OpenCores
URL https://opencores.org/ocsvn/altor32/altor32/trunk

Subversion Repositories altor32

[/] [altor32/] [trunk/] [gcc-x64/] [or1knd-elf/] [or1knd-elf/] [include/] [c++/] [4.8.0/] [tr1/] [poly_laguerre.tcc] - Blame information for rev 35

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 35 ultra_embe
// Special functions -*- C++ -*-
2
 
3
// Copyright (C) 2006, 2007, 2008, 2009, 2010
4
// Free Software Foundation, Inc.
5
//
6
// This file is part of the GNU ISO C++ Library.  This library is free
7
// software; you can redistribute it and/or modify it under the
8
// terms of the GNU General Public License as published by the
9
// Free Software Foundation; either version 3, or (at your option)
10
// any later version.
11
//
12
// This library is distributed in the hope that it will be useful,
13
// but WITHOUT ANY WARRANTY; without even the implied warranty of
14
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
// GNU General Public License for more details.
16
//
17
// Under Section 7 of GPL version 3, you are granted additional
18
// permissions described in the GCC Runtime Library Exception, version
19
// 3.1, as published by the Free Software Foundation.
20
 
21
// You should have received a copy of the GNU General Public License and
22
// a copy of the GCC Runtime Library Exception along with this program;
23
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24
// .
25
 
26
/** @file tr1/poly_laguerre.tcc
27
 *  This is an internal header file, included by other library headers.
28
 *  Do not attempt to use it directly. @headername{tr1/cmath}
29
 */
30
 
31
//
32
// ISO C++ 14882 TR1: 5.2  Special functions
33
//
34
 
35
// Written by Edward Smith-Rowland based on:
36
//   (1) Handbook of Mathematical Functions,
37
//       Ed. Milton Abramowitz and Irene A. Stegun,
38
//       Dover Publications,
39
//       Section 13, pp. 509-510, Section 22 pp. 773-802
40
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
41
 
42
#ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC
43
#define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1
44
 
45
namespace std _GLIBCXX_VISIBILITY(default)
46
{
47
namespace tr1
48
{
49
  // [5.2] Special functions
50
 
51
  // Implementation-space details.
52
  namespace __detail
53
  {
54
  _GLIBCXX_BEGIN_NAMESPACE_VERSION
55
 
56
    /**
57
     *   @brief This routine returns the associated Laguerre polynomial
58
     *          of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
59
     *   Abramowitz & Stegun, 13.5.21
60
     *
61
     *   @param __n The order of the Laguerre function.
62
     *   @param __alpha The degree of the Laguerre function.
63
     *   @param __x The argument of the Laguerre function.
64
     *   @return The value of the Laguerre function of order n,
65
     *           degree @f$ \alpha @f$, and argument x.
66
     *
67
     *  This is from the GNU Scientific Library.
68
     */
69
    template
70
    _Tp
71
    __poly_laguerre_large_n(const unsigned __n, const _Tpa __alpha1,
72
                            const _Tp __x)
73
    {
74
      const _Tp __a = -_Tp(__n);
75
      const _Tp __b = _Tp(__alpha1) + _Tp(1);
76
      const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a;
77
      const _Tp __cos2th = __x / __eta;
78
      const _Tp __sin2th = _Tp(1) - __cos2th;
79
      const _Tp __th = std::acos(std::sqrt(__cos2th));
80
      const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2()
81
                        * __numeric_constants<_Tp>::__pi_2()
82
                        * __eta * __eta * __cos2th * __sin2th;
83
 
84
#if _GLIBCXX_USE_C99_MATH_TR1
85
      const _Tp __lg_b = std::tr1::lgamma(_Tp(__n) + __b);
86
      const _Tp __lnfact = std::tr1::lgamma(_Tp(__n + 1));
87
#else
88
      const _Tp __lg_b = __log_gamma(_Tp(__n) + __b);
89
      const _Tp __lnfact = __log_gamma(_Tp(__n + 1));
90
#endif
91
 
92
      _Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b)
93
                      * std::log(_Tp(0.25L) * __x * __eta);
94
      _Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h);
95
      _Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x
96
                      + __pre_term1 - __pre_term2;
97
      _Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi());
98
      _Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta
99
                              * (_Tp(2) * __th
100
                               - std::sin(_Tp(2) * __th))
101
                               + __numeric_constants<_Tp>::__pi_4());
102
      _Tp __ser = __ser_term1 + __ser_term2;
103
 
104
      return std::exp(__lnpre) * __ser;
105
    }
106
 
107
 
108
    /**
109
     *  @brief  Evaluate the polynomial based on the confluent hypergeometric
110
     *          function in a safe way, with no restriction on the arguments.
111
     *
112
     *   The associated Laguerre function is defined by
113
     *   @f[
114
     *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
115
     *                       _1F_1(-n; \alpha + 1; x)
116
     *   @f]
117
     *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
118
     *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
119
     *
120
     *  This function assumes x != 0.
121
     *
122
     *  This is from the GNU Scientific Library.
123
     */
124
    template
125
    _Tp
126
    __poly_laguerre_hyperg(const unsigned int __n, const _Tpa __alpha1,
127
                           const _Tp __x)
128
    {
129
      const _Tp __b = _Tp(__alpha1) + _Tp(1);
130
      const _Tp __mx = -__x;
131
      const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1)
132
                         : ((__n % 2 == 1) ? -_Tp(1) : _Tp(1)));
133
      //  Get |x|^n/n!
134
      _Tp __tc = _Tp(1);
135
      const _Tp __ax = std::abs(__x);
136
      for (unsigned int __k = 1; __k <= __n; ++__k)
137
        __tc *= (__ax / __k);
138
 
139
      _Tp __term = __tc * __tc_sgn;
140
      _Tp __sum = __term;
141
      for (int __k = int(__n) - 1; __k >= 0; --__k)
142
        {
143
          __term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k))
144
                  * _Tp(__k + 1) / __mx;
145
          __sum += __term;
146
        }
147
 
148
      return __sum;
149
    }
150
 
151
 
152
    /**
153
     *   @brief This routine returns the associated Laguerre polynomial
154
     *          of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
155
     *          by recursion.
156
     *
157
     *   The associated Laguerre function is defined by
158
     *   @f[
159
     *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
160
     *                       _1F_1(-n; \alpha + 1; x)
161
     *   @f]
162
     *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
163
     *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
164
     *
165
     *   The associated Laguerre polynomial is defined for integral
166
     *   @f$ \alpha = m @f$ by:
167
     *   @f[
168
     *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
169
     *   @f]
170
     *   where the Laguerre polynomial is defined by:
171
     *   @f[
172
     *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
173
     *   @f]
174
     *
175
     *   @param __n The order of the Laguerre function.
176
     *   @param __alpha The degree of the Laguerre function.
177
     *   @param __x The argument of the Laguerre function.
178
     *   @return The value of the Laguerre function of order n,
179
     *           degree @f$ \alpha @f$, and argument x.
180
     */
181
    template
182
    _Tp
183
    __poly_laguerre_recursion(const unsigned int __n,
184
                              const _Tpa __alpha1, const _Tp __x)
185
    {
186
      //   Compute l_0.
187
      _Tp __l_0 = _Tp(1);
188
      if  (__n == 0)
189
        return __l_0;
190
 
191
      //  Compute l_1^alpha.
192
      _Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1);
193
      if  (__n == 1)
194
        return __l_1;
195
 
196
      //  Compute l_n^alpha by recursion on n.
197
      _Tp __l_n2 = __l_0;
198
      _Tp __l_n1 = __l_1;
199
      _Tp __l_n = _Tp(0);
200
      for  (unsigned int __nn = 2; __nn <= __n; ++__nn)
201
        {
202
            __l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x)
203
                  * __l_n1 / _Tp(__nn)
204
                  - (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn);
205
            __l_n2 = __l_n1;
206
            __l_n1 = __l_n;
207
        }
208
 
209
      return __l_n;
210
    }
211
 
212
 
213
    /**
214
     *   @brief This routine returns the associated Laguerre polynomial
215
     *          of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$.
216
     *
217
     *   The associated Laguerre function is defined by
218
     *   @f[
219
     *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
220
     *                       _1F_1(-n; \alpha + 1; x)
221
     *   @f]
222
     *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
223
     *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
224
     *
225
     *   The associated Laguerre polynomial is defined for integral
226
     *   @f$ \alpha = m @f$ by:
227
     *   @f[
228
     *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
229
     *   @f]
230
     *   where the Laguerre polynomial is defined by:
231
     *   @f[
232
     *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
233
     *   @f]
234
     *
235
     *   @param __n The order of the Laguerre function.
236
     *   @param __alpha The degree of the Laguerre function.
237
     *   @param __x The argument of the Laguerre function.
238
     *   @return The value of the Laguerre function of order n,
239
     *           degree @f$ \alpha @f$, and argument x.
240
     */
241
    template
242
    inline _Tp
243
    __poly_laguerre(const unsigned int __n, const _Tpa __alpha1,
244
                    const _Tp __x)
245
    {
246
      if (__x < _Tp(0))
247
        std::__throw_domain_error(__N("Negative argument "
248
                                      "in __poly_laguerre."));
249
      //  Return NaN on NaN input.
250
      else if (__isnan(__x))
251
        return std::numeric_limits<_Tp>::quiet_NaN();
252
      else if (__n == 0)
253
        return _Tp(1);
254
      else if (__n == 1)
255
        return _Tp(1) + _Tp(__alpha1) - __x;
256
      else if (__x == _Tp(0))
257
        {
258
          _Tp __prod = _Tp(__alpha1) + _Tp(1);
259
          for (unsigned int __k = 2; __k <= __n; ++__k)
260
            __prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k);
261
          return __prod;
262
        }
263
      else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1)
264
            && __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n))
265
        return __poly_laguerre_large_n(__n, __alpha1, __x);
266
      else if (_Tp(__alpha1) >= _Tp(0)
267
           || (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1)))
268
        return __poly_laguerre_recursion(__n, __alpha1, __x);
269
      else
270
        return __poly_laguerre_hyperg(__n, __alpha1, __x);
271
    }
272
 
273
 
274
    /**
275
     *   @brief This routine returns the associated Laguerre polynomial
276
     *          of order n, degree m: @f$ L_n^m(x) @f$.
277
     *
278
     *   The associated Laguerre polynomial is defined for integral
279
     *   @f$ \alpha = m @f$ by:
280
     *   @f[
281
     *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
282
     *   @f]
283
     *   where the Laguerre polynomial is defined by:
284
     *   @f[
285
     *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
286
     *   @f]
287
     *
288
     *   @param __n The order of the Laguerre polynomial.
289
     *   @param __m The degree of the Laguerre polynomial.
290
     *   @param __x The argument of the Laguerre polynomial.
291
     *   @return The value of the associated Laguerre polynomial of order n,
292
     *           degree m, and argument x.
293
     */
294
    template
295
    inline _Tp
296
    __assoc_laguerre(const unsigned int __n, const unsigned int __m,
297
                     const _Tp __x)
298
    {
299
      return __poly_laguerre(__n, __m, __x);
300
    }
301
 
302
 
303
    /**
304
     *   @brief This routine returns the Laguerre polynomial
305
     *          of order n: @f$ L_n(x) @f$.
306
     *
307
     *   The Laguerre polynomial is defined by:
308
     *   @f[
309
     *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
310
     *   @f]
311
     *
312
     *   @param __n The order of the Laguerre polynomial.
313
     *   @param __x The argument of the Laguerre polynomial.
314
     *   @return The value of the Laguerre polynomial of order n
315
     *           and argument x.
316
     */
317
    template
318
    inline _Tp
319
    __laguerre(const unsigned int __n, const _Tp __x)
320
    {
321
      return __poly_laguerre(__n, 0, __x);
322
    }
323
 
324
  _GLIBCXX_END_NAMESPACE_VERSION
325
  } // namespace std::tr1::__detail
326
}
327
}
328
 
329
#endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.