1 |
2 |
csantifort |
//////////////////////////////////////////////////////////////////
|
2 |
|
|
// //
|
3 |
|
|
// Test Module //
|
4 |
|
|
// //
|
5 |
|
|
// This file is part of the Amber project //
|
6 |
|
|
// http://www.opencores.org/project,amber //
|
7 |
|
|
// //
|
8 |
|
|
// Description //
|
9 |
|
|
// Contains a random number generator and a couple of timers //
|
10 |
|
|
// that connect to interrupt lines. Used for testing the //
|
11 |
|
|
// ssytem. //
|
12 |
|
|
// //
|
13 |
|
|
// Author(s): //
|
14 |
|
|
// - Conor Santifort, csantifort.amber@gmail.com //
|
15 |
|
|
// //
|
16 |
|
|
//////////////////////////////////////////////////////////////////
|
17 |
|
|
// //
|
18 |
|
|
// Copyright (C) 2010 Authors and OPENCORES.ORG //
|
19 |
|
|
// //
|
20 |
|
|
// This source file may be used and distributed without //
|
21 |
|
|
// restriction provided that this copyright statement is not //
|
22 |
|
|
// removed from the file and that any derivative work contains //
|
23 |
|
|
// the original copyright notice and the associated disclaimer. //
|
24 |
|
|
// //
|
25 |
|
|
// This source file is free software; you can redistribute it //
|
26 |
|
|
// and/or modify it under the terms of the GNU Lesser General //
|
27 |
|
|
// Public License as published by the Free Software Foundation; //
|
28 |
|
|
// either version 2.1 of the License, or (at your option) any //
|
29 |
|
|
// later version. //
|
30 |
|
|
// //
|
31 |
|
|
// This source is distributed in the hope that it will be //
|
32 |
|
|
// useful, but WITHOUT ANY WARRANTY; without even the implied //
|
33 |
|
|
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //
|
34 |
|
|
// PURPOSE. See the GNU Lesser General Public License for more //
|
35 |
|
|
// details. //
|
36 |
|
|
// //
|
37 |
|
|
// You should have received a copy of the GNU Lesser General //
|
38 |
|
|
// Public License along with this source; if not, download it //
|
39 |
|
|
// from http://www.opencores.org/lgpl.shtml //
|
40 |
|
|
// //
|
41 |
|
|
//////////////////////////////////////////////////////////////////
|
42 |
|
|
|
43 |
|
|
|
44 |
35 |
csantifort |
module test_module #(
|
45 |
|
|
parameter WB_DWIDTH = 32,
|
46 |
|
|
parameter WB_SWIDTH = 4
|
47 |
|
|
)(
|
48 |
2 |
csantifort |
input i_clk,
|
49 |
|
|
|
50 |
|
|
output o_irq,
|
51 |
|
|
output o_firq,
|
52 |
11 |
csantifort |
output o_mem_ctrl, // 0=128MB, 1=32MB
|
53 |
2 |
csantifort |
input [31:0] i_wb_adr,
|
54 |
35 |
csantifort |
input [WB_SWIDTH-1:0] i_wb_sel,
|
55 |
2 |
csantifort |
input i_wb_we,
|
56 |
35 |
csantifort |
output [WB_DWIDTH-1:0] o_wb_dat,
|
57 |
|
|
input [WB_DWIDTH-1:0] i_wb_dat,
|
58 |
2 |
csantifort |
input i_wb_cyc,
|
59 |
|
|
input i_wb_stb,
|
60 |
|
|
output o_wb_ack,
|
61 |
61 |
csantifort |
output o_wb_err,
|
62 |
|
|
output [3:0] o_led,
|
63 |
|
|
output o_phy_rst_n
|
64 |
2 |
csantifort |
|
65 |
|
|
);
|
66 |
|
|
|
67 |
|
|
`include "register_addresses.v"
|
68 |
|
|
|
69 |
|
|
|
70 |
|
|
reg [7:0] firq_timer = 'd0;
|
71 |
|
|
reg [7:0] irq_timer = 'd0;
|
72 |
|
|
reg [7:0] random_num = 8'hf3;
|
73 |
|
|
|
74 |
|
|
//synopsys translate_off
|
75 |
|
|
reg [1:0] tb_uart_control_reg = 'd0;
|
76 |
|
|
reg [1:0] tb_uart_status_reg = 'd0;
|
77 |
|
|
reg tb_uart_push = 'd0;
|
78 |
|
|
reg [7:0] tb_uart_txd_reg = 'd0;
|
79 |
|
|
//synopsys translate_on
|
80 |
|
|
|
81 |
11 |
csantifort |
reg [2:0] sim_ctrl_reg = 'd0; // 0 = fpga, other values for simulations
|
82 |
|
|
reg mem_ctrl_reg = 'd0; // 0 = 128MB, 1 = 32MB main memory
|
83 |
2 |
csantifort |
reg [31:0] test_status_reg = 'd0;
|
84 |
|
|
reg test_status_set = 'd0; // used to terminate tests
|
85 |
32 |
csantifort |
reg [31:0] cycles_reg = 'd0;
|
86 |
2 |
csantifort |
|
87 |
|
|
wire wb_start_write;
|
88 |
|
|
wire wb_start_read;
|
89 |
|
|
reg wb_start_read_d1 = 'd0;
|
90 |
35 |
csantifort |
reg [31:0] wb_rdata32 = 'd0;
|
91 |
|
|
wire [31:0] wb_wdata32;
|
92 |
2 |
csantifort |
|
93 |
61 |
csantifort |
reg [3:0] led_reg = 'd0;
|
94 |
|
|
reg phy_rst_reg = 'd0;
|
95 |
|
|
|
96 |
|
|
|
97 |
2 |
csantifort |
// Can't start a write while a read is completing. The ack for the read cycle
|
98 |
|
|
// needs to be sent first
|
99 |
|
|
assign wb_start_write = i_wb_stb && i_wb_we && !wb_start_read_d1;
|
100 |
|
|
assign wb_start_read = i_wb_stb && !i_wb_we && !o_wb_ack;
|
101 |
|
|
|
102 |
|
|
always @( posedge i_clk )
|
103 |
|
|
wb_start_read_d1 <= wb_start_read;
|
104 |
|
|
|
105 |
61 |
csantifort |
assign o_wb_ack = i_wb_stb && ( wb_start_write || wb_start_read_d1 );
|
106 |
|
|
assign o_wb_err = 1'd0;
|
107 |
|
|
assign o_mem_ctrl = mem_ctrl_reg;
|
108 |
|
|
assign o_led = led_reg;
|
109 |
|
|
assign o_phy_rst_n = phy_rst_reg;
|
110 |
2 |
csantifort |
|
111 |
35 |
csantifort |
generate
|
112 |
|
|
if (WB_DWIDTH == 128)
|
113 |
|
|
begin : wb128
|
114 |
|
|
assign wb_wdata32 = i_wb_adr[3:2] == 2'd3 ? i_wb_dat[127:96] :
|
115 |
|
|
i_wb_adr[3:2] == 2'd2 ? i_wb_dat[ 95:64] :
|
116 |
|
|
i_wb_adr[3:2] == 2'd1 ? i_wb_dat[ 63:32] :
|
117 |
|
|
i_wb_dat[ 31: 0] ;
|
118 |
|
|
|
119 |
|
|
assign o_wb_dat = {4{wb_rdata32}};
|
120 |
|
|
end
|
121 |
|
|
else
|
122 |
|
|
begin : wb32
|
123 |
|
|
assign wb_wdata32 = i_wb_dat;
|
124 |
|
|
assign o_wb_dat = wb_rdata32;
|
125 |
|
|
end
|
126 |
|
|
endgenerate
|
127 |
|
|
|
128 |
61 |
csantifort |
|
129 |
2 |
csantifort |
// ========================================================
|
130 |
|
|
// Register Reads
|
131 |
|
|
// ========================================================
|
132 |
|
|
always @( posedge i_clk )
|
133 |
|
|
if ( wb_start_read )
|
134 |
|
|
case ( i_wb_adr[15:0] )
|
135 |
35 |
csantifort |
AMBER_TEST_STATUS: wb_rdata32 <= test_status_reg;
|
136 |
|
|
AMBER_TEST_FIRQ_TIMER: wb_rdata32 <= {24'd0, firq_timer};
|
137 |
|
|
AMBER_TEST_IRQ_TIMER: wb_rdata32 <= {24'd0, irq_timer};
|
138 |
|
|
AMBER_TEST_RANDOM_NUM: wb_rdata32 <= {24'd0, random_num};
|
139 |
2 |
csantifort |
|
140 |
|
|
/* Allow access to the random register over
|
141 |
|
|
a 16-word address range to load a series
|
142 |
|
|
of random numbers using lmd instruction. */
|
143 |
35 |
csantifort |
AMBER_TEST_RANDOM_NUM00: wb_rdata32 <= {24'd0, random_num};
|
144 |
|
|
AMBER_TEST_RANDOM_NUM01: wb_rdata32 <= {24'd0, random_num};
|
145 |
|
|
AMBER_TEST_RANDOM_NUM02: wb_rdata32 <= {24'd0, random_num};
|
146 |
|
|
AMBER_TEST_RANDOM_NUM03: wb_rdata32 <= {24'd0, random_num};
|
147 |
|
|
AMBER_TEST_RANDOM_NUM04: wb_rdata32 <= {24'd0, random_num};
|
148 |
|
|
AMBER_TEST_RANDOM_NUM05: wb_rdata32 <= {24'd0, random_num};
|
149 |
|
|
AMBER_TEST_RANDOM_NUM06: wb_rdata32 <= {24'd0, random_num};
|
150 |
|
|
AMBER_TEST_RANDOM_NUM07: wb_rdata32 <= {24'd0, random_num};
|
151 |
|
|
AMBER_TEST_RANDOM_NUM08: wb_rdata32 <= {24'd0, random_num};
|
152 |
|
|
AMBER_TEST_RANDOM_NUM09: wb_rdata32 <= {24'd0, random_num};
|
153 |
|
|
AMBER_TEST_RANDOM_NUM10: wb_rdata32 <= {24'd0, random_num};
|
154 |
|
|
AMBER_TEST_RANDOM_NUM11: wb_rdata32 <= {24'd0, random_num};
|
155 |
|
|
AMBER_TEST_RANDOM_NUM12: wb_rdata32 <= {24'd0, random_num};
|
156 |
|
|
AMBER_TEST_RANDOM_NUM13: wb_rdata32 <= {24'd0, random_num};
|
157 |
|
|
AMBER_TEST_RANDOM_NUM14: wb_rdata32 <= {24'd0, random_num};
|
158 |
|
|
AMBER_TEST_RANDOM_NUM15: wb_rdata32 <= {24'd0, random_num};
|
159 |
2 |
csantifort |
|
160 |
|
|
//synopsys translate_off
|
161 |
35 |
csantifort |
AMBER_TEST_UART_CONTROL: wb_rdata32 <= {30'd0, tb_uart_control_reg};
|
162 |
|
|
AMBER_TEST_UART_STATUS: wb_rdata32 <= {30'd0, tb_uart_status_reg};
|
163 |
|
|
AMBER_TEST_UART_TXD: wb_rdata32 <= {24'd0, tb_uart_txd_reg};
|
164 |
2 |
csantifort |
//synopsys translate_on
|
165 |
|
|
|
166 |
35 |
csantifort |
AMBER_TEST_SIM_CTRL: wb_rdata32 <= {29'd0, sim_ctrl_reg};
|
167 |
|
|
AMBER_TEST_MEM_CTRL: wb_rdata32 <= {31'd0, mem_ctrl_reg};
|
168 |
32 |
csantifort |
|
169 |
35 |
csantifort |
AMBER_TEST_CYCLES: wb_rdata32 <= cycles_reg;
|
170 |
61 |
csantifort |
AMBER_TEST_LED: wb_rdata32 <= {27'd0, led_reg};
|
171 |
|
|
AMBER_TEST_PHY_RST: wb_rdata32 <= {31'd0, phy_rst_reg};
|
172 |
35 |
csantifort |
default: wb_rdata32 <= 32'haabbccdd;
|
173 |
2 |
csantifort |
|
174 |
|
|
endcase
|
175 |
|
|
|
176 |
|
|
|
177 |
|
|
// ======================================
|
178 |
|
|
// Simulation bit
|
179 |
|
|
// ======================================
|
180 |
|
|
|
181 |
|
|
// This register bit is a 1 in simulation but a 0 in the real fpga
|
182 |
|
|
// Used by software to tell the difference
|
183 |
|
|
//synopsys translate_off
|
184 |
|
|
|
185 |
|
|
`ifndef AMBER_SIM_CTRL
|
186 |
|
|
`define AMBER_SIM_CTRL 0
|
187 |
|
|
`endif
|
188 |
|
|
|
189 |
|
|
always @( posedge i_clk )
|
190 |
|
|
begin
|
191 |
|
|
// Value reads as 1 in simulation, and zero in the FPGA
|
192 |
11 |
csantifort |
sim_ctrl_reg <= 3'd `AMBER_SIM_CTRL ;
|
193 |
2 |
csantifort |
end
|
194 |
|
|
//synopsys translate_on
|
195 |
|
|
|
196 |
|
|
|
197 |
|
|
// ======================================
|
198 |
|
|
// Interrupts
|
199 |
|
|
// ======================================
|
200 |
|
|
assign o_irq = irq_timer == 8'd1;
|
201 |
|
|
assign o_firq = firq_timer == 8'd1;
|
202 |
|
|
|
203 |
|
|
|
204 |
|
|
// ======================================
|
205 |
|
|
// FIRQ Timer Register
|
206 |
|
|
// ======================================
|
207 |
|
|
// Write a value > 1 to set the firq timer
|
208 |
|
|
// Write 0 to clear it
|
209 |
|
|
always @( posedge i_clk )
|
210 |
|
|
if ( wb_start_write && i_wb_adr[15:0] == AMBER_TEST_FIRQ_TIMER )
|
211 |
35 |
csantifort |
firq_timer <= wb_wdata32[7:0];
|
212 |
2 |
csantifort |
else if ( firq_timer > 8'd1 )
|
213 |
|
|
firq_timer <= firq_timer - 1'd1;
|
214 |
|
|
|
215 |
|
|
|
216 |
|
|
// ======================================
|
217 |
|
|
// IRQ Timer Register
|
218 |
|
|
// ======================================
|
219 |
|
|
// Write a value > 1 to set the irq timer
|
220 |
|
|
// Write 0 to clear it
|
221 |
|
|
always @( posedge i_clk )
|
222 |
|
|
if ( wb_start_write && i_wb_adr[15:0] == AMBER_TEST_IRQ_TIMER )
|
223 |
35 |
csantifort |
irq_timer <= wb_wdata32[7:0];
|
224 |
2 |
csantifort |
else if ( irq_timer > 8'd1 )
|
225 |
|
|
irq_timer <= irq_timer - 1'd1;
|
226 |
|
|
|
227 |
|
|
|
228 |
|
|
// ======================================
|
229 |
|
|
// Random Number Generator Register
|
230 |
|
|
// ======================================
|
231 |
|
|
// Write a value > 1 to set the irq timer
|
232 |
|
|
// Write 0 to clear it
|
233 |
|
|
always @( posedge i_clk )
|
234 |
|
|
begin
|
235 |
|
|
if ( wb_start_write && i_wb_adr[15:8] == AMBER_TEST_RANDOM_NUM[15:8] )
|
236 |
35 |
csantifort |
random_num <= wb_wdata32[7:0];
|
237 |
2 |
csantifort |
|
238 |
|
|
// generate a new random number on every read access
|
239 |
|
|
else if ( wb_start_read && i_wb_adr[15:8] == AMBER_TEST_RANDOM_NUM[15:8] )
|
240 |
|
|
random_num <= { random_num[3]^random_num[1],
|
241 |
|
|
random_num[0]^random_num[5],
|
242 |
|
|
~random_num[7]^random_num[4],
|
243 |
|
|
~random_num[2],
|
244 |
|
|
random_num[6],
|
245 |
|
|
random_num[4]^~random_num[3],
|
246 |
|
|
random_num[7]^~random_num[1],
|
247 |
|
|
random_num[7]
|
248 |
|
|
};
|
249 |
|
|
end
|
250 |
|
|
|
251 |
|
|
|
252 |
|
|
// ======================================
|
253 |
|
|
// Test Status Write
|
254 |
|
|
// ======================================
|
255 |
|
|
always @( posedge i_clk )
|
256 |
|
|
if ( wb_start_write && i_wb_adr[15:0] == AMBER_TEST_STATUS )
|
257 |
35 |
csantifort |
test_status_reg <= wb_wdata32;
|
258 |
2 |
csantifort |
|
259 |
|
|
|
260 |
|
|
// ======================================
|
261 |
|
|
// Test Status Write
|
262 |
|
|
// ======================================
|
263 |
|
|
always @( posedge i_clk )
|
264 |
|
|
if ( wb_start_write && i_wb_adr[15:0] == AMBER_TEST_STATUS )
|
265 |
|
|
test_status_set <= 1'd1;
|
266 |
|
|
|
267 |
61 |
csantifort |
|
268 |
2 |
csantifort |
// ======================================
|
269 |
32 |
csantifort |
// Cycles counter
|
270 |
|
|
// ======================================
|
271 |
|
|
always @( posedge i_clk )
|
272 |
|
|
cycles_reg <= cycles_reg + 1'd1;
|
273 |
61 |
csantifort |
|
274 |
|
|
|
275 |
32 |
csantifort |
// ======================================
|
276 |
11 |
csantifort |
// Memory Configuration Register Write
|
277 |
|
|
// ======================================
|
278 |
|
|
always @( posedge i_clk )
|
279 |
|
|
if ( wb_start_write && i_wb_adr[15:0] == AMBER_TEST_MEM_CTRL )
|
280 |
35 |
csantifort |
mem_ctrl_reg <= wb_wdata32[0];
|
281 |
11 |
csantifort |
|
282 |
|
|
|
283 |
|
|
// ======================================
|
284 |
61 |
csantifort |
// Test LEDs
|
285 |
|
|
// ======================================
|
286 |
|
|
always @( posedge i_clk )
|
287 |
|
|
if ( wb_start_write && i_wb_adr[15:0] == AMBER_TEST_LED )
|
288 |
|
|
led_reg <= wb_wdata32[3:0];
|
289 |
|
|
|
290 |
|
|
|
291 |
|
|
// ======================================
|
292 |
|
|
// PHY Reset Register
|
293 |
|
|
// ======================================
|
294 |
|
|
always @( posedge i_clk )
|
295 |
|
|
if ( wb_start_write && i_wb_adr[15:0] == AMBER_TEST_PHY_RST )
|
296 |
|
|
phy_rst_reg <= wb_wdata32[0];
|
297 |
|
|
|
298 |
|
|
|
299 |
|
|
// ======================================
|
300 |
2 |
csantifort |
// Test UART registers
|
301 |
|
|
// ======================================
|
302 |
|
|
// These control the testbench UART, not the real
|
303 |
|
|
// UART in system
|
304 |
|
|
|
305 |
|
|
//synopsys translate_off
|
306 |
|
|
always @( posedge i_clk )
|
307 |
|
|
begin
|
308 |
|
|
if ( wb_start_write && i_wb_adr[15:0] == AMBER_TEST_UART_CONTROL )
|
309 |
35 |
csantifort |
tb_uart_control_reg <= wb_wdata32[1:0];
|
310 |
2 |
csantifort |
|
311 |
|
|
if ( wb_start_write && i_wb_adr[15:0] == AMBER_TEST_UART_TXD )
|
312 |
|
|
begin
|
313 |
35 |
csantifort |
tb_uart_txd_reg <= wb_wdata32[7:0];
|
314 |
2 |
csantifort |
tb_uart_push <= !tb_uart_push;
|
315 |
|
|
end
|
316 |
|
|
end
|
317 |
|
|
//synopsys translate_on
|
318 |
|
|
|
319 |
|
|
|
320 |
|
|
|
321 |
|
|
endmodule
|
322 |
|
|
|