1 |
2 |
csantifort |
//////////////////////////////////////////////////////////////////
|
2 |
|
|
// //
|
3 |
|
|
// L1 Cache for Amber 2 Core //
|
4 |
|
|
// //
|
5 |
|
|
// This file is part of the Amber project //
|
6 |
|
|
// http://www.opencores.org/project,amber //
|
7 |
|
|
// //
|
8 |
|
|
// Description //
|
9 |
|
|
// Synthesizable L1 Unified Data and Instruction Cache //
|
10 |
|
|
// Cache is 4-way, 256 line and 16 bytes per line for //
|
11 |
|
|
// a total of 16KB. The cache policy is write-through and //
|
12 |
|
|
// read allocate. For swap instructions (SWP and SWPB) the //
|
13 |
|
|
// location is evicted from the cache and read from main //
|
14 |
|
|
// memory. //
|
15 |
|
|
// //
|
16 |
|
|
// Author(s): //
|
17 |
|
|
// - Conor Santifort, csantifort.amber@gmail.com //
|
18 |
|
|
// //
|
19 |
|
|
//////////////////////////////////////////////////////////////////
|
20 |
|
|
// //
|
21 |
|
|
// Copyright (C) 2010 Authors and OPENCORES.ORG //
|
22 |
|
|
// //
|
23 |
|
|
// This source file may be used and distributed without //
|
24 |
|
|
// restriction provided that this copyright statement is not //
|
25 |
|
|
// removed from the file and that any derivative work contains //
|
26 |
|
|
// the original copyright notice and the associated disclaimer. //
|
27 |
|
|
// //
|
28 |
|
|
// This source file is free software; you can redistribute it //
|
29 |
|
|
// and/or modify it under the terms of the GNU Lesser General //
|
30 |
|
|
// Public License as published by the Free Software Foundation; //
|
31 |
|
|
// either version 2.1 of the License, or (at your option) any //
|
32 |
|
|
// later version. //
|
33 |
|
|
// //
|
34 |
|
|
// This source is distributed in the hope that it will be //
|
35 |
|
|
// useful, but WITHOUT ANY WARRANTY; without even the implied //
|
36 |
|
|
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //
|
37 |
|
|
// PURPOSE. See the GNU Lesser General Public License for more //
|
38 |
|
|
// details. //
|
39 |
|
|
// //
|
40 |
|
|
// You should have received a copy of the GNU Lesser General //
|
41 |
|
|
// Public License along with this source; if not, download it //
|
42 |
|
|
// from http://www.opencores.org/lgpl.shtml //
|
43 |
|
|
// //
|
44 |
|
|
//////////////////////////////////////////////////////////////////
|
45 |
|
|
|
46 |
15 |
csantifort |
`include "a23_config_defines.v"
|
47 |
2 |
csantifort |
|
48 |
15 |
csantifort |
module a23_cache
|
49 |
2 |
csantifort |
#(
|
50 |
|
|
|
51 |
|
|
// ---------------------------------------------------------
|
52 |
|
|
// Cache Configuration
|
53 |
|
|
|
54 |
|
|
// Limited to Linux 4k page sizes -> 256 lines
|
55 |
|
|
parameter CACHE_LINES = 256,
|
56 |
|
|
|
57 |
|
|
// This cannot be changed without some major surgeory on
|
58 |
|
|
// this module
|
59 |
|
|
parameter CACHE_WORDS_PER_LINE = 4,
|
60 |
|
|
|
61 |
|
|
// Changing this parameter is the recommended
|
62 |
|
|
// way to change the overall cache size; 2, 4 and 8 ways are supported.
|
63 |
|
|
// 2 ways -> 8KB cache
|
64 |
|
|
// 4 ways -> 16KB cache
|
65 |
|
|
// 8 ways -> 32KB cache
|
66 |
15 |
csantifort |
parameter WAYS = `A23_CACHE_WAYS ,
|
67 |
2 |
csantifort |
|
68 |
|
|
// derived configuration parameters
|
69 |
|
|
parameter CACHE_ADDR_WIDTH = log2 ( CACHE_LINES ), // = 8
|
70 |
|
|
parameter WORD_SEL_WIDTH = log2 ( CACHE_WORDS_PER_LINE ), // = 2
|
71 |
|
|
parameter TAG_ADDR_WIDTH = 32 - CACHE_ADDR_WIDTH - WORD_SEL_WIDTH - 2, // = 20
|
72 |
|
|
parameter TAG_WIDTH = TAG_ADDR_WIDTH + 1, // = 21, including Valid flag
|
73 |
|
|
parameter CACHE_LINE_WIDTH = CACHE_WORDS_PER_LINE * 32, // = 128
|
74 |
|
|
parameter TAG_ADDR32_LSB = CACHE_ADDR_WIDTH + WORD_SEL_WIDTH + 2, // = 12
|
75 |
|
|
parameter CACHE_ADDR32_MSB = CACHE_ADDR_WIDTH + WORD_SEL_WIDTH + 2 - 1, // = 11
|
76 |
|
|
parameter CACHE_ADDR32_LSB = WORD_SEL_WIDTH + 2 , // = 4
|
77 |
|
|
parameter WORD_SEL_MSB = WORD_SEL_WIDTH + 2 - 1, // = 3
|
78 |
|
|
parameter WORD_SEL_LSB = 2 // = 2
|
79 |
|
|
// ---------------------------------------------------------
|
80 |
|
|
)
|
81 |
|
|
|
82 |
|
|
|
83 |
|
|
(
|
84 |
|
|
input i_clk,
|
85 |
|
|
|
86 |
|
|
// Read / Write requests from core
|
87 |
|
|
input i_select,
|
88 |
|
|
input i_exclusive, // exclusive access, part of swap instruction
|
89 |
|
|
input [31:0] i_write_data,
|
90 |
|
|
input i_write_enable, // core issued write request
|
91 |
|
|
input [31:0] i_address, // registered address from execute
|
92 |
|
|
input [31:0] i_address_nxt, // un-registered version of address from execute stage
|
93 |
|
|
input [3:0] i_byte_enable,
|
94 |
|
|
input i_cache_enable, // from co-processor 15 configuration register
|
95 |
|
|
input i_cache_flush, // from co-processor 15 register
|
96 |
|
|
|
97 |
|
|
output [31:0] o_read_data,
|
98 |
|
|
input i_core_stall,
|
99 |
|
|
output o_stall,
|
100 |
|
|
|
101 |
|
|
// WB Read Request
|
102 |
|
|
output o_wb_req, // Read Request
|
103 |
|
|
input [31:0] i_wb_address, // wb bus
|
104 |
|
|
input [31:0] i_wb_read_data, // wb bus
|
105 |
|
|
input i_wb_stall // wb_stb && !wb_ack
|
106 |
|
|
);
|
107 |
|
|
|
108 |
15 |
csantifort |
`include "a23_localparams.v"
|
109 |
|
|
`include "a23_functions.v"
|
110 |
2 |
csantifort |
|
111 |
|
|
// One-hot encoded
|
112 |
|
|
localparam C_INIT = 0,
|
113 |
|
|
C_CORE = 1,
|
114 |
|
|
C_FILL = 2,
|
115 |
|
|
C_INVA = 3,
|
116 |
|
|
C_STATES = 4;
|
117 |
|
|
|
118 |
|
|
localparam [3:0] CS_INIT = 4'd0,
|
119 |
|
|
CS_IDLE = 4'd1,
|
120 |
|
|
CS_FILL1 = 4'd2,
|
121 |
|
|
CS_FILL2 = 4'd3,
|
122 |
|
|
CS_FILL3 = 4'd4,
|
123 |
|
|
CS_FILL4 = 4'd5,
|
124 |
|
|
CS_FILL_COMPLETE = 4'd6,
|
125 |
|
|
CS_TURN_AROUND = 4'd7,
|
126 |
|
|
CS_WRITE_HIT1 = 4'd8,
|
127 |
|
|
CS_EX_DELETE = 4'd9;
|
128 |
|
|
|
129 |
|
|
|
130 |
15 |
csantifort |
reg [3:0] c_state = CS_IDLE;
|
131 |
|
|
reg [C_STATES-1:0] source_sel = 1'd1 << C_CORE;
|
132 |
2 |
csantifort |
reg [CACHE_ADDR_WIDTH:0] init_count = 'd0;
|
133 |
|
|
|
134 |
|
|
wire [TAG_WIDTH-1:0] tag_rdata_way [WAYS-1:0];
|
135 |
|
|
wire [CACHE_LINE_WIDTH-1:0] data_rdata_way[WAYS-1:0];
|
136 |
|
|
wire [WAYS-1:0] data_wenable_way;
|
137 |
|
|
wire [WAYS-1:0] data_hit_way;
|
138 |
|
|
wire [WAYS-1:0] tag_wenable_way;
|
139 |
|
|
reg [WAYS-1:0] select_way = 'd0;
|
140 |
|
|
wire [WAYS-1:0] next_way;
|
141 |
|
|
reg [WAYS-1:0] valid_bits_r = 'd0;
|
142 |
|
|
|
143 |
|
|
reg [3:0] random_num = 4'hf;
|
144 |
|
|
|
145 |
|
|
wire [CACHE_ADDR_WIDTH-1:0] tag_address;
|
146 |
|
|
wire [TAG_WIDTH-1:0] tag_wdata;
|
147 |
|
|
wire tag_wenable;
|
148 |
|
|
|
149 |
|
|
wire [CACHE_LINE_WIDTH-1:0] read_miss_wdata;
|
150 |
|
|
wire [CACHE_LINE_WIDTH-1:0] write_hit_wdata;
|
151 |
|
|
wire [CACHE_LINE_WIDTH-1:0] data_wdata;
|
152 |
|
|
wire [CACHE_ADDR_WIDTH-1:0] data_address;
|
153 |
|
|
wire [31:0] write_data_word;
|
154 |
|
|
|
155 |
|
|
wire hit;
|
156 |
|
|
wire read_miss;
|
157 |
|
|
wire write_miss;
|
158 |
|
|
wire write_hit;
|
159 |
|
|
|
160 |
|
|
reg [31:0] miss_address = 'd0;
|
161 |
|
|
wire [CACHE_LINE_WIDTH-1:0] hit_rdata;
|
162 |
|
|
|
163 |
|
|
wire write_stall;
|
164 |
|
|
wire cache_busy_stall;
|
165 |
|
|
wire read_stall;
|
166 |
|
|
|
167 |
|
|
wire enable;
|
168 |
|
|
wire [CACHE_ADDR_WIDTH-1:0] address;
|
169 |
|
|
|
170 |
|
|
reg [CACHE_LINE_WIDTH-1:0] wb_rdata_burst = 'd0;
|
171 |
|
|
reg wb_read_buf_valid = 'd0;
|
172 |
|
|
reg [31:0] wb_read_buf_address = 'd0;
|
173 |
|
|
reg [31:0] wb_read_buf_data = 'd0;
|
174 |
|
|
wire wb_read_buf_hit;
|
175 |
|
|
|
176 |
|
|
wire exclusive_access;
|
177 |
|
|
wire ex_read_hit;
|
178 |
|
|
reg ex_read_hit_r = 'd0;
|
179 |
|
|
reg [WAYS-1:0] ex_read_hit_way = 'd0;
|
180 |
|
|
reg [CACHE_ADDR_WIDTH-1:0] ex_read_address;
|
181 |
|
|
wire ex_read_hit_clear;
|
182 |
|
|
wire ex_read_cache_busy;
|
183 |
|
|
|
184 |
|
|
genvar i;
|
185 |
|
|
|
186 |
|
|
// ======================================
|
187 |
|
|
// Address to use for cache access
|
188 |
|
|
// ======================================
|
189 |
|
|
// If currently stalled then the address for the next
|
190 |
|
|
// cycle will be the same as it is in the current cycle
|
191 |
|
|
//
|
192 |
|
|
assign address = i_core_stall ? i_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
|
193 |
|
|
i_address_nxt[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] ;
|
194 |
|
|
|
195 |
|
|
// ======================================
|
196 |
|
|
// Outputs
|
197 |
|
|
// ======================================
|
198 |
|
|
assign o_read_data = wb_read_buf_hit ? wb_read_buf_data :
|
199 |
|
|
i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd0 ? hit_rdata [31:0] :
|
200 |
|
|
i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd1 ? hit_rdata [63:32] :
|
201 |
|
|
i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd2 ? hit_rdata [95:64] :
|
202 |
|
|
hit_rdata [127:96] ;
|
203 |
|
|
|
204 |
|
|
// Don't allow the cache to stall the wb i/f for an exclusive access
|
205 |
|
|
// The cache needs a couple of cycles to flush a potential copy of the exclusive
|
206 |
|
|
// address, but the wb can do the access in parallel. So there is no
|
207 |
|
|
// stall in the state CS_EX_DELETE, even though the cache is out of action.
|
208 |
|
|
// This works fine as long as the wb is stalling the core
|
209 |
|
|
assign o_stall = read_stall || write_stall || cache_busy_stall || ex_read_cache_busy;
|
210 |
|
|
|
211 |
|
|
assign o_wb_req = (( read_miss || write_miss ) && c_state == CS_IDLE ) ||
|
212 |
|
|
c_state == CS_WRITE_HIT1;
|
213 |
|
|
|
214 |
|
|
|
215 |
|
|
// ======================================
|
216 |
|
|
// Cache State Machine
|
217 |
|
|
// ======================================
|
218 |
|
|
|
219 |
|
|
// Little State Machine to Flush Tag RAMS
|
220 |
|
|
always @ ( posedge i_clk )
|
221 |
|
|
if ( i_cache_flush )
|
222 |
|
|
begin
|
223 |
|
|
c_state <= C_INIT;
|
224 |
|
|
source_sel <= 1'd1 << C_INIT;
|
225 |
|
|
init_count <= 'd0;
|
226 |
15 |
csantifort |
`ifdef A23_CACHE_DEBUG
|
227 |
2 |
csantifort |
`TB_DEBUG_MESSAGE
|
228 |
|
|
$display("Cache Flush");
|
229 |
|
|
`endif
|
230 |
|
|
end
|
231 |
|
|
else
|
232 |
|
|
case ( c_state )
|
233 |
|
|
CS_INIT :
|
234 |
|
|
if ( init_count < CACHE_LINES [CACHE_ADDR_WIDTH:0] )
|
235 |
|
|
begin
|
236 |
|
|
init_count <= init_count + 1'd1;
|
237 |
|
|
source_sel <= 1'd1 << C_INIT;
|
238 |
|
|
end
|
239 |
|
|
else
|
240 |
|
|
begin
|
241 |
|
|
source_sel <= 1'd1 << C_CORE;
|
242 |
|
|
c_state <= CS_TURN_AROUND;
|
243 |
|
|
end
|
244 |
|
|
|
245 |
|
|
CS_IDLE :
|
246 |
|
|
begin
|
247 |
|
|
source_sel <= 1'd1 << C_CORE;
|
248 |
|
|
|
249 |
|
|
if ( ex_read_hit || ex_read_hit_r )
|
250 |
|
|
begin
|
251 |
|
|
select_way <= data_hit_way | ex_read_hit_way;
|
252 |
|
|
c_state <= CS_EX_DELETE;
|
253 |
|
|
source_sel <= 1'd1 << C_INVA;
|
254 |
|
|
end
|
255 |
|
|
else if ( read_miss )
|
256 |
|
|
begin
|
257 |
|
|
// wb read request asserted, wait for ack
|
258 |
|
|
if ( !i_wb_stall )
|
259 |
|
|
c_state <= CS_FILL1;
|
260 |
|
|
end
|
261 |
|
|
else if ( write_hit )
|
262 |
|
|
c_state <= CS_WRITE_HIT1;
|
263 |
|
|
end
|
264 |
|
|
|
265 |
|
|
|
266 |
|
|
CS_FILL1 :
|
267 |
|
|
begin
|
268 |
|
|
// wb read request asserted, wait for ack
|
269 |
|
|
if ( !i_wb_stall )
|
270 |
|
|
c_state <= CS_FILL2;
|
271 |
|
|
end
|
272 |
|
|
|
273 |
|
|
|
274 |
|
|
CS_FILL2 :
|
275 |
|
|
// first read of burst of 4
|
276 |
|
|
// wb read request asserted, wait for ack
|
277 |
|
|
if ( !i_wb_stall )
|
278 |
|
|
c_state <= CS_FILL3;
|
279 |
|
|
|
280 |
|
|
|
281 |
|
|
CS_FILL3 :
|
282 |
|
|
// second read of burst of 4
|
283 |
|
|
// wb read request asserted, wait for ack
|
284 |
|
|
if ( !i_wb_stall )
|
285 |
|
|
c_state <= CS_FILL4;
|
286 |
|
|
|
287 |
|
|
|
288 |
|
|
CS_FILL4 :
|
289 |
|
|
// third read of burst of 4
|
290 |
|
|
// wb read request asserted, wait for ack
|
291 |
|
|
if ( !i_wb_stall )
|
292 |
|
|
begin
|
293 |
|
|
c_state <= CS_FILL_COMPLETE;
|
294 |
|
|
source_sel <= 1'd1 << C_FILL;
|
295 |
|
|
|
296 |
|
|
// Pick a way to write the cache update into
|
297 |
|
|
// Either pick one of the invalid caches, or if all are valid, then pick
|
298 |
|
|
// one randomly
|
299 |
|
|
|
300 |
|
|
select_way <= next_way;
|
301 |
|
|
random_num <= {random_num[2], random_num[1], random_num[0],
|
302 |
|
|
random_num[3]^random_num[2]};
|
303 |
|
|
end
|
304 |
|
|
|
305 |
|
|
|
306 |
|
|
// Write the read fetch data in this cycle
|
307 |
|
|
CS_FILL_COMPLETE :
|
308 |
|
|
// fourth read of burst of 4
|
309 |
|
|
// wb read request asserted, wait for ack
|
310 |
|
|
if ( !i_wb_stall )
|
311 |
|
|
begin
|
312 |
|
|
// Back to normal cache operations, but
|
313 |
|
|
// use physical address for first read as
|
314 |
|
|
// address moved before the stall was asserted for the read_miss
|
315 |
|
|
// However don't use it if its a non-cached address!
|
316 |
|
|
source_sel <= 1'd1 << C_CORE;
|
317 |
|
|
c_state <= CS_TURN_AROUND;
|
318 |
|
|
end
|
319 |
|
|
|
320 |
|
|
|
321 |
|
|
// Ignore the tag read data in this cycle
|
322 |
|
|
// Wait 1 cycle to pre-read the cache and return to normal operation
|
323 |
|
|
CS_TURN_AROUND :
|
324 |
|
|
begin
|
325 |
|
|
c_state <= CS_IDLE;
|
326 |
|
|
end
|
327 |
|
|
|
328 |
|
|
|
329 |
|
|
// Flush the entry matching an exclusive access
|
330 |
|
|
CS_EX_DELETE:
|
331 |
|
|
begin
|
332 |
15 |
csantifort |
`ifdef A23_CACHE_DEBUG
|
333 |
2 |
csantifort |
`TB_DEBUG_MESSAGE
|
334 |
|
|
$display("Cache deleted Locked entry");
|
335 |
|
|
`endif
|
336 |
|
|
c_state <= CS_TURN_AROUND;
|
337 |
|
|
source_sel <= 1'd1 << C_CORE;
|
338 |
|
|
end
|
339 |
|
|
|
340 |
|
|
|
341 |
|
|
CS_WRITE_HIT1:
|
342 |
|
|
begin
|
343 |
|
|
// wait for an ack on the wb bus to complete the write
|
344 |
|
|
if ( !i_wb_stall )
|
345 |
|
|
c_state <= CS_IDLE;
|
346 |
|
|
|
347 |
|
|
end
|
348 |
|
|
endcase
|
349 |
|
|
|
350 |
|
|
|
351 |
|
|
// ======================================
|
352 |
|
|
// Capture WB Block Read - burst of 4 words
|
353 |
|
|
// ======================================
|
354 |
|
|
always @ ( posedge i_clk )
|
355 |
|
|
if ( !i_wb_stall )
|
356 |
|
|
wb_rdata_burst <= {i_wb_read_data, wb_rdata_burst[127:32]};
|
357 |
|
|
|
358 |
|
|
|
359 |
|
|
// ======================================
|
360 |
|
|
// WB Read Buffer
|
361 |
|
|
// ======================================
|
362 |
|
|
always @ ( posedge i_clk )
|
363 |
|
|
begin
|
364 |
|
|
if ( c_state == CS_FILL1 || c_state == CS_FILL2 ||
|
365 |
|
|
c_state == CS_FILL3 || c_state == CS_FILL4 )
|
366 |
|
|
begin
|
367 |
|
|
if ( !i_wb_stall )
|
368 |
|
|
begin
|
369 |
|
|
wb_read_buf_valid <= 1'd1;
|
370 |
|
|
wb_read_buf_address <= i_wb_address;
|
371 |
|
|
wb_read_buf_data <= i_wb_read_data;
|
372 |
|
|
end
|
373 |
|
|
end
|
374 |
|
|
else
|
375 |
|
|
wb_read_buf_valid <= 1'd0;
|
376 |
|
|
end
|
377 |
|
|
|
378 |
|
|
|
379 |
|
|
// ======================================
|
380 |
|
|
// Miss Address
|
381 |
|
|
// ======================================
|
382 |
|
|
always @ ( posedge i_clk )
|
383 |
|
|
if ( o_wb_req )
|
384 |
|
|
miss_address <= i_address;
|
385 |
|
|
|
386 |
|
|
|
387 |
|
|
// ======================================
|
388 |
|
|
// Remember Read-Modify-Write Hit
|
389 |
|
|
// ======================================
|
390 |
|
|
assign ex_read_hit_clear = c_state == CS_EX_DELETE;
|
391 |
|
|
|
392 |
|
|
always @ ( posedge i_clk )
|
393 |
|
|
if ( ex_read_hit_clear )
|
394 |
|
|
begin
|
395 |
|
|
ex_read_hit_r <= 1'd0;
|
396 |
|
|
ex_read_hit_way <= 'd0;
|
397 |
|
|
end
|
398 |
|
|
else if ( ex_read_hit )
|
399 |
|
|
begin
|
400 |
|
|
|
401 |
15 |
csantifort |
`ifdef A23_CACHE_DEBUG
|
402 |
2 |
csantifort |
`TB_DEBUG_MESSAGE
|
403 |
|
|
$display ("Exclusive access cache hit address 0x%08h", i_address);
|
404 |
|
|
`endif
|
405 |
|
|
|
406 |
|
|
ex_read_hit_r <= 1'd1;
|
407 |
|
|
ex_read_hit_way <= data_hit_way;
|
408 |
|
|
end
|
409 |
|
|
else if ( c_state == CS_FILL_COMPLETE && ex_read_hit_r )
|
410 |
|
|
ex_read_hit_way <= select_way;
|
411 |
|
|
|
412 |
|
|
|
413 |
|
|
always @ (posedge i_clk)
|
414 |
|
|
if ( ex_read_hit )
|
415 |
|
|
ex_read_address <= i_address[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB];
|
416 |
|
|
|
417 |
|
|
|
418 |
|
|
assign tag_address = source_sel[C_FILL] ? miss_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
|
419 |
|
|
source_sel[C_INVA] ? ex_read_address :
|
420 |
|
|
source_sel[C_INIT] ? init_count[CACHE_ADDR_WIDTH-1:0] :
|
421 |
|
|
source_sel[C_CORE] ? address :
|
422 |
|
|
{CACHE_ADDR_WIDTH{1'd0}} ;
|
423 |
|
|
|
424 |
|
|
|
425 |
|
|
assign data_address = write_hit ? i_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
|
426 |
|
|
source_sel[C_FILL] ? miss_address[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
|
427 |
|
|
source_sel[C_CORE] ? address :
|
428 |
|
|
{CACHE_ADDR_WIDTH{1'd0}} ;
|
429 |
|
|
|
430 |
|
|
|
431 |
|
|
assign tag_wdata = source_sel[C_FILL] ? {1'd1, miss_address[31:TAG_ADDR32_LSB]} :
|
432 |
|
|
{TAG_WIDTH{1'd0}} ;
|
433 |
|
|
|
434 |
|
|
|
435 |
|
|
// Data comes in off the WB bus in wrap4 with the missed data word first
|
436 |
|
|
assign data_wdata = write_hit && c_state == CS_IDLE ? write_hit_wdata : read_miss_wdata;
|
437 |
|
|
|
438 |
|
|
assign read_miss_wdata = miss_address[3:2] == 2'd0 ? wb_rdata_burst :
|
439 |
|
|
miss_address[3:2] == 2'd1 ? { wb_rdata_burst[95:0], wb_rdata_burst[127:96] }:
|
440 |
|
|
miss_address[3:2] == 2'd2 ? { wb_rdata_burst[63:0], wb_rdata_burst[127:64] }:
|
441 |
|
|
{ wb_rdata_burst[31:0], wb_rdata_burst[127:32] };
|
442 |
|
|
|
443 |
|
|
|
444 |
|
|
assign write_hit_wdata = i_address[3:2] == 2'd0 ? {hit_rdata[127:32], write_data_word } :
|
445 |
|
|
i_address[3:2] == 2'd1 ? {hit_rdata[127:64], write_data_word, hit_rdata[31:0] } :
|
446 |
|
|
i_address[3:2] == 2'd2 ? {hit_rdata[127:96], write_data_word, hit_rdata[63:0] } :
|
447 |
|
|
{ write_data_word, hit_rdata[95:0] } ;
|
448 |
|
|
|
449 |
|
|
// Use Byte Enables
|
450 |
|
|
assign write_data_word = i_byte_enable == 4'b0001 ? { o_read_data[31: 8], i_write_data[ 7: 0] } :
|
451 |
|
|
i_byte_enable == 4'b0010 ? { o_read_data[31:16], i_write_data[15: 8], o_read_data[ 7:0]} :
|
452 |
|
|
i_byte_enable == 4'b0100 ? { o_read_data[31:24], i_write_data[23:16], o_read_data[15:0]} :
|
453 |
|
|
i_byte_enable == 4'b1000 ? { i_write_data[31:24], o_read_data[23:0]} :
|
454 |
|
|
i_byte_enable == 4'b0011 ? { o_read_data[31:16], i_write_data[15: 0] } :
|
455 |
|
|
i_byte_enable == 4'b1100 ? { i_write_data[31:16], o_read_data[15:0]} :
|
456 |
|
|
i_write_data ;
|
457 |
|
|
|
458 |
|
|
|
459 |
|
|
assign tag_wenable = source_sel[C_INVA] ? 1'd1 :
|
460 |
|
|
source_sel[C_FILL] ? 1'd1 :
|
461 |
|
|
source_sel[C_INIT] ? 1'd1 :
|
462 |
|
|
source_sel[C_CORE] ? 1'd0 :
|
463 |
|
|
1'd0 ;
|
464 |
|
|
|
465 |
|
|
|
466 |
|
|
assign enable = i_select && i_cache_enable;
|
467 |
|
|
|
468 |
|
|
assign exclusive_access = i_exclusive && i_cache_enable;
|
469 |
|
|
|
470 |
|
|
|
471 |
|
|
// the wb read buffer returns data directly from the wb bus to the
|
472 |
|
|
// core during a read miss operation
|
473 |
|
|
assign wb_read_buf_hit = enable && wb_read_buf_address == i_address && wb_read_buf_valid;
|
474 |
|
|
|
475 |
|
|
assign hit = |data_hit_way;
|
476 |
|
|
|
477 |
|
|
assign write_hit = enable && i_write_enable && hit;
|
478 |
|
|
|
479 |
|
|
assign write_miss = enable && i_write_enable && !hit && c_state != CS_WRITE_HIT1;
|
480 |
|
|
|
481 |
|
|
assign read_miss = enable && !i_write_enable && !(hit || wb_read_buf_hit);
|
482 |
|
|
|
483 |
|
|
// Exclusive read hit
|
484 |
|
|
assign ex_read_hit = exclusive_access && !i_write_enable && (hit || wb_read_buf_hit);
|
485 |
|
|
|
486 |
|
|
// Added to fix rare swap bug which occurs when the cache starts
|
487 |
|
|
// a fill just as the swap instruction starts to execute. The cache
|
488 |
|
|
// fails to check for a read hit on the swap read cycle.
|
489 |
|
|
// This signal stalls the core in that case until after the
|
490 |
|
|
// fill has completed.
|
491 |
|
|
assign ex_read_cache_busy = exclusive_access && !i_write_enable && c_state != CS_IDLE;
|
492 |
|
|
|
493 |
|
|
// Need to stall for a write miss to wait for the current wb
|
494 |
|
|
// read miss access to complete. Also for a write hit, need
|
495 |
|
|
// to stall for 1 cycle while the data cache is being written to
|
496 |
|
|
assign write_stall = ( write_hit && c_state != CS_WRITE_HIT1 ) ||
|
497 |
|
|
( write_miss && ( c_state != CS_IDLE ) ) ||
|
498 |
|
|
i_wb_stall ;
|
499 |
|
|
|
500 |
|
|
assign read_stall = read_miss;
|
501 |
|
|
|
502 |
|
|
// Core may or may not be trying to access cache memory during
|
503 |
|
|
// this phase of the read fetch. It could be doing e.g. a wb access
|
504 |
|
|
assign cache_busy_stall = ((c_state == CS_TURN_AROUND || c_state == CS_FILL1) && enable) ||
|
505 |
|
|
c_state == CS_INIT;
|
506 |
|
|
|
507 |
|
|
|
508 |
|
|
// ======================================
|
509 |
|
|
// Instantiate RAMS
|
510 |
|
|
// ======================================
|
511 |
|
|
|
512 |
|
|
generate
|
513 |
|
|
for ( i=0; i<WAYS;i=i+1 ) begin : rams
|
514 |
|
|
|
515 |
|
|
// Tag RAMs
|
516 |
|
|
`ifdef XILINX_SPARTAN6_FPGA
|
517 |
|
|
xs6_sram_256x21_line_en
|
518 |
|
|
`endif
|
519 |
|
|
|
520 |
|
|
`ifdef XILINX_VIRTEX6_FPGA
|
521 |
|
|
xv6_sram_256x21_line_en
|
522 |
|
|
`endif
|
523 |
|
|
|
524 |
|
|
`ifndef XILINX_FPGA
|
525 |
|
|
generic_sram_line_en
|
526 |
|
|
`endif
|
527 |
|
|
|
528 |
|
|
#(
|
529 |
15 |
csantifort |
.DATA_WIDTH ( TAG_WIDTH ),
|
530 |
|
|
.INITIALIZE_TO_ZERO ( 1 ),
|
531 |
|
|
.ADDRESS_WIDTH ( CACHE_ADDR_WIDTH ))
|
532 |
2 |
csantifort |
u_tag (
|
533 |
|
|
.i_clk ( i_clk ),
|
534 |
|
|
.i_write_data ( tag_wdata ),
|
535 |
|
|
.i_write_enable ( tag_wenable_way[i] ),
|
536 |
|
|
.i_address ( tag_address ),
|
537 |
|
|
|
538 |
|
|
.o_read_data ( tag_rdata_way[i] )
|
539 |
|
|
);
|
540 |
|
|
|
541 |
|
|
// Data RAMs
|
542 |
|
|
`ifdef XILINX_SPARTAN6_FPGA
|
543 |
|
|
xs6_sram_256x128_byte_en
|
544 |
|
|
`endif
|
545 |
|
|
|
546 |
|
|
`ifdef XILINX_VIRTEX6_FPGA
|
547 |
|
|
xv6_sram_256x128_byte_en
|
548 |
|
|
`endif
|
549 |
|
|
|
550 |
|
|
`ifndef XILINX_FPGA
|
551 |
|
|
generic_sram_byte_en
|
552 |
|
|
`endif
|
553 |
|
|
|
554 |
|
|
#(
|
555 |
|
|
.DATA_WIDTH ( CACHE_LINE_WIDTH) ,
|
556 |
|
|
.ADDRESS_WIDTH ( CACHE_ADDR_WIDTH) )
|
557 |
|
|
u_data (
|
558 |
|
|
.i_clk ( i_clk ),
|
559 |
|
|
.i_write_data ( data_wdata ),
|
560 |
|
|
.i_write_enable ( data_wenable_way[i] ),
|
561 |
|
|
.i_address ( data_address ),
|
562 |
|
|
.i_byte_enable ( {CACHE_LINE_WIDTH/8{1'd1}} ),
|
563 |
|
|
.o_read_data ( data_rdata_way[i] )
|
564 |
|
|
);
|
565 |
|
|
|
566 |
|
|
|
567 |
|
|
// Per tag-ram write-enable
|
568 |
|
|
assign tag_wenable_way[i] = tag_wenable && ( select_way[i] || source_sel[C_INIT] );
|
569 |
|
|
|
570 |
|
|
// Per data-ram write-enable
|
571 |
|
|
assign data_wenable_way[i] = (source_sel[C_FILL] && select_way[i]) ||
|
572 |
|
|
(write_hit && data_hit_way[i] && c_state == CS_IDLE);
|
573 |
|
|
// Per data-ram hit flag
|
574 |
|
|
assign data_hit_way[i] = tag_rdata_way[i][TAG_WIDTH-1] &&
|
575 |
|
|
tag_rdata_way[i][TAG_ADDR_WIDTH-1:0] == i_address[31:TAG_ADDR32_LSB] &&
|
576 |
|
|
c_state == CS_IDLE;
|
577 |
|
|
end
|
578 |
|
|
endgenerate
|
579 |
|
|
|
580 |
|
|
|
581 |
|
|
// ======================================
|
582 |
|
|
// Register Valid Bits
|
583 |
|
|
// ======================================
|
584 |
|
|
generate
|
585 |
|
|
if ( WAYS == 2 ) begin : valid_bits_2ways
|
586 |
|
|
|
587 |
|
|
always @ ( posedge i_clk )
|
588 |
|
|
if ( c_state == CS_IDLE )
|
589 |
|
|
valid_bits_r <= {tag_rdata_way[1][TAG_WIDTH-1],
|
590 |
|
|
tag_rdata_way[0][TAG_WIDTH-1]};
|
591 |
|
|
|
592 |
|
|
end
|
593 |
|
|
else if ( WAYS == 3 ) begin : valid_bits_3ways
|
594 |
|
|
|
595 |
|
|
always @ ( posedge i_clk )
|
596 |
|
|
if ( c_state == CS_IDLE )
|
597 |
|
|
valid_bits_r <= {tag_rdata_way[2][TAG_WIDTH-1],
|
598 |
|
|
tag_rdata_way[1][TAG_WIDTH-1],
|
599 |
|
|
tag_rdata_way[0][TAG_WIDTH-1]};
|
600 |
|
|
|
601 |
|
|
end
|
602 |
|
|
else if ( WAYS == 4 ) begin : valid_bits_4ways
|
603 |
|
|
|
604 |
|
|
always @ ( posedge i_clk )
|
605 |
|
|
if ( c_state == CS_IDLE )
|
606 |
|
|
valid_bits_r <= {tag_rdata_way[3][TAG_WIDTH-1],
|
607 |
|
|
tag_rdata_way[2][TAG_WIDTH-1],
|
608 |
|
|
tag_rdata_way[1][TAG_WIDTH-1],
|
609 |
|
|
tag_rdata_way[0][TAG_WIDTH-1]};
|
610 |
|
|
|
611 |
|
|
end
|
612 |
|
|
else begin : valid_bits_8ways
|
613 |
|
|
|
614 |
|
|
always @ ( posedge i_clk )
|
615 |
|
|
if ( c_state == CS_IDLE )
|
616 |
|
|
valid_bits_r <= {tag_rdata_way[7][TAG_WIDTH-1],
|
617 |
|
|
tag_rdata_way[6][TAG_WIDTH-1],
|
618 |
|
|
tag_rdata_way[5][TAG_WIDTH-1],
|
619 |
|
|
tag_rdata_way[4][TAG_WIDTH-1],
|
620 |
|
|
tag_rdata_way[3][TAG_WIDTH-1],
|
621 |
|
|
tag_rdata_way[2][TAG_WIDTH-1],
|
622 |
|
|
tag_rdata_way[1][TAG_WIDTH-1],
|
623 |
|
|
tag_rdata_way[0][TAG_WIDTH-1]};
|
624 |
|
|
|
625 |
|
|
end
|
626 |
|
|
endgenerate
|
627 |
|
|
|
628 |
|
|
|
629 |
|
|
// ======================================
|
630 |
|
|
// Select read hit data
|
631 |
|
|
// ======================================
|
632 |
|
|
generate
|
633 |
|
|
if ( WAYS == 2 ) begin : read_data_2ways
|
634 |
|
|
|
635 |
|
|
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
|
636 |
|
|
data_hit_way[1] ? data_rdata_way[1] :
|
637 |
|
|
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
|
638 |
|
|
|
639 |
|
|
end
|
640 |
|
|
else if ( WAYS == 3 ) begin : read_data_3ways
|
641 |
|
|
|
642 |
|
|
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
|
643 |
|
|
data_hit_way[1] ? data_rdata_way[1] :
|
644 |
|
|
data_hit_way[2] ? data_rdata_way[2] :
|
645 |
|
|
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
|
646 |
|
|
|
647 |
|
|
end
|
648 |
|
|
else if ( WAYS == 4 ) begin : read_data_4ways
|
649 |
|
|
|
650 |
|
|
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
|
651 |
|
|
data_hit_way[1] ? data_rdata_way[1] :
|
652 |
|
|
data_hit_way[2] ? data_rdata_way[2] :
|
653 |
|
|
data_hit_way[3] ? data_rdata_way[3] :
|
654 |
|
|
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
|
655 |
|
|
|
656 |
|
|
end
|
657 |
|
|
else begin : read_data_8ways
|
658 |
|
|
|
659 |
|
|
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
|
660 |
|
|
data_hit_way[1] ? data_rdata_way[1] :
|
661 |
|
|
data_hit_way[2] ? data_rdata_way[2] :
|
662 |
|
|
data_hit_way[3] ? data_rdata_way[3] :
|
663 |
|
|
data_hit_way[4] ? data_rdata_way[4] :
|
664 |
|
|
data_hit_way[5] ? data_rdata_way[5] :
|
665 |
|
|
data_hit_way[6] ? data_rdata_way[6] :
|
666 |
|
|
data_hit_way[7] ? data_rdata_way[7] :
|
667 |
|
|
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
|
668 |
|
|
|
669 |
|
|
end
|
670 |
|
|
endgenerate
|
671 |
|
|
|
672 |
|
|
|
673 |
|
|
// ======================================
|
674 |
|
|
// Function to select the way to use
|
675 |
|
|
// for fills
|
676 |
|
|
// ======================================
|
677 |
|
|
generate
|
678 |
|
|
if ( WAYS == 2 ) begin : pick_way_2ways
|
679 |
|
|
|
680 |
|
|
assign next_way = pick_way ( valid_bits_r, random_num );
|
681 |
|
|
|
682 |
|
|
function [WAYS-1:0] pick_way;
|
683 |
|
|
input [WAYS-1:0] valid_bits;
|
684 |
|
|
input [3:0] random_num;
|
685 |
|
|
begin
|
686 |
|
|
if ( valid_bits[0] == 1'd0 )
|
687 |
|
|
// way 0 not occupied so use it
|
688 |
|
|
pick_way = 2'b01;
|
689 |
|
|
else if ( valid_bits[1] == 1'd0 )
|
690 |
|
|
// way 1 not occupied so use it
|
691 |
|
|
pick_way = 2'b10;
|
692 |
|
|
else
|
693 |
|
|
begin
|
694 |
|
|
// All ways occupied so pick one randomly
|
695 |
|
|
case (random_num[3:1])
|
696 |
|
|
3'd0, 3'd3,
|
697 |
|
|
3'd5, 3'd6: pick_way = 2'b10;
|
698 |
|
|
default: pick_way = 2'b01;
|
699 |
|
|
endcase
|
700 |
|
|
end
|
701 |
|
|
end
|
702 |
|
|
endfunction
|
703 |
|
|
|
704 |
|
|
end
|
705 |
|
|
else if ( WAYS == 3 ) begin : pick_way_3ways
|
706 |
|
|
|
707 |
|
|
assign next_way = pick_way ( valid_bits_r, random_num );
|
708 |
|
|
|
709 |
|
|
function [WAYS-1:0] pick_way;
|
710 |
|
|
input [WAYS-1:0] valid_bits;
|
711 |
|
|
input [3:0] random_num;
|
712 |
|
|
begin
|
713 |
|
|
if ( valid_bits[0] == 1'd0 )
|
714 |
|
|
// way 0 not occupied so use it
|
715 |
|
|
pick_way = 3'b001;
|
716 |
|
|
else if ( valid_bits[1] == 1'd0 )
|
717 |
|
|
// way 1 not occupied so use it
|
718 |
|
|
pick_way = 3'b010;
|
719 |
|
|
else if ( valid_bits[2] == 1'd0 )
|
720 |
|
|
// way 2 not occupied so use it
|
721 |
|
|
pick_way = 3'b100;
|
722 |
|
|
else
|
723 |
|
|
begin
|
724 |
|
|
// All ways occupied so pick one randomly
|
725 |
|
|
case (random_num[3:1])
|
726 |
|
|
3'd0, 3'd1, 3'd2: pick_way = 3'b010;
|
727 |
|
|
3'd2, 3'd3, 3'd4: pick_way = 3'b100;
|
728 |
|
|
default: pick_way = 3'b001;
|
729 |
|
|
endcase
|
730 |
|
|
end
|
731 |
|
|
end
|
732 |
|
|
endfunction
|
733 |
|
|
|
734 |
|
|
end
|
735 |
|
|
else if ( WAYS == 4 ) begin : pick_way_4ways
|
736 |
|
|
|
737 |
|
|
assign next_way = pick_way ( valid_bits_r, random_num );
|
738 |
|
|
|
739 |
|
|
function [WAYS-1:0] pick_way;
|
740 |
|
|
input [WAYS-1:0] valid_bits;
|
741 |
|
|
input [3:0] random_num;
|
742 |
|
|
begin
|
743 |
|
|
if ( valid_bits[0] == 1'd0 )
|
744 |
|
|
// way 0 not occupied so use it
|
745 |
|
|
pick_way = 4'b0001;
|
746 |
|
|
else if ( valid_bits[1] == 1'd0 )
|
747 |
|
|
// way 1 not occupied so use it
|
748 |
|
|
pick_way = 4'b0010;
|
749 |
|
|
else if ( valid_bits[2] == 1'd0 )
|
750 |
|
|
// way 2 not occupied so use it
|
751 |
|
|
pick_way = 4'b0100;
|
752 |
|
|
else if ( valid_bits[3] == 1'd0 )
|
753 |
|
|
// way 3 not occupied so use it
|
754 |
|
|
pick_way = 4'b1000;
|
755 |
|
|
else
|
756 |
|
|
begin
|
757 |
|
|
// All ways occupied so pick one randomly
|
758 |
|
|
case (random_num[3:1])
|
759 |
|
|
3'd0, 3'd1: pick_way = 4'b0100;
|
760 |
|
|
3'd2, 3'd3: pick_way = 4'b1000;
|
761 |
|
|
3'd4, 3'd5: pick_way = 4'b0001;
|
762 |
|
|
default: pick_way = 4'b0010;
|
763 |
|
|
endcase
|
764 |
|
|
end
|
765 |
|
|
end
|
766 |
|
|
endfunction
|
767 |
|
|
|
768 |
|
|
end
|
769 |
|
|
else begin : pick_way_8ways
|
770 |
|
|
|
771 |
|
|
assign next_way = pick_way ( valid_bits_r, random_num );
|
772 |
|
|
|
773 |
|
|
function [WAYS-1:0] pick_way;
|
774 |
|
|
input [WAYS-1:0] valid_bits;
|
775 |
|
|
input [3:0] random_num;
|
776 |
|
|
begin
|
777 |
|
|
if ( valid_bits[0] == 1'd0 )
|
778 |
|
|
// way 0 not occupied so use it
|
779 |
|
|
pick_way = 8'b00000001;
|
780 |
|
|
else if ( valid_bits[1] == 1'd0 )
|
781 |
|
|
// way 1 not occupied so use it
|
782 |
|
|
pick_way = 8'b00000010;
|
783 |
|
|
else if ( valid_bits[2] == 1'd0 )
|
784 |
|
|
// way 2 not occupied so use it
|
785 |
|
|
pick_way = 8'b00000100;
|
786 |
|
|
else if ( valid_bits[3] == 1'd0 )
|
787 |
|
|
// way 3 not occupied so use it
|
788 |
|
|
pick_way = 8'b00001000;
|
789 |
|
|
else if ( valid_bits[4] == 1'd0 )
|
790 |
|
|
// way 3 not occupied so use it
|
791 |
|
|
pick_way = 8'b00010000;
|
792 |
|
|
else if ( valid_bits[5] == 1'd0 )
|
793 |
|
|
// way 3 not occupied so use it
|
794 |
|
|
pick_way = 8'b00100000;
|
795 |
|
|
else if ( valid_bits[6] == 1'd0 )
|
796 |
|
|
// way 3 not occupied so use it
|
797 |
|
|
pick_way = 8'b01000000;
|
798 |
|
|
else if ( valid_bits[7] == 1'd0 )
|
799 |
|
|
// way 3 not occupied so use it
|
800 |
|
|
pick_way = 8'b10000000;
|
801 |
|
|
else
|
802 |
|
|
begin
|
803 |
|
|
// All ways occupied so pick one randomly
|
804 |
|
|
case (random_num[3:1])
|
805 |
|
|
3'd0: pick_way = 8'b00010000;
|
806 |
|
|
3'd1: pick_way = 8'b00100000;
|
807 |
|
|
3'd2: pick_way = 8'b01000000;
|
808 |
|
|
3'd3: pick_way = 8'b10000000;
|
809 |
|
|
3'd4: pick_way = 8'b00000001;
|
810 |
|
|
3'd5: pick_way = 8'b00000010;
|
811 |
|
|
3'd6: pick_way = 8'b00000100;
|
812 |
|
|
default: pick_way = 8'b00001000;
|
813 |
|
|
endcase
|
814 |
|
|
end
|
815 |
|
|
end
|
816 |
|
|
endfunction
|
817 |
|
|
|
818 |
|
|
end
|
819 |
|
|
endgenerate
|
820 |
|
|
|
821 |
|
|
|
822 |
|
|
// ========================================================
|
823 |
|
|
// Debug WB bus - not synthesizable
|
824 |
|
|
// ========================================================
|
825 |
|
|
//synopsys translate_off
|
826 |
|
|
wire [(6*8)-1:0] xSOURCE_SEL;
|
827 |
|
|
wire [(20*8)-1:0] xC_STATE;
|
828 |
|
|
|
829 |
|
|
assign xSOURCE_SEL = source_sel[C_CORE] ? "C_CORE" :
|
830 |
|
|
source_sel[C_INIT] ? "C_INIT" :
|
831 |
|
|
source_sel[C_FILL] ? "C_FILL" :
|
832 |
|
|
source_sel[C_INVA] ? "C_INVA" :
|
833 |
|
|
"UNKNON" ;
|
834 |
|
|
|
835 |
|
|
assign xC_STATE = c_state == CS_INIT ? "CS_INIT" :
|
836 |
|
|
c_state == CS_IDLE ? "CS_IDLE" :
|
837 |
|
|
c_state == CS_FILL1 ? "CS_FILL1" :
|
838 |
|
|
c_state == CS_FILL2 ? "CS_FILL2" :
|
839 |
|
|
c_state == CS_FILL3 ? "CS_FILL3" :
|
840 |
|
|
c_state == CS_FILL4 ? "CS_FILL4" :
|
841 |
|
|
c_state == CS_FILL_COMPLETE ? "CS_FILL_COMPLETE" :
|
842 |
|
|
c_state == CS_EX_DELETE ? "CS_EX_DELETE" :
|
843 |
|
|
c_state == CS_TURN_AROUND ? "CS_TURN_AROUND" :
|
844 |
|
|
c_state == CS_WRITE_HIT1 ? "CS_WRITE_HIT1" :
|
845 |
|
|
"UNKNOWN" ;
|
846 |
|
|
|
847 |
|
|
|
848 |
|
|
generate
|
849 |
|
|
if ( WAYS == 2 ) begin : check_hit_2ways
|
850 |
|
|
|
851 |
|
|
always @( posedge i_clk )
|
852 |
|
|
if ( (data_hit_way[0] + data_hit_way[1] ) > 4'd1 )
|
853 |
|
|
begin
|
854 |
|
|
`TB_ERROR_MESSAGE
|
855 |
|
|
$display("Hit in more than one cache ways!");
|
856 |
|
|
end
|
857 |
|
|
|
858 |
|
|
end
|
859 |
|
|
else if ( WAYS == 3 ) begin : check_hit_3ways
|
860 |
|
|
|
861 |
|
|
always @( posedge i_clk )
|
862 |
|
|
if ( (data_hit_way[0] + data_hit_way[1] + data_hit_way[2] ) > 4'd1 )
|
863 |
|
|
begin
|
864 |
|
|
`TB_ERROR_MESSAGE
|
865 |
|
|
$display("Hit in more than one cache ways!");
|
866 |
|
|
end
|
867 |
|
|
|
868 |
|
|
end
|
869 |
|
|
else if ( WAYS == 4 ) begin : check_hit_4ways
|
870 |
|
|
|
871 |
|
|
always @( posedge i_clk )
|
872 |
|
|
if ( (data_hit_way[0] + data_hit_way[1] +
|
873 |
|
|
data_hit_way[2] + data_hit_way[3] ) > 4'd1 )
|
874 |
|
|
begin
|
875 |
|
|
`TB_ERROR_MESSAGE
|
876 |
|
|
$display("Hit in more than one cache ways!");
|
877 |
|
|
end
|
878 |
|
|
|
879 |
|
|
end
|
880 |
|
|
else if ( WAYS == 8 ) begin : check_hit_8ways
|
881 |
|
|
|
882 |
|
|
always @( posedge i_clk )
|
883 |
|
|
if ( (data_hit_way[0] + data_hit_way[1] +
|
884 |
|
|
data_hit_way[2] + data_hit_way[3] +
|
885 |
|
|
data_hit_way[4] + data_hit_way[5] +
|
886 |
|
|
data_hit_way[6] + data_hit_way[7] ) > 4'd1 )
|
887 |
|
|
begin
|
888 |
|
|
`TB_ERROR_MESSAGE
|
889 |
|
|
$display("Hit in more than one cache ways!");
|
890 |
|
|
end
|
891 |
|
|
|
892 |
|
|
end
|
893 |
|
|
else begin : check_hit_nways
|
894 |
|
|
|
895 |
|
|
initial
|
896 |
|
|
begin
|
897 |
|
|
`TB_ERROR_MESSAGE
|
898 |
|
|
$display("Unsupported number of ways %0d", WAYS);
|
899 |
15 |
csantifort |
$display("Set A23_CACHE_WAYS in a23_config_defines.v to either 2,3,4 or 8");
|
900 |
2 |
csantifort |
end
|
901 |
|
|
|
902 |
|
|
end
|
903 |
|
|
endgenerate
|
904 |
|
|
|
905 |
|
|
//synopsys translate_on
|
906 |
|
|
|
907 |
|
|
endmodule
|
908 |
|
|
|