1 |
35 |
ultra_embe |
// Special functions -*- C++ -*-
|
2 |
|
|
|
3 |
|
|
// Copyright (C) 2006, 2007, 2008, 2009, 2010
|
4 |
|
|
// Free Software Foundation, Inc.
|
5 |
|
|
//
|
6 |
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
7 |
|
|
// software; you can redistribute it and/or modify it under the
|
8 |
|
|
// terms of the GNU General Public License as published by the
|
9 |
|
|
// Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
// any later version.
|
11 |
|
|
//
|
12 |
|
|
// This library is distributed in the hope that it will be useful,
|
13 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
// GNU General Public License for more details.
|
16 |
|
|
//
|
17 |
|
|
// Under Section 7 of GPL version 3, you are granted additional
|
18 |
|
|
// permissions described in the GCC Runtime Library Exception, version
|
19 |
|
|
// 3.1, as published by the Free Software Foundation.
|
20 |
|
|
|
21 |
|
|
// You should have received a copy of the GNU General Public License and
|
22 |
|
|
// a copy of the GCC Runtime Library Exception along with this program;
|
23 |
|
|
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
24 |
|
|
// .
|
25 |
|
|
|
26 |
|
|
/** @file tr1/legendre_function.tcc
|
27 |
|
|
* This is an internal header file, included by other library headers.
|
28 |
|
|
* Do not attempt to use it directly. @headername{tr1/cmath}
|
29 |
|
|
*/
|
30 |
|
|
|
31 |
|
|
//
|
32 |
|
|
// ISO C++ 14882 TR1: 5.2 Special functions
|
33 |
|
|
//
|
34 |
|
|
|
35 |
|
|
// Written by Edward Smith-Rowland based on:
|
36 |
|
|
// (1) Handbook of Mathematical Functions,
|
37 |
|
|
// ed. Milton Abramowitz and Irene A. Stegun,
|
38 |
|
|
// Dover Publications,
|
39 |
|
|
// Section 8, pp. 331-341
|
40 |
|
|
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
41 |
|
|
// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
|
42 |
|
|
// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
|
43 |
|
|
// 2nd ed, pp. 252-254
|
44 |
|
|
|
45 |
|
|
#ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
|
46 |
|
|
#define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1
|
47 |
|
|
|
48 |
|
|
#include "special_function_util.h"
|
49 |
|
|
|
50 |
|
|
namespace std _GLIBCXX_VISIBILITY(default)
|
51 |
|
|
{
|
52 |
|
|
namespace tr1
|
53 |
|
|
{
|
54 |
|
|
// [5.2] Special functions
|
55 |
|
|
|
56 |
|
|
// Implementation-space details.
|
57 |
|
|
namespace __detail
|
58 |
|
|
{
|
59 |
|
|
_GLIBCXX_BEGIN_NAMESPACE_VERSION
|
60 |
|
|
|
61 |
|
|
/**
|
62 |
|
|
* @brief Return the Legendre polynomial by recursion on order
|
63 |
|
|
* @f$ l @f$.
|
64 |
|
|
*
|
65 |
|
|
* The Legendre function of @f$ l @f$ and @f$ x @f$,
|
66 |
|
|
* @f$ P_l(x) @f$, is defined by:
|
67 |
|
|
* @f[
|
68 |
|
|
* P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}
|
69 |
|
|
* @f]
|
70 |
|
|
*
|
71 |
|
|
* @param l The order of the Legendre polynomial. @f$l >= 0@f$.
|
72 |
|
|
* @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.
|
73 |
|
|
*/
|
74 |
|
|
template
|
75 |
|
|
_Tp
|
76 |
|
|
__poly_legendre_p(const unsigned int __l, const _Tp __x)
|
77 |
|
|
{
|
78 |
|
|
|
79 |
|
|
if ((__x < _Tp(-1)) || (__x > _Tp(+1)))
|
80 |
|
|
std::__throw_domain_error(__N("Argument out of range"
|
81 |
|
|
" in __poly_legendre_p."));
|
82 |
|
|
else if (__isnan(__x))
|
83 |
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
84 |
|
|
else if (__x == +_Tp(1))
|
85 |
|
|
return +_Tp(1);
|
86 |
|
|
else if (__x == -_Tp(1))
|
87 |
|
|
return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1));
|
88 |
|
|
else
|
89 |
|
|
{
|
90 |
|
|
_Tp __p_lm2 = _Tp(1);
|
91 |
|
|
if (__l == 0)
|
92 |
|
|
return __p_lm2;
|
93 |
|
|
|
94 |
|
|
_Tp __p_lm1 = __x;
|
95 |
|
|
if (__l == 1)
|
96 |
|
|
return __p_lm1;
|
97 |
|
|
|
98 |
|
|
_Tp __p_l = 0;
|
99 |
|
|
for (unsigned int __ll = 2; __ll <= __l; ++__ll)
|
100 |
|
|
{
|
101 |
|
|
// This arrangement is supposed to be better for roundoff
|
102 |
|
|
// protection, Arfken, 2nd Ed, Eq 12.17a.
|
103 |
|
|
__p_l = _Tp(2) * __x * __p_lm1 - __p_lm2
|
104 |
|
|
- (__x * __p_lm1 - __p_lm2) / _Tp(__ll);
|
105 |
|
|
__p_lm2 = __p_lm1;
|
106 |
|
|
__p_lm1 = __p_l;
|
107 |
|
|
}
|
108 |
|
|
|
109 |
|
|
return __p_l;
|
110 |
|
|
}
|
111 |
|
|
}
|
112 |
|
|
|
113 |
|
|
|
114 |
|
|
/**
|
115 |
|
|
* @brief Return the associated Legendre function by recursion
|
116 |
|
|
* on @f$ l @f$.
|
117 |
|
|
*
|
118 |
|
|
* The associated Legendre function is derived from the Legendre function
|
119 |
|
|
* @f$ P_l(x) @f$ by the Rodrigues formula:
|
120 |
|
|
* @f[
|
121 |
|
|
* P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)
|
122 |
|
|
* @f]
|
123 |
|
|
*
|
124 |
|
|
* @param l The order of the associated Legendre function.
|
125 |
|
|
* @f$ l >= 0 @f$.
|
126 |
|
|
* @param m The order of the associated Legendre function.
|
127 |
|
|
* @f$ m <= l @f$.
|
128 |
|
|
* @param x The argument of the associated Legendre function.
|
129 |
|
|
* @f$ |x| <= 1 @f$.
|
130 |
|
|
*/
|
131 |
|
|
template
|
132 |
|
|
_Tp
|
133 |
|
|
__assoc_legendre_p(const unsigned int __l, const unsigned int __m,
|
134 |
|
|
const _Tp __x)
|
135 |
|
|
{
|
136 |
|
|
|
137 |
|
|
if (__x < _Tp(-1) || __x > _Tp(+1))
|
138 |
|
|
std::__throw_domain_error(__N("Argument out of range"
|
139 |
|
|
" in __assoc_legendre_p."));
|
140 |
|
|
else if (__m > __l)
|
141 |
|
|
std::__throw_domain_error(__N("Degree out of range"
|
142 |
|
|
" in __assoc_legendre_p."));
|
143 |
|
|
else if (__isnan(__x))
|
144 |
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
145 |
|
|
else if (__m == 0)
|
146 |
|
|
return __poly_legendre_p(__l, __x);
|
147 |
|
|
else
|
148 |
|
|
{
|
149 |
|
|
_Tp __p_mm = _Tp(1);
|
150 |
|
|
if (__m > 0)
|
151 |
|
|
{
|
152 |
|
|
// Two square roots seem more accurate more of the time
|
153 |
|
|
// than just one.
|
154 |
|
|
_Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x);
|
155 |
|
|
_Tp __fact = _Tp(1);
|
156 |
|
|
for (unsigned int __i = 1; __i <= __m; ++__i)
|
157 |
|
|
{
|
158 |
|
|
__p_mm *= -__fact * __root;
|
159 |
|
|
__fact += _Tp(2);
|
160 |
|
|
}
|
161 |
|
|
}
|
162 |
|
|
if (__l == __m)
|
163 |
|
|
return __p_mm;
|
164 |
|
|
|
165 |
|
|
_Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm;
|
166 |
|
|
if (__l == __m + 1)
|
167 |
|
|
return __p_mp1m;
|
168 |
|
|
|
169 |
|
|
_Tp __p_lm2m = __p_mm;
|
170 |
|
|
_Tp __P_lm1m = __p_mp1m;
|
171 |
|
|
_Tp __p_lm = _Tp(0);
|
172 |
|
|
for (unsigned int __j = __m + 2; __j <= __l; ++__j)
|
173 |
|
|
{
|
174 |
|
|
__p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m
|
175 |
|
|
- _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m);
|
176 |
|
|
__p_lm2m = __P_lm1m;
|
177 |
|
|
__P_lm1m = __p_lm;
|
178 |
|
|
}
|
179 |
|
|
|
180 |
|
|
return __p_lm;
|
181 |
|
|
}
|
182 |
|
|
}
|
183 |
|
|
|
184 |
|
|
|
185 |
|
|
/**
|
186 |
|
|
* @brief Return the spherical associated Legendre function.
|
187 |
|
|
*
|
188 |
|
|
* The spherical associated Legendre function of @f$ l @f$, @f$ m @f$,
|
189 |
|
|
* and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where
|
190 |
|
|
* @f[
|
191 |
|
|
* Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi}
|
192 |
|
|
* \frac{(l-m)!}{(l+m)!}]
|
193 |
|
|
* P_l^m(\cos\theta) \exp^{im\phi}
|
194 |
|
|
* @f]
|
195 |
|
|
* is the spherical harmonic function and @f$ P_l^m(x) @f$ is the
|
196 |
|
|
* associated Legendre function.
|
197 |
|
|
*
|
198 |
|
|
* This function differs from the associated Legendre function by
|
199 |
|
|
* argument (@f$x = \cos(\theta)@f$) and by a normalization factor
|
200 |
|
|
* but this factor is rather large for large @f$ l @f$ and @f$ m @f$
|
201 |
|
|
* and so this function is stable for larger differences of @f$ l @f$
|
202 |
|
|
* and @f$ m @f$.
|
203 |
|
|
*
|
204 |
|
|
* @param l The order of the spherical associated Legendre function.
|
205 |
|
|
* @f$ l >= 0 @f$.
|
206 |
|
|
* @param m The order of the spherical associated Legendre function.
|
207 |
|
|
* @f$ m <= l @f$.
|
208 |
|
|
* @param theta The radian angle argument of the spherical associated
|
209 |
|
|
* Legendre function.
|
210 |
|
|
*/
|
211 |
|
|
template
|
212 |
|
|
_Tp
|
213 |
|
|
__sph_legendre(const unsigned int __l, const unsigned int __m,
|
214 |
|
|
const _Tp __theta)
|
215 |
|
|
{
|
216 |
|
|
if (__isnan(__theta))
|
217 |
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
218 |
|
|
|
219 |
|
|
const _Tp __x = std::cos(__theta);
|
220 |
|
|
|
221 |
|
|
if (__l < __m)
|
222 |
|
|
{
|
223 |
|
|
std::__throw_domain_error(__N("Bad argument "
|
224 |
|
|
"in __sph_legendre."));
|
225 |
|
|
}
|
226 |
|
|
else if (__m == 0)
|
227 |
|
|
{
|
228 |
|
|
_Tp __P = __poly_legendre_p(__l, __x);
|
229 |
|
|
_Tp __fact = std::sqrt(_Tp(2 * __l + 1)
|
230 |
|
|
/ (_Tp(4) * __numeric_constants<_Tp>::__pi()));
|
231 |
|
|
__P *= __fact;
|
232 |
|
|
return __P;
|
233 |
|
|
}
|
234 |
|
|
else if (__x == _Tp(1) || __x == -_Tp(1))
|
235 |
|
|
{
|
236 |
|
|
// m > 0 here
|
237 |
|
|
return _Tp(0);
|
238 |
|
|
}
|
239 |
|
|
else
|
240 |
|
|
{
|
241 |
|
|
// m > 0 and |x| < 1 here
|
242 |
|
|
|
243 |
|
|
// Starting value for recursion.
|
244 |
|
|
// Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) )
|
245 |
|
|
// (-1)^m (1-x^2)^(m/2) / pi^(1/4)
|
246 |
|
|
const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1));
|
247 |
|
|
const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3));
|
248 |
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
249 |
|
|
const _Tp __lncirc = std::tr1::log1p(-__x * __x);
|
250 |
|
|
#else
|
251 |
|
|
const _Tp __lncirc = std::log(_Tp(1) - __x * __x);
|
252 |
|
|
#endif
|
253 |
|
|
// Gamma(m+1/2) / Gamma(m)
|
254 |
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
255 |
|
|
const _Tp __lnpoch = std::tr1::lgamma(_Tp(__m + _Tp(0.5L)))
|
256 |
|
|
- std::tr1::lgamma(_Tp(__m));
|
257 |
|
|
#else
|
258 |
|
|
const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L)))
|
259 |
|
|
- __log_gamma(_Tp(__m));
|
260 |
|
|
#endif
|
261 |
|
|
const _Tp __lnpre_val =
|
262 |
|
|
-_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi()
|
263 |
|
|
+ _Tp(0.5L) * (__lnpoch + __m * __lncirc);
|
264 |
|
|
_Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m)
|
265 |
|
|
/ (_Tp(4) * __numeric_constants<_Tp>::__pi()));
|
266 |
|
|
_Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val);
|
267 |
|
|
_Tp __y_mp1m = __y_mp1m_factor * __y_mm;
|
268 |
|
|
|
269 |
|
|
if (__l == __m)
|
270 |
|
|
{
|
271 |
|
|
return __y_mm;
|
272 |
|
|
}
|
273 |
|
|
else if (__l == __m + 1)
|
274 |
|
|
{
|
275 |
|
|
return __y_mp1m;
|
276 |
|
|
}
|
277 |
|
|
else
|
278 |
|
|
{
|
279 |
|
|
_Tp __y_lm = _Tp(0);
|
280 |
|
|
|
281 |
|
|
// Compute Y_l^m, l > m+1, upward recursion on l.
|
282 |
|
|
for ( int __ll = __m + 2; __ll <= __l; ++__ll)
|
283 |
|
|
{
|
284 |
|
|
const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m);
|
285 |
|
|
const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1);
|
286 |
|
|
const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1)
|
287 |
|
|
* _Tp(2 * __ll - 1));
|
288 |
|
|
const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1)
|
289 |
|
|
/ _Tp(2 * __ll - 3));
|
290 |
|
|
__y_lm = (__x * __y_mp1m * __fact1
|
291 |
|
|
- (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m);
|
292 |
|
|
__y_mm = __y_mp1m;
|
293 |
|
|
__y_mp1m = __y_lm;
|
294 |
|
|
}
|
295 |
|
|
|
296 |
|
|
return __y_lm;
|
297 |
|
|
}
|
298 |
|
|
}
|
299 |
|
|
}
|
300 |
|
|
|
301 |
|
|
_GLIBCXX_END_NAMESPACE_VERSION
|
302 |
|
|
} // namespace std::tr1::__detail
|
303 |
|
|
}
|
304 |
|
|
}
|
305 |
|
|
|
306 |
|
|
#endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
|