1 |
35 |
ultra_embe |
// Special functions -*- C++ -*-
|
2 |
|
|
|
3 |
|
|
// Copyright (C) 2006, 2007, 2008, 2009, 2010
|
4 |
|
|
// Free Software Foundation, Inc.
|
5 |
|
|
//
|
6 |
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
7 |
|
|
// software; you can redistribute it and/or modify it under the
|
8 |
|
|
// terms of the GNU General Public License as published by the
|
9 |
|
|
// Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
// any later version.
|
11 |
|
|
//
|
12 |
|
|
// This library is distributed in the hope that it will be useful,
|
13 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
// GNU General Public License for more details.
|
16 |
|
|
//
|
17 |
|
|
// Under Section 7 of GPL version 3, you are granted additional
|
18 |
|
|
// permissions described in the GCC Runtime Library Exception, version
|
19 |
|
|
// 3.1, as published by the Free Software Foundation.
|
20 |
|
|
|
21 |
|
|
// You should have received a copy of the GNU General Public License and
|
22 |
|
|
// a copy of the GCC Runtime Library Exception along with this program;
|
23 |
|
|
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
24 |
|
|
// .
|
25 |
|
|
|
26 |
|
|
/** @file tr1/poly_laguerre.tcc
|
27 |
|
|
* This is an internal header file, included by other library headers.
|
28 |
|
|
* Do not attempt to use it directly. @headername{tr1/cmath}
|
29 |
|
|
*/
|
30 |
|
|
|
31 |
|
|
//
|
32 |
|
|
// ISO C++ 14882 TR1: 5.2 Special functions
|
33 |
|
|
//
|
34 |
|
|
|
35 |
|
|
// Written by Edward Smith-Rowland based on:
|
36 |
|
|
// (1) Handbook of Mathematical Functions,
|
37 |
|
|
// Ed. Milton Abramowitz and Irene A. Stegun,
|
38 |
|
|
// Dover Publications,
|
39 |
|
|
// Section 13, pp. 509-510, Section 22 pp. 773-802
|
40 |
|
|
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
41 |
|
|
|
42 |
|
|
#ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC
|
43 |
|
|
#define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1
|
44 |
|
|
|
45 |
|
|
namespace std _GLIBCXX_VISIBILITY(default)
|
46 |
|
|
{
|
47 |
|
|
namespace tr1
|
48 |
|
|
{
|
49 |
|
|
// [5.2] Special functions
|
50 |
|
|
|
51 |
|
|
// Implementation-space details.
|
52 |
|
|
namespace __detail
|
53 |
|
|
{
|
54 |
|
|
_GLIBCXX_BEGIN_NAMESPACE_VERSION
|
55 |
|
|
|
56 |
|
|
/**
|
57 |
|
|
* @brief This routine returns the associated Laguerre polynomial
|
58 |
|
|
* of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
|
59 |
|
|
* Abramowitz & Stegun, 13.5.21
|
60 |
|
|
*
|
61 |
|
|
* @param __n The order of the Laguerre function.
|
62 |
|
|
* @param __alpha The degree of the Laguerre function.
|
63 |
|
|
* @param __x The argument of the Laguerre function.
|
64 |
|
|
* @return The value of the Laguerre function of order n,
|
65 |
|
|
* degree @f$ \alpha @f$, and argument x.
|
66 |
|
|
*
|
67 |
|
|
* This is from the GNU Scientific Library.
|
68 |
|
|
*/
|
69 |
|
|
template
|
70 |
|
|
_Tp
|
71 |
|
|
__poly_laguerre_large_n(const unsigned __n, const _Tpa __alpha1,
|
72 |
|
|
const _Tp __x)
|
73 |
|
|
{
|
74 |
|
|
const _Tp __a = -_Tp(__n);
|
75 |
|
|
const _Tp __b = _Tp(__alpha1) + _Tp(1);
|
76 |
|
|
const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a;
|
77 |
|
|
const _Tp __cos2th = __x / __eta;
|
78 |
|
|
const _Tp __sin2th = _Tp(1) - __cos2th;
|
79 |
|
|
const _Tp __th = std::acos(std::sqrt(__cos2th));
|
80 |
|
|
const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2()
|
81 |
|
|
* __numeric_constants<_Tp>::__pi_2()
|
82 |
|
|
* __eta * __eta * __cos2th * __sin2th;
|
83 |
|
|
|
84 |
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
85 |
|
|
const _Tp __lg_b = std::tr1::lgamma(_Tp(__n) + __b);
|
86 |
|
|
const _Tp __lnfact = std::tr1::lgamma(_Tp(__n + 1));
|
87 |
|
|
#else
|
88 |
|
|
const _Tp __lg_b = __log_gamma(_Tp(__n) + __b);
|
89 |
|
|
const _Tp __lnfact = __log_gamma(_Tp(__n + 1));
|
90 |
|
|
#endif
|
91 |
|
|
|
92 |
|
|
_Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b)
|
93 |
|
|
* std::log(_Tp(0.25L) * __x * __eta);
|
94 |
|
|
_Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h);
|
95 |
|
|
_Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x
|
96 |
|
|
+ __pre_term1 - __pre_term2;
|
97 |
|
|
_Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi());
|
98 |
|
|
_Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta
|
99 |
|
|
* (_Tp(2) * __th
|
100 |
|
|
- std::sin(_Tp(2) * __th))
|
101 |
|
|
+ __numeric_constants<_Tp>::__pi_4());
|
102 |
|
|
_Tp __ser = __ser_term1 + __ser_term2;
|
103 |
|
|
|
104 |
|
|
return std::exp(__lnpre) * __ser;
|
105 |
|
|
}
|
106 |
|
|
|
107 |
|
|
|
108 |
|
|
/**
|
109 |
|
|
* @brief Evaluate the polynomial based on the confluent hypergeometric
|
110 |
|
|
* function in a safe way, with no restriction on the arguments.
|
111 |
|
|
*
|
112 |
|
|
* The associated Laguerre function is defined by
|
113 |
|
|
* @f[
|
114 |
|
|
* L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
|
115 |
|
|
* _1F_1(-n; \alpha + 1; x)
|
116 |
|
|
* @f]
|
117 |
|
|
* where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
|
118 |
|
|
* @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
|
119 |
|
|
*
|
120 |
|
|
* This function assumes x != 0.
|
121 |
|
|
*
|
122 |
|
|
* This is from the GNU Scientific Library.
|
123 |
|
|
*/
|
124 |
|
|
template
|
125 |
|
|
_Tp
|
126 |
|
|
__poly_laguerre_hyperg(const unsigned int __n, const _Tpa __alpha1,
|
127 |
|
|
const _Tp __x)
|
128 |
|
|
{
|
129 |
|
|
const _Tp __b = _Tp(__alpha1) + _Tp(1);
|
130 |
|
|
const _Tp __mx = -__x;
|
131 |
|
|
const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1)
|
132 |
|
|
: ((__n % 2 == 1) ? -_Tp(1) : _Tp(1)));
|
133 |
|
|
// Get |x|^n/n!
|
134 |
|
|
_Tp __tc = _Tp(1);
|
135 |
|
|
const _Tp __ax = std::abs(__x);
|
136 |
|
|
for (unsigned int __k = 1; __k <= __n; ++__k)
|
137 |
|
|
__tc *= (__ax / __k);
|
138 |
|
|
|
139 |
|
|
_Tp __term = __tc * __tc_sgn;
|
140 |
|
|
_Tp __sum = __term;
|
141 |
|
|
for (int __k = int(__n) - 1; __k >= 0; --__k)
|
142 |
|
|
{
|
143 |
|
|
__term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k))
|
144 |
|
|
* _Tp(__k + 1) / __mx;
|
145 |
|
|
__sum += __term;
|
146 |
|
|
}
|
147 |
|
|
|
148 |
|
|
return __sum;
|
149 |
|
|
}
|
150 |
|
|
|
151 |
|
|
|
152 |
|
|
/**
|
153 |
|
|
* @brief This routine returns the associated Laguerre polynomial
|
154 |
|
|
* of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
|
155 |
|
|
* by recursion.
|
156 |
|
|
*
|
157 |
|
|
* The associated Laguerre function is defined by
|
158 |
|
|
* @f[
|
159 |
|
|
* L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
|
160 |
|
|
* _1F_1(-n; \alpha + 1; x)
|
161 |
|
|
* @f]
|
162 |
|
|
* where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
|
163 |
|
|
* @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
|
164 |
|
|
*
|
165 |
|
|
* The associated Laguerre polynomial is defined for integral
|
166 |
|
|
* @f$ \alpha = m @f$ by:
|
167 |
|
|
* @f[
|
168 |
|
|
* L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
|
169 |
|
|
* @f]
|
170 |
|
|
* where the Laguerre polynomial is defined by:
|
171 |
|
|
* @f[
|
172 |
|
|
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
|
173 |
|
|
* @f]
|
174 |
|
|
*
|
175 |
|
|
* @param __n The order of the Laguerre function.
|
176 |
|
|
* @param __alpha The degree of the Laguerre function.
|
177 |
|
|
* @param __x The argument of the Laguerre function.
|
178 |
|
|
* @return The value of the Laguerre function of order n,
|
179 |
|
|
* degree @f$ \alpha @f$, and argument x.
|
180 |
|
|
*/
|
181 |
|
|
template
|
182 |
|
|
_Tp
|
183 |
|
|
__poly_laguerre_recursion(const unsigned int __n,
|
184 |
|
|
const _Tpa __alpha1, const _Tp __x)
|
185 |
|
|
{
|
186 |
|
|
// Compute l_0.
|
187 |
|
|
_Tp __l_0 = _Tp(1);
|
188 |
|
|
if (__n == 0)
|
189 |
|
|
return __l_0;
|
190 |
|
|
|
191 |
|
|
// Compute l_1^alpha.
|
192 |
|
|
_Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1);
|
193 |
|
|
if (__n == 1)
|
194 |
|
|
return __l_1;
|
195 |
|
|
|
196 |
|
|
// Compute l_n^alpha by recursion on n.
|
197 |
|
|
_Tp __l_n2 = __l_0;
|
198 |
|
|
_Tp __l_n1 = __l_1;
|
199 |
|
|
_Tp __l_n = _Tp(0);
|
200 |
|
|
for (unsigned int __nn = 2; __nn <= __n; ++__nn)
|
201 |
|
|
{
|
202 |
|
|
__l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x)
|
203 |
|
|
* __l_n1 / _Tp(__nn)
|
204 |
|
|
- (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn);
|
205 |
|
|
__l_n2 = __l_n1;
|
206 |
|
|
__l_n1 = __l_n;
|
207 |
|
|
}
|
208 |
|
|
|
209 |
|
|
return __l_n;
|
210 |
|
|
}
|
211 |
|
|
|
212 |
|
|
|
213 |
|
|
/**
|
214 |
|
|
* @brief This routine returns the associated Laguerre polynomial
|
215 |
|
|
* of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$.
|
216 |
|
|
*
|
217 |
|
|
* The associated Laguerre function is defined by
|
218 |
|
|
* @f[
|
219 |
|
|
* L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
|
220 |
|
|
* _1F_1(-n; \alpha + 1; x)
|
221 |
|
|
* @f]
|
222 |
|
|
* where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
|
223 |
|
|
* @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
|
224 |
|
|
*
|
225 |
|
|
* The associated Laguerre polynomial is defined for integral
|
226 |
|
|
* @f$ \alpha = m @f$ by:
|
227 |
|
|
* @f[
|
228 |
|
|
* L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
|
229 |
|
|
* @f]
|
230 |
|
|
* where the Laguerre polynomial is defined by:
|
231 |
|
|
* @f[
|
232 |
|
|
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
|
233 |
|
|
* @f]
|
234 |
|
|
*
|
235 |
|
|
* @param __n The order of the Laguerre function.
|
236 |
|
|
* @param __alpha The degree of the Laguerre function.
|
237 |
|
|
* @param __x The argument of the Laguerre function.
|
238 |
|
|
* @return The value of the Laguerre function of order n,
|
239 |
|
|
* degree @f$ \alpha @f$, and argument x.
|
240 |
|
|
*/
|
241 |
|
|
template
|
242 |
|
|
inline _Tp
|
243 |
|
|
__poly_laguerre(const unsigned int __n, const _Tpa __alpha1,
|
244 |
|
|
const _Tp __x)
|
245 |
|
|
{
|
246 |
|
|
if (__x < _Tp(0))
|
247 |
|
|
std::__throw_domain_error(__N("Negative argument "
|
248 |
|
|
"in __poly_laguerre."));
|
249 |
|
|
// Return NaN on NaN input.
|
250 |
|
|
else if (__isnan(__x))
|
251 |
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
252 |
|
|
else if (__n == 0)
|
253 |
|
|
return _Tp(1);
|
254 |
|
|
else if (__n == 1)
|
255 |
|
|
return _Tp(1) + _Tp(__alpha1) - __x;
|
256 |
|
|
else if (__x == _Tp(0))
|
257 |
|
|
{
|
258 |
|
|
_Tp __prod = _Tp(__alpha1) + _Tp(1);
|
259 |
|
|
for (unsigned int __k = 2; __k <= __n; ++__k)
|
260 |
|
|
__prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k);
|
261 |
|
|
return __prod;
|
262 |
|
|
}
|
263 |
|
|
else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1)
|
264 |
|
|
&& __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n))
|
265 |
|
|
return __poly_laguerre_large_n(__n, __alpha1, __x);
|
266 |
|
|
else if (_Tp(__alpha1) >= _Tp(0)
|
267 |
|
|
|| (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1)))
|
268 |
|
|
return __poly_laguerre_recursion(__n, __alpha1, __x);
|
269 |
|
|
else
|
270 |
|
|
return __poly_laguerre_hyperg(__n, __alpha1, __x);
|
271 |
|
|
}
|
272 |
|
|
|
273 |
|
|
|
274 |
|
|
/**
|
275 |
|
|
* @brief This routine returns the associated Laguerre polynomial
|
276 |
|
|
* of order n, degree m: @f$ L_n^m(x) @f$.
|
277 |
|
|
*
|
278 |
|
|
* The associated Laguerre polynomial is defined for integral
|
279 |
|
|
* @f$ \alpha = m @f$ by:
|
280 |
|
|
* @f[
|
281 |
|
|
* L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
|
282 |
|
|
* @f]
|
283 |
|
|
* where the Laguerre polynomial is defined by:
|
284 |
|
|
* @f[
|
285 |
|
|
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
|
286 |
|
|
* @f]
|
287 |
|
|
*
|
288 |
|
|
* @param __n The order of the Laguerre polynomial.
|
289 |
|
|
* @param __m The degree of the Laguerre polynomial.
|
290 |
|
|
* @param __x The argument of the Laguerre polynomial.
|
291 |
|
|
* @return The value of the associated Laguerre polynomial of order n,
|
292 |
|
|
* degree m, and argument x.
|
293 |
|
|
*/
|
294 |
|
|
template
|
295 |
|
|
inline _Tp
|
296 |
|
|
__assoc_laguerre(const unsigned int __n, const unsigned int __m,
|
297 |
|
|
const _Tp __x)
|
298 |
|
|
{
|
299 |
|
|
return __poly_laguerre(__n, __m, __x);
|
300 |
|
|
}
|
301 |
|
|
|
302 |
|
|
|
303 |
|
|
/**
|
304 |
|
|
* @brief This routine returns the Laguerre polynomial
|
305 |
|
|
* of order n: @f$ L_n(x) @f$.
|
306 |
|
|
*
|
307 |
|
|
* The Laguerre polynomial is defined by:
|
308 |
|
|
* @f[
|
309 |
|
|
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
|
310 |
|
|
* @f]
|
311 |
|
|
*
|
312 |
|
|
* @param __n The order of the Laguerre polynomial.
|
313 |
|
|
* @param __x The argument of the Laguerre polynomial.
|
314 |
|
|
* @return The value of the Laguerre polynomial of order n
|
315 |
|
|
* and argument x.
|
316 |
|
|
*/
|
317 |
|
|
template
|
318 |
|
|
inline _Tp
|
319 |
|
|
__laguerre(const unsigned int __n, const _Tp __x)
|
320 |
|
|
{
|
321 |
|
|
return __poly_laguerre(__n, 0, __x);
|
322 |
|
|
}
|
323 |
|
|
|
324 |
|
|
_GLIBCXX_END_NAMESPACE_VERSION
|
325 |
|
|
} // namespace std::tr1::__detail
|
326 |
|
|
}
|
327 |
|
|
}
|
328 |
|
|
|
329 |
|
|
#endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC
|