|
|
for (int __i = 1; __i < __ad; ++__i)
|
501 |
|
|
{
|
502 |
|
|
const int __j = __i - 1;
|
503 |
|
|
__term *= (__a + __d2 + __j) * (__b + __d2 + __j)
|
504 |
|
|
/ (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x);
|
505 |
|
|
__sum1 += __term;
|
506 |
|
|
}
|
507 |
|
|
|
508 |
|
|
if (__ln_pre1 > __log_max)
|
509 |
|
|
std::__throw_runtime_error(__N("Overflow of gamma functions"
|
510 |
|
|
" in __hyperg_luke."));
|
511 |
|
|
else
|
512 |
|
|
__F1 = std::exp(__ln_pre1) * __sum1;
|
513 |
|
|
}
|
514 |
|
|
else
|
515 |
|
|
{
|
516 |
|
|
// Gamma functions in the denominator were not ok.
|
517 |
|
|
// So the F1 term is zero.
|
518 |
|
|
__F1 = _Tp(0);
|
519 |
|
|
}
|
520 |
|
|
} // end F1 evaluation
|
521 |
|
|
|
522 |
|
|
// Evaluate F2.
|
523 |
|
|
bool __ok_d2 = true;
|
524 |
|
|
_Tp __lng_ad2, __lng_bd2;
|
525 |
|
|
__try
|
526 |
|
|
{
|
527 |
|
|
__lng_ad2 = __log_gamma(__a + __d2);
|
528 |
|
|
__lng_bd2 = __log_gamma(__b + __d2);
|
529 |
|
|
}
|
530 |
|
|
__catch(...)
|
531 |
|
|
{
|
532 |
|
|
__ok_d2 = false;
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
if (__ok_d2)
|
536 |
|
|
{
|
537 |
|
|
// Gamma functions in the denominator are ok.
|
538 |
|
|
// Proceed with evaluation.
|
539 |
|
|
const int __maxiter = 2000;
|
540 |
|
|
const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e();
|
541 |
|
|
const _Tp __psi_1pd = __psi(_Tp(1) + __ad);
|
542 |
|
|
const _Tp __psi_apd1 = __psi(__a + __d1);
|
543 |
|
|
const _Tp __psi_bpd1 = __psi(__b + __d1);
|
544 |
|
|
|
545 |
|
|
_Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1
|
546 |
|
|
- __psi_bpd1 - __ln_omx;
|
547 |
|
|
_Tp __fact = _Tp(1);
|
548 |
|
|
_Tp __sum2 = __psi_term;
|
549 |
|
|
_Tp __ln_pre2 = __lng_c + __d1 * __ln_omx
|
550 |
|
|
- __lng_ad2 - __lng_bd2;
|
551 |
|
|
|
552 |
|
|
// Do F2 sum.
|
553 |
|
|
int __j;
|
554 |
|
|
for (__j = 1; __j < __maxiter; ++__j)
|
555 |
|
|
{
|
556 |
|
|
// Values for psi functions use recurrence;
|
557 |
|
|
// Abramowitz & Stegun 6.3.5
|
558 |
|
|
const _Tp __term1 = _Tp(1) / _Tp(__j)
|
559 |
|
|
+ _Tp(1) / (__ad + __j);
|
560 |
|
|
const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1))
|
561 |
|
|
+ _Tp(1) / (__b + __d1 + _Tp(__j - 1));
|
562 |
|
|
__psi_term += __term1 - __term2;
|
563 |
|
|
__fact *= (__a + __d1 + _Tp(__j - 1))
|
564 |
|
|
* (__b + __d1 + _Tp(__j - 1))
|
565 |
|
|
/ ((__ad + __j) * __j) * (_Tp(1) - __x);
|
566 |
|
|
const _Tp __delta = __fact * __psi_term;
|
567 |
|
|
__sum2 += __delta;
|
568 |
|
|
if (std::abs(__delta) < __eps * std::abs(__sum2))
|
569 |
|
|
break;
|
570 |
|
|
}
|
571 |
|
|
if (__j == __maxiter)
|
572 |
|
|
std::__throw_runtime_error(__N("Sum F2 failed to converge "
|
573 |
|
|
"in __hyperg_reflect"));
|
574 |
|
|
|
575 |
|
|
if (__sum2 == _Tp(0))
|
576 |
|
|
__F2 = _Tp(0);
|
577 |
|
|
else
|
578 |
|
|
__F2 = std::exp(__ln_pre2) * __sum2;
|
579 |
|
|
}
|
580 |
|
|
else
|
581 |
|
|
{
|
582 |
|
|
// Gamma functions in the denominator not ok.
|
583 |
|
|
// So the F2 term is zero.
|
584 |
|
|
__F2 = _Tp(0);
|
585 |
|
|
} // end F2 evaluation
|
586 |
|
|
|
587 |
|
|
const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1));
|
588 |
|
|
const _Tp __F = __F1 + __sgn_2 * __F2;
|
589 |
|
|
|
590 |
|
|
return __F;
|
591 |
|
|
}
|
592 |
|
|
else
|
593 |
|
|
{
|
594 |
|
|
// d = c - a - b not an integer.
|
595 |
|
|
|
596 |
|
|
// These gamma functions appear in the denominator, so we
|
597 |
|
|
// catch their harmless domain errors and set the terms to zero.
|
598 |
|
|
bool __ok1 = true;
|
599 |
|
|
_Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0);
|
600 |
|
|
_Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0);
|
601 |
|
|
__try
|
602 |
|
|
{
|
603 |
|
|
__sgn_g1ca = __log_gamma_sign(__c - __a);
|
604 |
|
|
__ln_g1ca = __log_gamma(__c - __a);
|
605 |
|
|
__sgn_g1cb = __log_gamma_sign(__c - __b);
|
606 |
|
|
__ln_g1cb = __log_gamma(__c - __b);
|
607 |
|
|
}
|
608 |
|
|
__catch(...)
|
609 |
|
|
{
|
610 |
|
|
__ok1 = false;
|
611 |
|
|
}
|
612 |
|
|
|
613 |
|
|
bool __ok2 = true;
|
614 |
|
|
_Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0);
|
615 |
|
|
_Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0);
|
616 |
|
|
__try
|
617 |
|
|
{
|
618 |
|
|
__sgn_g2a = __log_gamma_sign(__a);
|
619 |
|
|
__ln_g2a = __log_gamma(__a);
|
620 |
|
|
__sgn_g2b = __log_gamma_sign(__b);
|
621 |
|
|
__ln_g2b = __log_gamma(__b);
|
622 |
|
|
}
|
623 |
|
|
__catch(...)
|
624 |
|
|
{
|
625 |
|
|
__ok2 = false;
|
626 |
|
|
}
|
627 |
|
|
|
628 |
|
|
const _Tp __sgn_gc = __log_gamma_sign(__c);
|
629 |
|
|
const _Tp __ln_gc = __log_gamma(__c);
|
630 |
|
|
const _Tp __sgn_gd = __log_gamma_sign(__d);
|
631 |
|
|
const _Tp __ln_gd = __log_gamma(__d);
|
632 |
|
|
const _Tp __sgn_gmd = __log_gamma_sign(-__d);
|
633 |
|
|
const _Tp __ln_gmd = __log_gamma(-__d);
|
634 |
|
|
|
635 |
|
|
const _Tp __sgn1 = __sgn_gc * __sgn_gd * __sgn_g1ca * __sgn_g1cb;
|
636 |
|
|
const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a * __sgn_g2b;
|
637 |
|
|
|
638 |
|
|
_Tp __pre1, __pre2;
|
639 |
|
|
if (__ok1 && __ok2)
|
640 |
|
|
{
|
641 |
|
|
_Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb;
|
642 |
|
|
_Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b
|
643 |
|
|
+ __d * std::log(_Tp(1) - __x);
|
644 |
|
|
if (__ln_pre1 < __log_max && __ln_pre2 < __log_max)
|
645 |
|
|
{
|
646 |
|
|
__pre1 = std::exp(__ln_pre1);
|
647 |
|
|
__pre2 = std::exp(__ln_pre2);
|
648 |
|
|
__pre1 *= __sgn1;
|
649 |
|
|
__pre2 *= __sgn2;
|
650 |
|
|
}
|
651 |
|
|
else
|
652 |
|
|
{
|
653 |
|
|
std::__throw_runtime_error(__N("Overflow of gamma functions "
|
654 |
|
|
"in __hyperg_reflect"));
|
655 |
|
|
}
|
656 |
|
|
}
|
657 |
|
|
else if (__ok1 && !__ok2)
|
658 |
|
|
{
|
659 |
|
|
_Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb;
|
660 |
|
|
if (__ln_pre1 < __log_max)
|
661 |
|
|
{
|
662 |
|
|
__pre1 = std::exp(__ln_pre1);
|
663 |
|
|
__pre1 *= __sgn1;
|
664 |
|
|
__pre2 = _Tp(0);
|
665 |
|
|
}
|
666 |
|
|
else
|
667 |
|
|
{
|
668 |
|
|
std::__throw_runtime_error(__N("Overflow of gamma functions "
|
669 |
|
|
"in __hyperg_reflect"));
|
670 |
|
|
}
|
671 |
|
|
}
|
672 |
|
|
else if (!__ok1 && __ok2)
|
673 |
|
|
{
|
674 |
|
|
_Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b
|
675 |
|
|
+ __d * std::log(_Tp(1) - __x);
|
676 |
|
|
if (__ln_pre2 < __log_max)
|
677 |
|
|
{
|
678 |
|
|
__pre1 = _Tp(0);
|
679 |
|
|
__pre2 = std::exp(__ln_pre2);
|
680 |
|
|
__pre2 *= __sgn2;
|
681 |
|
|
}
|
682 |
|
|
else
|
683 |
|
|
{
|
684 |
|
|
std::__throw_runtime_error(__N("Overflow of gamma functions "
|
685 |
|
|
"in __hyperg_reflect"));
|
686 |
|
|
}
|
687 |
|
|
}
|
688 |
|
|
else
|
689 |
|
|
{
|
690 |
|
|
__pre1 = _Tp(0);
|
691 |
|
|
__pre2 = _Tp(0);
|
692 |
|
|
std::__throw_runtime_error(__N("Underflow of gamma functions "
|
693 |
|
|
"in __hyperg_reflect"));
|
694 |
|
|
}
|
695 |
|
|
|
696 |
|
|
const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d,
|
697 |
|
|
_Tp(1) - __x);
|
698 |
|
|
const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d,
|
699 |
|
|
_Tp(1) - __x);
|
700 |
|
|
|
701 |
|
|
const _Tp __F = __pre1 * __F1 + __pre2 * __F2;
|
702 |
|
|
|
703 |
|
|
return __F;
|
704 |
|
|
}
|
705 |
|
|
}
|
706 |
|
|
|
707 |
|
|
|
708 |
|
|
/**
|
709 |
|
|
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$.
|
710 |
|
|
*
|
711 |
|
|
* The hypogeometric function is defined by
|
712 |
|
|
* @f[
|
713 |
|
|
* _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
|
714 |
|
|
* \sum_{n=0}^{\infty}
|
715 |
|
|
* \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
|
716 |
|
|
* \frac{x^n}{n!}
|
717 |
|
|
* @f]
|
718 |
|
|
*
|
719 |
|
|
* @param __a The first @a numerator parameter.
|
720 |
|
|
* @param __a The second @a numerator parameter.
|
721 |
|
|
* @param __c The @a denominator parameter.
|
722 |
|
|
* @param __x The argument of the confluent hypergeometric function.
|
723 |
|
|
* @return The confluent hypergeometric function.
|
724 |
|
|
*/
|
725 |
|
|
template
|
726 |
|
|
inline _Tp
|
727 |
|
|
__hyperg(const _Tp __a, const _Tp __b, const _Tp __c, const _Tp __x)
|
728 |
|
|
{
|
729 |
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
730 |
|
|
const _Tp __a_nint = std::tr1::nearbyint(__a);
|
731 |
|
|
const _Tp __b_nint = std::tr1::nearbyint(__b);
|
732 |
|
|
const _Tp __c_nint = std::tr1::nearbyint(__c);
|
733 |
|
|
#else
|
734 |
|
|
const _Tp __a_nint = static_cast(__a + _Tp(0.5L));
|
735 |
|
|
const _Tp __b_nint = static_cast(__b + _Tp(0.5L));
|
736 |
|
|
const _Tp __c_nint = static_cast(__c + _Tp(0.5L));
|
737 |
|
|
#endif
|
738 |
|
|
const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon();
|
739 |
|
|
if (std::abs(__x) >= _Tp(1))
|
740 |
|
|
std::__throw_domain_error(__N("Argument outside unit circle "
|
741 |
|
|
"in __hyperg."));
|
742 |
|
|
else if (__isnan(__a) || __isnan(__b)
|
743 |
|
|
|| __isnan(__c) || __isnan(__x))
|
744 |
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
745 |
|
|
else if (__c_nint == __c && __c_nint <= _Tp(0))
|
746 |
|
|
return std::numeric_limits<_Tp>::infinity();
|
747 |
|
|
else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler)
|
748 |
|
|
return std::pow(_Tp(1) - __x, __c - __a - __b);
|
749 |
|
|
else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0)
|
750 |
|
|
&& __x >= _Tp(0) && __x < _Tp(0.995L))
|
751 |
|
|
return __hyperg_series(__a, __b, __c, __x);
|
752 |
|
|
else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10))
|
753 |
|
|
{
|
754 |
|
|
// For integer a and b the hypergeometric function is a
|
755 |
|
|
// finite polynomial.
|
756 |
|
|
if (__a < _Tp(0) && std::abs(__a - __a_nint) < __toler)
|
757 |
|
|
return __hyperg_series(__a_nint, __b, __c, __x);
|
758 |
|
|
else if (__b < _Tp(0) && std::abs(__b - __b_nint) < __toler)
|
759 |
|
|
return __hyperg_series(__a, __b_nint, __c, __x);
|
760 |
|
|
else if (__x < -_Tp(0.25L))
|
761 |
|
|
return __hyperg_luke(__a, __b, __c, __x);
|
762 |
|
|
else if (__x < _Tp(0.5L))
|
763 |
|
|
return __hyperg_series(__a, __b, __c, __x);
|
764 |
|
|
else
|
765 |
|
|
if (std::abs(__c) > _Tp(10))
|
766 |
|
|
return __hyperg_series(__a, __b, __c, __x);
|
767 |
|
|
else
|
768 |
|
|
return __hyperg_reflect(__a, __b, __c, __x);
|
769 |
|
|
}
|
770 |
|
|
else
|
771 |
|
|
return __hyperg_luke(__a, __b, __c, __x);
|
772 |
|
|
}
|
773 |
|
|
|
774 |
|
|
_GLIBCXX_END_NAMESPACE_VERSION
|
775 |
|
|
} // namespace std::tr1::__detail
|
776 |
|
|
}
|
777 |
|
|
}
|
778 |
|
|
|
779 |
|
|
#endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
|