1 |
2 |
csantifort |
//////////////////////////////////////////////////////////////////
|
2 |
|
|
// //
|
3 |
|
|
// UART //
|
4 |
|
|
// //
|
5 |
|
|
// This file is part of the Amber project //
|
6 |
|
|
// http://www.opencores.org/project,amber //
|
7 |
|
|
// //
|
8 |
|
|
// Description //
|
9 |
|
|
// This is a synchronous UART meaning it uses the system //
|
10 |
|
|
// clock rather than having its own clock. This means the //
|
11 |
|
|
// standard UART Baud rates are approximated and not exact. //
|
12 |
|
|
// However the UART tandard provides for a 10% margin on //
|
13 |
|
|
// baud rates and this module is much more accurate than that. //
|
14 |
|
|
// //
|
15 |
|
|
// The Baud rate must be set before synthesis and is not //
|
16 |
|
|
// programmable. This keeps the UART small. //
|
17 |
|
|
// //
|
18 |
|
|
// The UART uses 8 data bits, 1 stop bit and no parity bits. //
|
19 |
|
|
// //
|
20 |
|
|
// The UART has a 16-byte transmit and a 16-byte receive FIFO //
|
21 |
|
|
// These FIFOs are implemented in flipflops - FPGAs have lots //
|
22 |
|
|
// of flipflops! //
|
23 |
|
|
// //
|
24 |
|
|
// Author(s): //
|
25 |
|
|
// - Conor Santifort, csantifort.amber@gmail.com //
|
26 |
|
|
// //
|
27 |
|
|
//////////////////////////////////////////////////////////////////
|
28 |
|
|
// //
|
29 |
|
|
// Copyright (C) 2010 Authors and OPENCORES.ORG //
|
30 |
|
|
// //
|
31 |
|
|
// This source file may be used and distributed without //
|
32 |
|
|
// restriction provided that this copyright statement is not //
|
33 |
|
|
// removed from the file and that any derivative work contains //
|
34 |
|
|
// the original copyright notice and the associated disclaimer. //
|
35 |
|
|
// //
|
36 |
|
|
// This source file is free software; you can redistribute it //
|
37 |
|
|
// and/or modify it under the terms of the GNU Lesser General //
|
38 |
|
|
// Public License as published by the Free Software Foundation; //
|
39 |
|
|
// either version 2.1 of the License, or (at your option) any //
|
40 |
|
|
// later version. //
|
41 |
|
|
// //
|
42 |
|
|
// This source is distributed in the hope that it will be //
|
43 |
|
|
// useful, but WITHOUT ANY WARRANTY; without even the implied //
|
44 |
|
|
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //
|
45 |
|
|
// PURPOSE. See the GNU Lesser General Public License for more //
|
46 |
|
|
// details. //
|
47 |
|
|
// //
|
48 |
|
|
// You should have received a copy of the GNU Lesser General //
|
49 |
|
|
// Public License along with this source; if not, download it //
|
50 |
|
|
// from http://www.opencores.org/lgpl.shtml //
|
51 |
|
|
// //
|
52 |
|
|
//////////////////////////////////////////////////////////////////
|
53 |
|
|
|
54 |
|
|
`include "system_config_defines.v"
|
55 |
|
|
|
56 |
13 |
csantifort |
// Normally AMBER_UART_BAUD is defined in the system_config_defines.v file.
|
57 |
|
|
`ifndef AMBER_UART_BAUD
|
58 |
|
|
`define AMBER_UART_BAUD 230400
|
59 |
|
|
`endif
|
60 |
|
|
|
61 |
2 |
csantifort |
module uart (
|
62 |
|
|
input i_clk,
|
63 |
|
|
|
64 |
|
|
input [31:0] i_wb_adr,
|
65 |
|
|
input [3:0] i_wb_sel,
|
66 |
|
|
input i_wb_we,
|
67 |
|
|
output [31:0] o_wb_dat,
|
68 |
|
|
input [31:0] i_wb_dat,
|
69 |
|
|
input i_wb_cyc,
|
70 |
|
|
input i_wb_stb,
|
71 |
|
|
output o_wb_ack,
|
72 |
|
|
output o_wb_err,
|
73 |
|
|
|
74 |
|
|
output o_uart_int,
|
75 |
|
|
|
76 |
|
|
input i_uart_cts_n, // Clear To Send
|
77 |
|
|
output o_uart_txd, // Transmit data
|
78 |
|
|
output o_uart_rts_n, // Request to Send
|
79 |
|
|
input i_uart_rxd // Receive data
|
80 |
|
|
|
81 |
|
|
);
|
82 |
|
|
|
83 |
|
|
|
84 |
|
|
`include "register_addresses.v"
|
85 |
|
|
|
86 |
|
|
|
87 |
|
|
localparam [3:0] TXD_IDLE = 4'd0,
|
88 |
|
|
TXD_START = 4'd1,
|
89 |
|
|
TXD_DATA0 = 4'd2,
|
90 |
|
|
TXD_DATA1 = 4'd3,
|
91 |
|
|
TXD_DATA2 = 4'd4,
|
92 |
|
|
TXD_DATA3 = 4'd5,
|
93 |
|
|
TXD_DATA4 = 4'd6,
|
94 |
|
|
TXD_DATA5 = 4'd7,
|
95 |
|
|
TXD_DATA6 = 4'd8,
|
96 |
|
|
TXD_DATA7 = 4'd9,
|
97 |
|
|
TXD_STOP1 = 4'd10,
|
98 |
|
|
TXD_STOP2 = 4'd11,
|
99 |
|
|
TXD_STOP3 = 4'd12;
|
100 |
|
|
|
101 |
13 |
csantifort |
localparam [3:0] RXD_IDLE = 4'd0,
|
102 |
|
|
RXD_START = 4'd1,
|
103 |
|
|
RXD_START_MID = 4'd2,
|
104 |
|
|
RXD_START_MID1 = 4'd3,
|
105 |
|
|
RXD_DATA0 = 4'd4,
|
106 |
|
|
RXD_DATA1 = 4'd5,
|
107 |
|
|
RXD_DATA2 = 4'd6,
|
108 |
|
|
RXD_DATA3 = 4'd7,
|
109 |
|
|
RXD_DATA4 = 4'd8,
|
110 |
|
|
RXD_DATA5 = 4'd9,
|
111 |
|
|
RXD_DATA6 = 4'd10,
|
112 |
|
|
RXD_DATA7 = 4'd11,
|
113 |
|
|
RXD_STOP = 4'd12;
|
114 |
2 |
csantifort |
|
115 |
|
|
|
116 |
|
|
localparam RX_INTERRUPT_COUNT = 24'h3fffff;
|
117 |
|
|
|
118 |
|
|
|
119 |
|
|
// -------------------------------------------------------------------------
|
120 |
|
|
// Baud Rate Configuration
|
121 |
|
|
// -------------------------------------------------------------------------
|
122 |
|
|
|
123 |
|
|
`ifndef Veritak
|
124 |
|
|
localparam real UART_BAUD = `AMBER_UART_BAUD; // Hz
|
125 |
13 |
csantifort |
|
126 |
|
|
`ifdef XILINX_VIRTEX6_FPGA
|
127 |
|
|
localparam real CLK_FREQ = 1000.0 / `AMBER_CLK_DIVIDER ; // MHz
|
128 |
|
|
`else
|
129 |
2 |
csantifort |
localparam real CLK_FREQ = 800.0 / `AMBER_CLK_DIVIDER ; // MHz
|
130 |
13 |
csantifort |
`endif
|
131 |
|
|
|
132 |
2 |
csantifort |
localparam real UART_BIT_PERIOD = 1000000000 / UART_BAUD; // nS
|
133 |
|
|
localparam real UART_WORD_PERIOD = ( UART_BIT_PERIOD * 12 ); // nS
|
134 |
|
|
localparam real CLK_PERIOD = 1000 / CLK_FREQ; // nS
|
135 |
|
|
localparam real CLKS_PER_WORD = UART_WORD_PERIOD / CLK_PERIOD;
|
136 |
|
|
localparam real CLKS_PER_BIT = CLKS_PER_WORD / 12;
|
137 |
|
|
|
138 |
|
|
// These are rounded to the nearest whole number
|
139 |
|
|
// i.e. 29.485960 -> 29
|
140 |
|
|
// 29.566303 -> 30
|
141 |
|
|
localparam [9:0] TX_BITPULSE_COUNT = CLKS_PER_BIT;
|
142 |
|
|
localparam [9:0] TX_CLKS_PER_WORD = CLKS_PER_WORD;
|
143 |
|
|
`else
|
144 |
|
|
localparam [9:0] TX_BITPULSE_COUNT = 30;
|
145 |
|
|
localparam [9:0] TX_CLKS_PER_WORD = 360;
|
146 |
|
|
`endif
|
147 |
|
|
|
148 |
|
|
localparam [9:0] TX_BITADJUST_COUNT = TX_CLKS_PER_WORD - 11*TX_BITPULSE_COUNT;
|
149 |
|
|
|
150 |
|
|
localparam [9:0] RX_BITPULSE_COUNT = TX_BITPULSE_COUNT-2;
|
151 |
|
|
localparam [9:0] RX_HALFPULSE_COUNT = TX_BITPULSE_COUNT/2 - 4;
|
152 |
|
|
|
153 |
|
|
|
154 |
|
|
// -------------------------------------------------------------------------
|
155 |
|
|
|
156 |
|
|
reg tx_interrupt = 'd0;
|
157 |
|
|
reg rx_interrupt = 'd0;
|
158 |
|
|
reg [23:0] rx_int_timer = 'd0;
|
159 |
|
|
|
160 |
|
|
wire fifo_enable;
|
161 |
|
|
|
162 |
|
|
reg [7:0] tx_fifo [0:15];
|
163 |
|
|
wire tx_fifo_full;
|
164 |
|
|
wire tx_fifo_empty;
|
165 |
|
|
wire tx_fifo_half_or_less_full;
|
166 |
|
|
wire tx_fifo_push;
|
167 |
|
|
wire tx_fifo_push_not_full;
|
168 |
|
|
wire tx_fifo_pop_not_empty;
|
169 |
|
|
reg [4:0] tx_fifo_wp = 'd0;
|
170 |
|
|
reg [4:0] tx_fifo_rp = 'd0;
|
171 |
|
|
reg [4:0] tx_fifo_count = 'd0; // number of entries in the fifo
|
172 |
|
|
reg tx_fifo_full_flag = 'd0;
|
173 |
|
|
|
174 |
|
|
reg [7:0] rx_fifo [0:15];
|
175 |
|
|
reg rx_fifo_empty = 1'd1;
|
176 |
|
|
reg rx_fifo_full = 1'd0;
|
177 |
|
|
wire rx_fifo_half_or_more; // true when half full or greater
|
178 |
|
|
reg [4:0] rx_fifo_count = 'd0; // number of entries in the fifo
|
179 |
|
|
wire rx_fifo_push;
|
180 |
|
|
wire rx_fifo_push_not_full;
|
181 |
|
|
wire rx_fifo_pop;
|
182 |
|
|
wire rx_fifo_pop_not_empty;
|
183 |
|
|
reg [4:0] rx_fifo_wp = 'd0;
|
184 |
|
|
reg [4:0] rx_fifo_rp = 'd0;
|
185 |
|
|
|
186 |
|
|
wire [7:0] tx_byte;
|
187 |
|
|
reg [3:0] txd_state = TXD_IDLE;
|
188 |
|
|
reg txd = 1'd1;
|
189 |
|
|
reg tx_bit_pulse = 'd0;
|
190 |
|
|
reg [9:0] tx_bit_pulse_count = 'd0;
|
191 |
|
|
|
192 |
|
|
reg [7:0] rx_byte = 'd0;
|
193 |
|
|
reg [3:0] rxd_state = RXD_IDLE;
|
194 |
|
|
wire rx_start;
|
195 |
|
|
reg rxen = 'd0;
|
196 |
|
|
reg [9:0] rx_bit_pulse_count = 'd0;
|
197 |
|
|
reg restart_rx_bit_count = 'd0;
|
198 |
|
|
reg [4:0] rxd_d = 5'h1f;
|
199 |
|
|
reg [3:0] uart0_cts_n_d = 4'hf;
|
200 |
|
|
|
201 |
|
|
// Wishbone registers
|
202 |
|
|
reg [7:0] uart_rsr_reg = 'd0; // Receive status, (Write) Error Clear
|
203 |
|
|
reg [7:0] uart_lcrh_reg = 'd0; // Line Control High Byte
|
204 |
|
|
reg [7:0] uart_lcrm_reg = 'd0; // Line Control Middle Byte
|
205 |
|
|
reg [7:0] uart_lcrl_reg = 'd0; // Line Control Low Byte
|
206 |
|
|
reg [7:0] uart_cr_reg = 'd0; // Control Register
|
207 |
|
|
|
208 |
|
|
// Wishbone interface
|
209 |
|
|
reg [31:0] wb_rdata = 'd0;
|
210 |
|
|
wire wb_start_write;
|
211 |
|
|
wire wb_start_read;
|
212 |
|
|
reg wb_start_read_d1 = 'd0;
|
213 |
|
|
|
214 |
|
|
integer i;
|
215 |
|
|
|
216 |
|
|
// ======================================================
|
217 |
|
|
// Wishbone Interface
|
218 |
|
|
// ======================================================
|
219 |
|
|
|
220 |
|
|
// Can't start a write while a read is completing. The ack for the read cycle
|
221 |
|
|
// needs to be sent first
|
222 |
|
|
assign wb_start_write = i_wb_stb && i_wb_we && !wb_start_read_d1;
|
223 |
|
|
assign wb_start_read = i_wb_stb && !i_wb_we && !o_wb_ack;
|
224 |
|
|
|
225 |
|
|
always @( posedge i_clk )
|
226 |
|
|
wb_start_read_d1 <= wb_start_read;
|
227 |
|
|
|
228 |
|
|
assign o_wb_dat = wb_rdata;
|
229 |
|
|
|
230 |
|
|
assign o_wb_err = 1'd0;
|
231 |
|
|
assign o_wb_ack = i_wb_stb && ( wb_start_write || wb_start_read_d1 );
|
232 |
|
|
|
233 |
|
|
|
234 |
|
|
// ======================================================
|
235 |
|
|
// UART 0 Receive FIFO
|
236 |
|
|
// ======================================================
|
237 |
|
|
|
238 |
|
|
assign rx_fifo_pop = wb_start_read && i_wb_adr[15:0] == AMBER_UART_DR;
|
239 |
|
|
assign rx_fifo_push_not_full = rx_fifo_push && !rx_fifo_full;
|
240 |
|
|
assign rx_fifo_pop_not_empty = rx_fifo_pop && !rx_fifo_empty;
|
241 |
|
|
assign rx_fifo_half_or_more = rx_fifo_count >= 5'd8;
|
242 |
|
|
|
243 |
|
|
|
244 |
|
|
always @ ( posedge i_clk )
|
245 |
|
|
begin
|
246 |
|
|
if ( fifo_enable )
|
247 |
|
|
begin
|
248 |
|
|
// RX FIFO Push
|
249 |
|
|
if ( rx_fifo_push_not_full )
|
250 |
|
|
begin
|
251 |
|
|
rx_fifo[rx_fifo_wp[3:0]] <= rx_byte;
|
252 |
|
|
rx_fifo_wp <= rx_fifo_wp + 1'd1;
|
253 |
|
|
end
|
254 |
|
|
|
255 |
|
|
if ( rx_fifo_pop_not_empty )
|
256 |
|
|
begin
|
257 |
|
|
rx_fifo_rp <= rx_fifo_rp + 1'd1;
|
258 |
|
|
end
|
259 |
|
|
|
260 |
|
|
if ( rx_fifo_push_not_full && !rx_fifo_pop_not_empty )
|
261 |
|
|
rx_fifo_count <= rx_fifo_count + 1'd1;
|
262 |
|
|
else if ( rx_fifo_pop_not_empty && !rx_fifo_push_not_full )
|
263 |
|
|
rx_fifo_count <= rx_fifo_count - 1'd1;
|
264 |
|
|
|
265 |
|
|
rx_fifo_full <= rx_fifo_wp == {~rx_fifo_rp[4], rx_fifo_rp[3:0]};
|
266 |
|
|
rx_fifo_empty <= rx_fifo_wp == rx_fifo_rp;
|
267 |
|
|
|
268 |
|
|
if ( rx_fifo_empty || rx_fifo_pop )
|
269 |
|
|
rx_int_timer <= 'd0;
|
270 |
|
|
else if ( rx_int_timer != RX_INTERRUPT_COUNT )
|
271 |
|
|
rx_int_timer <= rx_int_timer + 1'd1;
|
272 |
|
|
|
273 |
|
|
|
274 |
|
|
end
|
275 |
|
|
else // No FIFO
|
276 |
|
|
begin
|
277 |
|
|
rx_int_timer <= 'd0;
|
278 |
|
|
|
279 |
|
|
if ( rx_fifo_push )
|
280 |
|
|
begin
|
281 |
|
|
rx_fifo[0] <= rx_byte;
|
282 |
|
|
rx_fifo_empty <= 1'd0;
|
283 |
|
|
rx_fifo_full <= 1'd1;
|
284 |
|
|
end
|
285 |
|
|
else if ( rx_fifo_pop )
|
286 |
|
|
begin
|
287 |
|
|
rx_fifo_empty <= 1'd1;
|
288 |
|
|
rx_fifo_full <= 1'd0;
|
289 |
|
|
end
|
290 |
|
|
end
|
291 |
|
|
end
|
292 |
|
|
|
293 |
|
|
|
294 |
|
|
// ======================================================
|
295 |
|
|
// Transmit Interrupts
|
296 |
|
|
// ======================================================
|
297 |
|
|
|
298 |
|
|
|
299 |
|
|
// UART 0 Transmit Interrupt
|
300 |
|
|
always @ ( posedge i_clk )
|
301 |
|
|
begin
|
302 |
|
|
// Clear the interrupt
|
303 |
|
|
if ( wb_start_write && i_wb_adr[15:0] == AMBER_UART_ICR )
|
304 |
|
|
tx_interrupt <= 1'd0;
|
305 |
|
|
|
306 |
|
|
// Set the interrupt
|
307 |
|
|
else if ( fifo_enable )
|
308 |
|
|
// This interrupt clears automatically as bytes are pushed into the tx fifo
|
309 |
|
|
// cr bit 5 is Transmit Interrupt Enable
|
310 |
|
|
tx_interrupt <= tx_fifo_half_or_less_full && uart_cr_reg[5];
|
311 |
|
|
else
|
312 |
|
|
// This interrupt clears automatically when a byte is written to tx
|
313 |
|
|
// cr bit 5 is Transmit Interrupt Enable
|
314 |
|
|
tx_interrupt <= tx_fifo_empty && uart_cr_reg[5];
|
315 |
|
|
end
|
316 |
|
|
|
317 |
|
|
|
318 |
|
|
// ======================================================
|
319 |
|
|
// Receive Interrupts
|
320 |
|
|
// ======================================================
|
321 |
|
|
|
322 |
|
|
always @ ( posedge i_clk )
|
323 |
|
|
if (fifo_enable)
|
324 |
|
|
rx_interrupt <= rx_fifo_half_or_more || rx_int_timer == RX_INTERRUPT_COUNT;
|
325 |
|
|
else
|
326 |
|
|
rx_interrupt <= rx_fifo_full;
|
327 |
|
|
|
328 |
|
|
|
329 |
|
|
assign o_uart_int = ( tx_interrupt & uart_cr_reg[5] ) | // UART transmit interrupt w/ enable
|
330 |
|
|
( rx_interrupt & uart_cr_reg[4] ) ; // UART receive interrupt w/ enable
|
331 |
|
|
|
332 |
|
|
assign fifo_enable = uart_lcrh_reg[4];
|
333 |
|
|
|
334 |
|
|
|
335 |
|
|
|
336 |
|
|
// ========================================================
|
337 |
|
|
// UART Transmit
|
338 |
|
|
// ========================================================
|
339 |
|
|
|
340 |
|
|
assign o_uart_txd = txd;
|
341 |
|
|
|
342 |
13 |
csantifort |
assign tx_fifo_full = fifo_enable ? tx_fifo_count >= 5'd16 : tx_fifo_full_flag;
|
343 |
|
|
assign tx_fifo_empty = fifo_enable ? tx_fifo_count == 5'd00 : !tx_fifo_full_flag;
|
344 |
|
|
assign tx_fifo_half_or_less_full = tx_fifo_count <= 5'd8;
|
345 |
2 |
csantifort |
assign tx_byte = fifo_enable ? tx_fifo[tx_fifo_rp[3:0]] : tx_fifo[0] ;
|
346 |
|
|
|
347 |
|
|
assign tx_fifo_push = wb_start_write && i_wb_adr[15:0] == AMBER_UART_DR;
|
348 |
|
|
assign tx_fifo_push_not_full = tx_fifo_push && !tx_fifo_full;
|
349 |
|
|
assign tx_fifo_pop_not_empty = txd_state == TXD_STOP3 && tx_bit_pulse == 1'd1 && !tx_fifo_empty;
|
350 |
|
|
|
351 |
|
|
|
352 |
|
|
// Transmit FIFO
|
353 |
|
|
always @( posedge i_clk )
|
354 |
|
|
begin
|
355 |
|
|
// Use 8-entry FIFO
|
356 |
|
|
if ( fifo_enable )
|
357 |
|
|
begin
|
358 |
|
|
// Push
|
359 |
|
|
if ( tx_fifo_push_not_full )
|
360 |
|
|
begin
|
361 |
|
|
tx_fifo[tx_fifo_wp[3:0]] <= i_wb_dat[7:0];
|
362 |
|
|
tx_fifo_wp <= tx_fifo_wp + 1'd1;
|
363 |
|
|
end
|
364 |
|
|
|
365 |
|
|
|
366 |
|
|
// Pop
|
367 |
|
|
if ( tx_fifo_pop_not_empty )
|
368 |
|
|
tx_fifo_rp <= tx_fifo_rp + 1'd1;
|
369 |
|
|
|
370 |
|
|
// Count up
|
371 |
|
|
if (tx_fifo_push_not_full && !tx_fifo_pop_not_empty)
|
372 |
|
|
tx_fifo_count <= tx_fifo_count + 1'd1;
|
373 |
|
|
|
374 |
|
|
// Count down
|
375 |
|
|
else if (tx_fifo_pop_not_empty && !tx_fifo_push_not_full)
|
376 |
|
|
tx_fifo_count <= tx_fifo_count - 1'd1;
|
377 |
|
|
end
|
378 |
|
|
|
379 |
|
|
// Do not use 8-entry FIFO, single entry register instead
|
380 |
|
|
else
|
381 |
|
|
begin
|
382 |
|
|
// Clear FIFO values
|
383 |
|
|
tx_fifo_wp <= 'd0;
|
384 |
|
|
tx_fifo_rp <= 'd0;
|
385 |
|
|
tx_fifo_count <= 'd0;
|
386 |
|
|
|
387 |
|
|
// Push
|
388 |
|
|
if ( tx_fifo_push_not_full )
|
389 |
|
|
begin
|
390 |
|
|
tx_fifo[0] <= i_wb_dat[7:0];
|
391 |
|
|
tx_fifo_full_flag <= 1'd1;
|
392 |
|
|
end
|
393 |
|
|
// Pop
|
394 |
|
|
else if ( tx_fifo_pop_not_empty )
|
395 |
|
|
tx_fifo_full_flag <= 1'd0;
|
396 |
|
|
|
397 |
|
|
end
|
398 |
|
|
end
|
399 |
|
|
|
400 |
|
|
|
401 |
|
|
// ========================================================
|
402 |
|
|
// Register Clear to Send Input
|
403 |
|
|
// ========================================================
|
404 |
|
|
always @( posedge i_clk )
|
405 |
|
|
uart0_cts_n_d <= {uart0_cts_n_d[2:0], i_uart_cts_n};
|
406 |
|
|
|
407 |
|
|
|
408 |
|
|
// ========================================================
|
409 |
|
|
// Transmit Pulse generater - matches baud rate
|
410 |
|
|
// ========================================================
|
411 |
|
|
always @( posedge i_clk )
|
412 |
|
|
if (( tx_bit_pulse_count == (TX_BITADJUST_COUNT-1) && txd_state == TXD_STOP2 ) ||
|
413 |
|
|
( tx_bit_pulse_count == (TX_BITPULSE_COUNT-1) && txd_state != TXD_STOP2 ) )
|
414 |
|
|
begin
|
415 |
|
|
tx_bit_pulse_count <= 'd0;
|
416 |
|
|
tx_bit_pulse <= 1'd1;
|
417 |
|
|
end
|
418 |
|
|
else
|
419 |
|
|
begin
|
420 |
|
|
tx_bit_pulse_count <= tx_bit_pulse_count + 1'd1;
|
421 |
|
|
tx_bit_pulse <= 1'd0;
|
422 |
|
|
end
|
423 |
|
|
|
424 |
|
|
|
425 |
|
|
// ========================================================
|
426 |
|
|
// Byte Transmitted
|
427 |
|
|
// ========================================================
|
428 |
|
|
// Idle state, txd = 1
|
429 |
|
|
// start bit, txd = 0
|
430 |
|
|
// Data x 8, lsb first
|
431 |
|
|
// stop bit, txd = 1
|
432 |
|
|
|
433 |
|
|
|
434 |
|
|
// X = 0x58 = 01011000
|
435 |
|
|
always @( posedge i_clk )
|
436 |
|
|
if ( tx_bit_pulse )
|
437 |
|
|
|
438 |
13 |
csantifort |
case ( txd_state )
|
439 |
2 |
csantifort |
|
440 |
|
|
TXD_IDLE :
|
441 |
|
|
begin
|
442 |
|
|
txd <= 1'd1;
|
443 |
|
|
|
444 |
|
|
if ( uart0_cts_n_d[3:1] == 3'b000 && !tx_fifo_empty )
|
445 |
|
|
txd_state <= TXD_START;
|
446 |
|
|
end
|
447 |
|
|
|
448 |
|
|
TXD_START :
|
449 |
|
|
begin
|
450 |
|
|
txd <= 1'd0;
|
451 |
|
|
txd_state <= TXD_DATA0;
|
452 |
|
|
end
|
453 |
|
|
|
454 |
|
|
TXD_DATA0 :
|
455 |
|
|
begin
|
456 |
|
|
txd <= tx_byte[0];
|
457 |
|
|
txd_state <= TXD_DATA1;
|
458 |
|
|
end
|
459 |
|
|
|
460 |
|
|
TXD_DATA1 :
|
461 |
|
|
begin
|
462 |
|
|
txd <= tx_byte[1];
|
463 |
|
|
txd_state <= TXD_DATA2;
|
464 |
|
|
end
|
465 |
|
|
|
466 |
|
|
TXD_DATA2 :
|
467 |
|
|
begin
|
468 |
|
|
txd <= tx_byte[2];
|
469 |
|
|
txd_state <= TXD_DATA3;
|
470 |
|
|
end
|
471 |
|
|
|
472 |
|
|
TXD_DATA3 :
|
473 |
|
|
begin
|
474 |
|
|
txd <= tx_byte[3];
|
475 |
|
|
txd_state <= TXD_DATA4;
|
476 |
|
|
end
|
477 |
|
|
|
478 |
|
|
TXD_DATA4 :
|
479 |
|
|
begin
|
480 |
|
|
txd <= tx_byte[4];
|
481 |
|
|
txd_state <= TXD_DATA5;
|
482 |
|
|
end
|
483 |
|
|
|
484 |
|
|
TXD_DATA5 :
|
485 |
|
|
begin
|
486 |
|
|
txd <= tx_byte[5];
|
487 |
|
|
txd_state <= TXD_DATA6;
|
488 |
|
|
end
|
489 |
|
|
|
490 |
|
|
TXD_DATA6 :
|
491 |
|
|
begin
|
492 |
|
|
txd <= tx_byte[6];
|
493 |
|
|
txd_state <= TXD_DATA7;
|
494 |
|
|
end
|
495 |
|
|
|
496 |
|
|
TXD_DATA7 :
|
497 |
|
|
begin
|
498 |
|
|
txd <= tx_byte[7];
|
499 |
|
|
txd_state <= TXD_STOP1;
|
500 |
|
|
end
|
501 |
|
|
|
502 |
|
|
TXD_STOP1 :
|
503 |
|
|
begin
|
504 |
|
|
txd <= 1'd1;
|
505 |
|
|
txd_state <= TXD_STOP2;
|
506 |
|
|
end
|
507 |
|
|
|
508 |
|
|
TXD_STOP2 :
|
509 |
|
|
begin
|
510 |
|
|
txd <= 1'd1;
|
511 |
|
|
txd_state <= TXD_STOP3;
|
512 |
|
|
end
|
513 |
|
|
|
514 |
|
|
TXD_STOP3 :
|
515 |
|
|
begin
|
516 |
|
|
txd <= 1'd1;
|
517 |
|
|
txd_state <= TXD_IDLE;
|
518 |
|
|
end
|
519 |
|
|
|
520 |
|
|
default :
|
521 |
|
|
begin
|
522 |
|
|
txd <= 1'd1;
|
523 |
|
|
end
|
524 |
|
|
|
525 |
|
|
endcase
|
526 |
|
|
|
527 |
|
|
|
528 |
|
|
|
529 |
|
|
|
530 |
|
|
// ========================================================
|
531 |
|
|
// UART Receive
|
532 |
|
|
// ========================================================
|
533 |
|
|
|
534 |
|
|
assign o_uart_rts_n = ~rxen;
|
535 |
|
|
|
536 |
|
|
assign rx_fifo_push = rxd_state == RXD_STOP && rx_bit_pulse_count == 10'd0;
|
537 |
|
|
|
538 |
|
|
// ========================================================
|
539 |
|
|
// Receive bit pulse
|
540 |
|
|
// ========================================================
|
541 |
|
|
// Pulse generater - matches baud rate
|
542 |
|
|
always @( posedge i_clk )
|
543 |
|
|
if ( restart_rx_bit_count )
|
544 |
|
|
rx_bit_pulse_count <= 'd0;
|
545 |
|
|
else
|
546 |
|
|
rx_bit_pulse_count <= rx_bit_pulse_count + 1'd1;
|
547 |
|
|
|
548 |
|
|
|
549 |
|
|
// ========================================================
|
550 |
|
|
// Detect 1->0 transition. Filter out glitches and jaggedy transitions
|
551 |
|
|
// ========================================================
|
552 |
|
|
always @( posedge i_clk )
|
553 |
|
|
rxd_d[4:0] <= {rxd_d[3:0], i_uart_rxd};
|
554 |
|
|
|
555 |
|
|
assign rx_start = rxd_d[4:3] == 2'b11 && rxd_d[1:0] == 2'b00;
|
556 |
|
|
|
557 |
|
|
|
558 |
|
|
// ========================================================
|
559 |
|
|
// Receive state machine
|
560 |
|
|
// ========================================================
|
561 |
|
|
|
562 |
|
|
always @( posedge i_clk )
|
563 |
|
|
case ( rxd_state )
|
564 |
|
|
|
565 |
|
|
RXD_IDLE :
|
566 |
|
|
if ( rx_fifo_full )
|
567 |
|
|
rxen <= 1'd0;
|
568 |
|
|
else
|
569 |
|
|
begin
|
570 |
|
|
rxd_state <= RXD_START;
|
571 |
|
|
rxen <= 1'd1;
|
572 |
|
|
restart_rx_bit_count <= 1'd1;
|
573 |
|
|
rx_byte <= 'd0;
|
574 |
|
|
end
|
575 |
|
|
|
576 |
|
|
RXD_START :
|
577 |
|
|
// Filter out glitches and jaggedy transitions
|
578 |
|
|
if ( rx_start )
|
579 |
|
|
begin
|
580 |
13 |
csantifort |
rxd_state <= RXD_START_MID1;
|
581 |
2 |
csantifort |
restart_rx_bit_count <= 1'd1;
|
582 |
|
|
end
|
583 |
|
|
else
|
584 |
|
|
restart_rx_bit_count <= 1'd0;
|
585 |
13 |
csantifort |
|
586 |
|
|
// This state just delays the check on the
|
587 |
|
|
// rx_bit_pulse_count value by 1 clock cycle to
|
588 |
|
|
// give it time to reset
|
589 |
|
|
RXD_START_MID1 :
|
590 |
|
|
rxd_state <= RXD_START_MID;
|
591 |
2 |
csantifort |
|
592 |
|
|
RXD_START_MID :
|
593 |
|
|
if ( rx_bit_pulse_count == RX_HALFPULSE_COUNT )
|
594 |
|
|
begin
|
595 |
|
|
rxd_state <= RXD_DATA0;
|
596 |
|
|
restart_rx_bit_count <= 1'd1;
|
597 |
|
|
end
|
598 |
|
|
else
|
599 |
|
|
restart_rx_bit_count <= 1'd0;
|
600 |
|
|
|
601 |
|
|
RXD_DATA0 :
|
602 |
|
|
if ( rx_bit_pulse_count == RX_BITPULSE_COUNT )
|
603 |
|
|
begin
|
604 |
|
|
rxd_state <= RXD_DATA1;
|
605 |
|
|
restart_rx_bit_count <= 1'd1;
|
606 |
|
|
rx_byte[0] <= i_uart_rxd;
|
607 |
|
|
end
|
608 |
|
|
else
|
609 |
|
|
restart_rx_bit_count <= 1'd0;
|
610 |
|
|
|
611 |
|
|
RXD_DATA1 :
|
612 |
|
|
if ( rx_bit_pulse_count == RX_BITPULSE_COUNT )
|
613 |
|
|
begin
|
614 |
|
|
rxd_state <= RXD_DATA2;
|
615 |
|
|
restart_rx_bit_count <= 1'd1;
|
616 |
|
|
rx_byte[1] <= i_uart_rxd;
|
617 |
|
|
end
|
618 |
|
|
else
|
619 |
|
|
restart_rx_bit_count <= 1'd0;
|
620 |
|
|
|
621 |
|
|
RXD_DATA2 :
|
622 |
|
|
if ( rx_bit_pulse_count == RX_BITPULSE_COUNT )
|
623 |
|
|
begin
|
624 |
|
|
rxd_state <= RXD_DATA3;
|
625 |
|
|
restart_rx_bit_count <= 1'd1;
|
626 |
|
|
rx_byte[2] <= i_uart_rxd;
|
627 |
|
|
end
|
628 |
|
|
else
|
629 |
|
|
restart_rx_bit_count <= 1'd0;
|
630 |
|
|
|
631 |
|
|
RXD_DATA3 :
|
632 |
|
|
if ( rx_bit_pulse_count == RX_BITPULSE_COUNT )
|
633 |
|
|
begin
|
634 |
|
|
rxd_state <= RXD_DATA4;
|
635 |
|
|
restart_rx_bit_count <= 1'd1;
|
636 |
|
|
rx_byte[3] <= i_uart_rxd;
|
637 |
|
|
end
|
638 |
|
|
else
|
639 |
|
|
restart_rx_bit_count <= 1'd0;
|
640 |
|
|
|
641 |
|
|
RXD_DATA4 :
|
642 |
|
|
if ( rx_bit_pulse_count == RX_BITPULSE_COUNT )
|
643 |
|
|
begin
|
644 |
|
|
rxd_state <= RXD_DATA5;
|
645 |
|
|
restart_rx_bit_count <= 1'd1;
|
646 |
|
|
rx_byte[4] <= i_uart_rxd;
|
647 |
|
|
end
|
648 |
|
|
else
|
649 |
|
|
restart_rx_bit_count <= 1'd0;
|
650 |
|
|
|
651 |
|
|
RXD_DATA5 :
|
652 |
|
|
if ( rx_bit_pulse_count == RX_BITPULSE_COUNT )
|
653 |
|
|
begin
|
654 |
|
|
rxd_state <= RXD_DATA6;
|
655 |
|
|
restart_rx_bit_count <= 1'd1;
|
656 |
|
|
rx_byte[5] <= i_uart_rxd;
|
657 |
|
|
end
|
658 |
|
|
else
|
659 |
|
|
restart_rx_bit_count <= 1'd0;
|
660 |
|
|
|
661 |
|
|
RXD_DATA6 :
|
662 |
|
|
if ( rx_bit_pulse_count == RX_BITPULSE_COUNT )
|
663 |
|
|
begin
|
664 |
|
|
rxd_state <= RXD_DATA7;
|
665 |
|
|
restart_rx_bit_count <= 1'd1;
|
666 |
|
|
rx_byte[6] <= i_uart_rxd;
|
667 |
|
|
end
|
668 |
|
|
else
|
669 |
|
|
restart_rx_bit_count <= 1'd0;
|
670 |
|
|
|
671 |
|
|
RXD_DATA7 :
|
672 |
|
|
if ( rx_bit_pulse_count == RX_BITPULSE_COUNT )
|
673 |
|
|
begin
|
674 |
|
|
rxd_state <= RXD_STOP;
|
675 |
|
|
restart_rx_bit_count <= 1'd1;
|
676 |
|
|
rx_byte[7] <= i_uart_rxd;
|
677 |
|
|
end
|
678 |
|
|
else
|
679 |
|
|
restart_rx_bit_count <= 1'd0;
|
680 |
|
|
|
681 |
|
|
RXD_STOP :
|
682 |
|
|
if ( rx_bit_pulse_count == RX_BITPULSE_COUNT ) // half way through stop bit
|
683 |
|
|
begin
|
684 |
|
|
rxd_state <= RXD_IDLE;
|
685 |
|
|
restart_rx_bit_count <= 1'd1;
|
686 |
|
|
end
|
687 |
|
|
else
|
688 |
|
|
restart_rx_bit_count <= 1'd0;
|
689 |
|
|
|
690 |
|
|
default :
|
691 |
|
|
begin
|
692 |
|
|
rxd_state <= RXD_IDLE;
|
693 |
|
|
end
|
694 |
|
|
|
695 |
|
|
endcase
|
696 |
|
|
|
697 |
|
|
|
698 |
|
|
// ========================================================
|
699 |
|
|
// Register Writes
|
700 |
|
|
// ========================================================
|
701 |
|
|
always @( posedge i_clk )
|
702 |
|
|
if ( wb_start_write )
|
703 |
|
|
case ( i_wb_adr[15:0] )
|
704 |
|
|
// Receive status, (Write) Error Clear
|
705 |
|
|
AMBER_UART_RSR: uart_rsr_reg <= i_wb_dat[7:0];
|
706 |
|
|
// Line Control High Byte
|
707 |
|
|
AMBER_UART_LCRH: uart_lcrh_reg <= i_wb_dat[7:0];
|
708 |
|
|
// Line Control Middle Byte
|
709 |
|
|
AMBER_UART_LCRM: uart_lcrm_reg <= i_wb_dat[7:0];
|
710 |
|
|
// Line Control Low Byte
|
711 |
|
|
AMBER_UART_LCRL: uart_lcrl_reg <= i_wb_dat[7:0];
|
712 |
|
|
// Control Register
|
713 |
|
|
AMBER_UART_CR: uart_cr_reg <= i_wb_dat[7:0];
|
714 |
|
|
endcase
|
715 |
|
|
|
716 |
|
|
|
717 |
|
|
// ========================================================
|
718 |
|
|
// Register Reads
|
719 |
|
|
// ========================================================
|
720 |
|
|
always @( posedge i_clk )
|
721 |
|
|
if ( wb_start_read )
|
722 |
|
|
case ( i_wb_adr[15:0] )
|
723 |
|
|
|
724 |
|
|
AMBER_UART_CID0: wb_rdata <= 32'h0d;
|
725 |
|
|
AMBER_UART_CID1: wb_rdata <= 32'hf0;
|
726 |
|
|
AMBER_UART_CID2: wb_rdata <= 32'h05;
|
727 |
|
|
AMBER_UART_CID3: wb_rdata <= 32'hb1;
|
728 |
|
|
AMBER_UART_PID0: wb_rdata <= 32'h10;
|
729 |
|
|
AMBER_UART_PID1: wb_rdata <= 32'h10;
|
730 |
|
|
AMBER_UART_PID2: wb_rdata <= 32'h04;
|
731 |
|
|
AMBER_UART_PID3: wb_rdata <= 32'h00;
|
732 |
|
|
|
733 |
|
|
AMBER_UART_DR: // Rx data
|
734 |
|
|
if ( fifo_enable )
|
735 |
|
|
wb_rdata <= {24'd0, rx_fifo[rx_fifo_rp[3:0]]};
|
736 |
|
|
else
|
737 |
|
|
wb_rdata <= {24'd0, rx_fifo[0]};
|
738 |
|
|
|
739 |
|
|
AMBER_UART_RSR: wb_rdata <= uart_rsr_reg; // Receive status, (Write) Error Clear
|
740 |
|
|
AMBER_UART_LCRH: wb_rdata <= uart_lcrh_reg; // Line Control High Byte
|
741 |
|
|
AMBER_UART_LCRM: wb_rdata <= uart_lcrm_reg; // Line Control Middle Byte
|
742 |
|
|
AMBER_UART_LCRL: wb_rdata <= uart_lcrl_reg; // Line Control Low Byte
|
743 |
|
|
AMBER_UART_CR: wb_rdata <= uart_cr_reg; // Control Register
|
744 |
|
|
|
745 |
|
|
// UART Tx/Rx Status
|
746 |
|
|
AMBER_UART_FR: wb_rdata <= {tx_fifo_empty, // tx fifo empty
|
747 |
|
|
rx_fifo_full, // rx fifo full
|
748 |
|
|
tx_fifo_full, // tx fifo full
|
749 |
|
|
rx_fifo_empty, // rx fifo empty
|
750 |
|
|
!tx_fifo_empty, // uart busy
|
751 |
|
|
1'd1, // !Data Carrier Detect
|
752 |
|
|
1'd1, // !Data Set Ready
|
753 |
|
|
!uart0_cts_n_d[3] // !Clear to Send
|
754 |
|
|
}; // Flag Register
|
755 |
|
|
|
756 |
|
|
// Interrupt Status
|
757 |
|
|
AMBER_UART_IIR: wb_rdata <= {5'd0,
|
758 |
|
|
1'd0, // RTIS - receive timeout interrupt
|
759 |
|
|
tx_interrupt, // TIS - transmit interrupt status
|
760 |
|
|
rx_interrupt, // RIS - receive interrupt status
|
761 |
|
|
1'd0 // Modem interrupt status
|
762 |
|
|
}; // (Write) Clear Int
|
763 |
|
|
|
764 |
|
|
default: wb_rdata <= 32'h00c0ffee;
|
765 |
|
|
|
766 |
|
|
endcase
|
767 |
|
|
|
768 |
|
|
|
769 |
|
|
|
770 |
|
|
|
771 |
|
|
// =======================================================================================
|
772 |
|
|
// =======================================================================================
|
773 |
|
|
// =======================================================================================
|
774 |
|
|
// Non-synthesizable debug code
|
775 |
|
|
// =======================================================================================
|
776 |
|
|
|
777 |
|
|
|
778 |
|
|
//synopsys translate_off
|
779 |
|
|
|
780 |
|
|
// ========================================================
|
781 |
|
|
// Report UART Register accesses
|
782 |
|
|
// ========================================================
|
783 |
|
|
|
784 |
|
|
`ifndef Veritak
|
785 |
|
|
// Check in case UART approximate period
|
786 |
|
|
// is too far off
|
787 |
|
|
initial
|
788 |
|
|
begin
|
789 |
|
|
if ((( TX_BITPULSE_COUNT * CLK_PERIOD ) > (UART_BIT_PERIOD * 1.03) ) ||
|
790 |
|
|
(( TX_BITPULSE_COUNT * CLK_PERIOD ) < (UART_BIT_PERIOD * 0.97) ) )
|
791 |
|
|
begin
|
792 |
|
|
`TB_ERROR_MESSAGE
|
793 |
|
|
$display("UART TX bit period, %.1f, is too big. UART will not work!", TX_BITPULSE_COUNT * CLK_PERIOD);
|
794 |
|
|
$display("Baud rate is %d, and baud bit period is %.1f", UART_BAUD, UART_BIT_PERIOD);
|
795 |
|
|
$display("Either reduce the baud rate, or increase the system clock frequency");
|
796 |
|
|
$display("------");
|
797 |
|
|
end
|
798 |
|
|
end
|
799 |
|
|
`endif
|
800 |
|
|
|
801 |
|
|
|
802 |
|
|
`ifdef AMBER_UART_DEBUG
|
803 |
|
|
wire wb_read_ack;
|
804 |
|
|
reg uart0_rx_int_d1 = 'd0;
|
805 |
|
|
|
806 |
|
|
assign wb_read_ack = i_wb_stb && !i_wb_we && o_wb_ack;
|
807 |
|
|
|
808 |
|
|
`ifndef Veritak
|
809 |
|
|
initial
|
810 |
|
|
begin
|
811 |
|
|
$display("%m UART period = %f nS, want %f nS, %d, %d",
|
812 |
|
|
(TX_BITPULSE_COUNT*11 + TX_BITADJUST_COUNT) * CLK_PERIOD,
|
813 |
|
|
UART_WORD_PERIOD,
|
814 |
|
|
TX_BITPULSE_COUNT, TX_BITADJUST_COUNT);
|
815 |
|
|
end
|
816 |
|
|
`endif
|
817 |
|
|
|
818 |
|
|
|
819 |
|
|
// Transmit Interrupts
|
820 |
|
|
always @ ( posedge i_clk )
|
821 |
|
|
if ( wb_start_write && i_wb_adr[15:0] == AMBER_UART_ICR )
|
822 |
|
|
;
|
823 |
|
|
else if ( fifo_enable )
|
824 |
|
|
begin
|
825 |
|
|
if (tx_interrupt == 1'd0 && tx_fifo_half_or_less_full && uart_cr_reg[5])
|
826 |
|
|
$display("%m: tx_interrupt Interrupt Set with FIFO enabled");
|
827 |
|
|
if (tx_interrupt == 1'd1 && !(tx_fifo_half_or_less_full && uart_cr_reg[5]))
|
828 |
|
|
$display("%m: tx_interrupt Interrupt Cleared with FIFO enabled");
|
829 |
|
|
end
|
830 |
|
|
else
|
831 |
|
|
begin
|
832 |
|
|
if (tx_interrupt == 1'd0 && tx_fifo_empty && uart_cr_reg[5])
|
833 |
|
|
$display("%m: tx_interrupt Interrupt Set with FIFO disabled");
|
834 |
|
|
if (tx_interrupt == 1'd1 && !(tx_fifo_empty && uart_cr_reg[5]))
|
835 |
|
|
$display("%m: tx_interrupt Interrupt Cleared with FIFO disabled");
|
836 |
|
|
end
|
837 |
|
|
|
838 |
|
|
|
839 |
|
|
// Receive Interrupts
|
840 |
|
|
always @ ( posedge i_clk )
|
841 |
|
|
begin
|
842 |
|
|
uart0_rx_int_d1 <= rx_interrupt;
|
843 |
|
|
|
844 |
|
|
if ( rx_interrupt && !uart0_rx_int_d1 )
|
845 |
|
|
begin
|
846 |
|
|
`TB_DEBUG_MESSAGE
|
847 |
|
|
$display("rx_interrupt Interrupt fifo_enable %d, rx_fifo_full %d",
|
848 |
|
|
fifo_enable, rx_fifo_full);
|
849 |
|
|
$display("rx_fifo_half_or_more %d, rx_int_timer 0x%08h, rx_fifo_count %d",
|
850 |
|
|
rx_fifo_half_or_more, rx_int_timer, rx_fifo_count);
|
851 |
|
|
end
|
852 |
|
|
|
853 |
|
|
if ( !rx_interrupt && uart0_rx_int_d1 )
|
854 |
|
|
begin
|
855 |
|
|
`TB_DEBUG_MESSAGE
|
856 |
|
|
$display("rx_interrupt Interrupt Cleared fifo_enable %d, rx_fifo_full %d",
|
857 |
|
|
fifo_enable, rx_fifo_full);
|
858 |
|
|
$display(" rx_fifo_half_or_more %d, rx_int_timer 0x%08h, rx_fifo_count %d",
|
859 |
|
|
rx_fifo_half_or_more, rx_int_timer, rx_fifo_count);
|
860 |
|
|
end
|
861 |
|
|
end
|
862 |
|
|
|
863 |
|
|
|
864 |
|
|
always @( posedge i_clk )
|
865 |
|
|
if ( wb_read_ack || wb_start_write )
|
866 |
|
|
begin
|
867 |
|
|
`TB_DEBUG_MESSAGE
|
868 |
|
|
|
869 |
|
|
if ( wb_start_write )
|
870 |
|
|
$write("Write 0x%08x to ", i_wb_dat);
|
871 |
|
|
else
|
872 |
|
|
$write("Read 0x%08x from ", o_wb_dat);
|
873 |
|
|
|
874 |
|
|
case ( i_wb_adr[15:0] )
|
875 |
|
|
AMBER_UART_PID0: $write("UART PID0 register");
|
876 |
|
|
AMBER_UART_PID1: $write("UART PID1 register");
|
877 |
|
|
AMBER_UART_PID2: $write("UART PID2 register");
|
878 |
|
|
AMBER_UART_PID3: $write("UART PID3 register");
|
879 |
|
|
AMBER_UART_CID0: $write("UART CID0 register");
|
880 |
|
|
AMBER_UART_CID1: $write("UART CID1 register");
|
881 |
|
|
AMBER_UART_CID2: $write("UART CID2 register");
|
882 |
|
|
AMBER_UART_CID3: $write("UART CID3 register");
|
883 |
|
|
AMBER_UART_DR: $write("UART Tx/Rx char %c", wb_start_write ? i_wb_dat[7:0] : o_wb_dat[7:0] );
|
884 |
|
|
AMBER_UART_RSR: $write("UART (Read) Receive status, (Write) Error Clear");
|
885 |
|
|
AMBER_UART_LCRH: $write("UART Line Control High Byte");
|
886 |
|
|
AMBER_UART_LCRM: $write("UART Line Control Middle Byte");
|
887 |
|
|
AMBER_UART_LCRL: $write("UART Line Control Low Byte");
|
888 |
|
|
AMBER_UART_CR: $write("UART Control Register");
|
889 |
|
|
AMBER_UART_FR: $write("UART Flag Register");
|
890 |
|
|
AMBER_UART_IIR: $write("UART (Read) Interrupt Identification Register");
|
891 |
|
|
|
892 |
|
|
default:
|
893 |
|
|
begin
|
894 |
|
|
`TB_ERROR_MESSAGE
|
895 |
|
|
$write("Unknown UART Register region");
|
896 |
|
|
end
|
897 |
|
|
endcase
|
898 |
|
|
|
899 |
|
|
$write(", Address 0x%08h\n", i_wb_adr);
|
900 |
|
|
end
|
901 |
|
|
`endif
|
902 |
|
|
|
903 |
|
|
|
904 |
|
|
// ========================================================
|
905 |
|
|
// Assertions
|
906 |
|
|
// ========================================================
|
907 |
|
|
always @ ( posedge i_clk )
|
908 |
|
|
begin
|
909 |
|
|
if ( rx_fifo_pop && !rx_fifo_push && rx_fifo_empty )
|
910 |
|
|
begin
|
911 |
|
|
`TB_WARNING_MESSAGE
|
912 |
|
|
$write("UART rx FIFO underflow\n");
|
913 |
|
|
end
|
914 |
|
|
if ( !rx_fifo_pop && rx_fifo_push && rx_fifo_full )
|
915 |
|
|
begin
|
916 |
|
|
`TB_WARNING_MESSAGE
|
917 |
|
|
$write("UART rx FIFO overflow\n");
|
918 |
|
|
end
|
919 |
|
|
|
920 |
|
|
if ( tx_fifo_push && tx_fifo_full )
|
921 |
|
|
begin
|
922 |
|
|
`TB_WARNING_MESSAGE
|
923 |
|
|
$display("UART tx FIFO overflow - char = %c", i_wb_dat[7:0]);
|
924 |
|
|
end
|
925 |
|
|
end
|
926 |
|
|
|
927 |
|
|
|
928 |
|
|
// ========================================================
|
929 |
|
|
// Debug State Machines
|
930 |
|
|
// ========================================================
|
931 |
|
|
|
932 |
|
|
wire [(10*8)-1:0] xTXD_STATE;
|
933 |
|
|
wire [(14*8)-1:0] xRXD_STATE;
|
934 |
|
|
|
935 |
|
|
|
936 |
13 |
csantifort |
assign xTXD_STATE = txd_state == TXD_IDLE ? "TXD_IDLE" :
|
937 |
|
|
txd_state == TXD_START ? "TXD_START" :
|
938 |
|
|
txd_state == TXD_DATA0 ? "TXD_DATA0" :
|
939 |
|
|
txd_state == TXD_DATA1 ? "TXD_DATA1" :
|
940 |
|
|
txd_state == TXD_DATA2 ? "TXD_DATA2" :
|
941 |
|
|
txd_state == TXD_DATA3 ? "TXD_DATA3" :
|
942 |
|
|
txd_state == TXD_DATA4 ? "TXD_DATA4" :
|
943 |
|
|
txd_state == TXD_DATA5 ? "TXD_DATA5" :
|
944 |
|
|
txd_state == TXD_DATA6 ? "TXD_DATA6" :
|
945 |
|
|
txd_state == TXD_DATA7 ? "TXD_DATA7" :
|
946 |
|
|
txd_state == TXD_STOP1 ? "TXD_STOP1" :
|
947 |
|
|
txd_state == TXD_STOP2 ? "TXD_STOP2" :
|
948 |
|
|
txd_state == TXD_STOP3 ? "TXD_STOP3" :
|
949 |
|
|
"UNKNOWN" ;
|
950 |
2 |
csantifort |
|
951 |
13 |
csantifort |
assign xRXD_STATE = rxd_state == RXD_IDLE ? "RXD_IDLE" :
|
952 |
|
|
rxd_state == RXD_START ? "RXD_START" :
|
953 |
|
|
rxd_state == RXD_START_MID1 ? "RXD_START_MID1":
|
954 |
|
|
rxd_state == RXD_START_MID ? "RXD_START_MID" :
|
955 |
|
|
rxd_state == RXD_DATA0 ? "RXD_DATA0" :
|
956 |
|
|
rxd_state == RXD_DATA1 ? "RXD_DATA1" :
|
957 |
|
|
rxd_state == RXD_DATA2 ? "RXD_DATA2" :
|
958 |
|
|
rxd_state == RXD_DATA3 ? "RXD_DATA3" :
|
959 |
|
|
rxd_state == RXD_DATA4 ? "RXD_DATA4" :
|
960 |
|
|
rxd_state == RXD_DATA5 ? "RXD_DATA5" :
|
961 |
|
|
rxd_state == RXD_DATA6 ? "RXD_DATA6" :
|
962 |
|
|
rxd_state == RXD_DATA7 ? "RXD_DATA7" :
|
963 |
|
|
rxd_state == RXD_STOP ? "RXD_STOP" :
|
964 |
|
|
"UNKNOWN" ;
|
965 |
2 |
csantifort |
|
966 |
|
|
//synopsys translate_on
|
967 |
|
|
|
968 |
|
|
|
969 |
|
|
endmodule
|
970 |
|
|
|