| 1 |
2 |
alfik |
/////////////////////////////////////////////////////////////////////////
|
| 2 |
|
|
// $Id: access32.cc 11580 2013-01-19 20:45:03Z sshwarts $
|
| 3 |
|
|
/////////////////////////////////////////////////////////////////////////
|
| 4 |
|
|
//
|
| 5 |
|
|
// Copyright (c) 2008-2013 Stanislav Shwartsman
|
| 6 |
|
|
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
|
| 7 |
|
|
//
|
| 8 |
|
|
// This library is free software; you can redistribute it and/or
|
| 9 |
|
|
// modify it under the terms of the GNU Lesser General Public
|
| 10 |
|
|
// License as published by the Free Software Foundation; either
|
| 11 |
|
|
// version 2 of the License, or (at your option) any later version.
|
| 12 |
|
|
//
|
| 13 |
|
|
// This library is distributed in the hope that it will be useful,
|
| 14 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 15 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
| 16 |
|
|
// Lesser General Public License for more details.
|
| 17 |
|
|
//
|
| 18 |
|
|
// You should have received a copy of the GNU Lesser General Public
|
| 19 |
|
|
// License along with this library; if not, write to the Free Software
|
| 20 |
|
|
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
|
| 21 |
|
|
//
|
| 22 |
|
|
/////////////////////////////////////////////////////////////////////////
|
| 23 |
|
|
|
| 24 |
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
| 25 |
|
|
#include "bochs.h"
|
| 26 |
|
|
#include "cpu.h"
|
| 27 |
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
| 28 |
|
|
|
| 29 |
|
|
void BX_CPP_AttrRegparmN(3)
|
| 30 |
|
|
BX_CPU_C::write_virtual_byte_32(unsigned s, Bit32u offset, Bit8u data)
|
| 31 |
|
|
{
|
| 32 |
|
|
Bit32u laddr;
|
| 33 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 34 |
|
|
|
| 35 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 36 |
|
|
|
| 37 |
|
|
if (seg->cache.valid & SegAccessWOK) {
|
| 38 |
|
|
if (offset <= seg->cache.u.segment.limit_scaled) {
|
| 39 |
|
|
accessOK:
|
| 40 |
|
|
laddr = get_laddr32(s, offset);
|
| 41 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
|
| 42 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 43 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 44 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 45 |
|
|
// See if the TLB entry privilege level allows us write access
|
| 46 |
|
|
// from this CPL.
|
| 47 |
|
|
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
|
| 48 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 49 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 50 |
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
| 51 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 1, CPL, BX_WRITE, (Bit8u*) &data);
|
| 52 |
|
|
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
|
| 53 |
|
|
pageWriteStampTable.decWriteStamp(pAddr, 1);
|
| 54 |
|
|
*hostAddr = data;
|
| 55 |
|
|
return;
|
| 56 |
|
|
}
|
| 57 |
|
|
}
|
| 58 |
|
|
access_write_linear(laddr, 1, CPL, (void *) &data);
|
| 59 |
|
|
return;
|
| 60 |
|
|
}
|
| 61 |
|
|
else {
|
| 62 |
|
|
BX_ERROR(("write_virtual_byte_32(): segment limit violation"));
|
| 63 |
|
|
exception(int_number(s), 0);
|
| 64 |
|
|
}
|
| 65 |
|
|
}
|
| 66 |
|
|
|
| 67 |
|
|
if (!write_virtual_checks(seg, offset, 1))
|
| 68 |
|
|
exception(int_number(s), 0);
|
| 69 |
|
|
goto accessOK;
|
| 70 |
|
|
}
|
| 71 |
|
|
|
| 72 |
|
|
void BX_CPP_AttrRegparmN(3)
|
| 73 |
|
|
BX_CPU_C::write_virtual_word_32(unsigned s, Bit32u offset, Bit16u data)
|
| 74 |
|
|
{
|
| 75 |
|
|
Bit32u laddr;
|
| 76 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 77 |
|
|
|
| 78 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 79 |
|
|
|
| 80 |
|
|
if (seg->cache.valid & SegAccessWOK) {
|
| 81 |
|
|
if (offset < seg->cache.u.segment.limit_scaled) {
|
| 82 |
|
|
accessOK:
|
| 83 |
|
|
laddr = get_laddr32(s, offset);
|
| 84 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1);
|
| 85 |
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
| 86 |
|
|
Bit32u lpf = AlignedAccessLPFOf(laddr, (1 & BX_CPU_THIS_PTR alignment_check_mask));
|
| 87 |
|
|
#else
|
| 88 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 89 |
|
|
#endif
|
| 90 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 91 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 92 |
|
|
// See if the TLB entry privilege level allows us write access
|
| 93 |
|
|
// from this CPL.
|
| 94 |
|
|
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
|
| 95 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 96 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 97 |
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
| 98 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 2, CPL, BX_WRITE, (Bit8u*) &data);
|
| 99 |
|
|
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
|
| 100 |
|
|
pageWriteStampTable.decWriteStamp(pAddr, 2);
|
| 101 |
|
|
WriteHostWordToLittleEndian(hostAddr, data);
|
| 102 |
|
|
return;
|
| 103 |
|
|
}
|
| 104 |
|
|
}
|
| 105 |
|
|
|
| 106 |
|
|
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
|
| 107 |
|
|
if (BX_CPU_THIS_PTR alignment_check()) {
|
| 108 |
|
|
if (laddr & 1) {
|
| 109 |
|
|
BX_ERROR(("write_virtual_word_32(): #AC misaligned access"));
|
| 110 |
|
|
exception(BX_AC_EXCEPTION, 0);
|
| 111 |
|
|
}
|
| 112 |
|
|
}
|
| 113 |
|
|
#endif
|
| 114 |
|
|
|
| 115 |
|
|
access_write_linear(laddr, 2, CPL, (void *) &data);
|
| 116 |
|
|
return;
|
| 117 |
|
|
}
|
| 118 |
|
|
else {
|
| 119 |
|
|
BX_ERROR(("write_virtual_word_32(): segment limit violation"));
|
| 120 |
|
|
exception(int_number(s), 0);
|
| 121 |
|
|
}
|
| 122 |
|
|
}
|
| 123 |
|
|
|
| 124 |
|
|
if (!write_virtual_checks(seg, offset, 2))
|
| 125 |
|
|
exception(int_number(s), 0);
|
| 126 |
|
|
goto accessOK;
|
| 127 |
|
|
}
|
| 128 |
|
|
|
| 129 |
|
|
void BX_CPP_AttrRegparmN(3)
|
| 130 |
|
|
BX_CPU_C::write_virtual_dword_32(unsigned s, Bit32u offset, Bit32u data)
|
| 131 |
|
|
{
|
| 132 |
|
|
Bit32u laddr;
|
| 133 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 134 |
|
|
|
| 135 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 136 |
|
|
|
| 137 |
|
|
if (seg->cache.valid & SegAccessWOK) {
|
| 138 |
|
|
if (offset < (seg->cache.u.segment.limit_scaled-2)) {
|
| 139 |
|
|
accessOK:
|
| 140 |
|
|
laddr = get_laddr32(s, offset);
|
| 141 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3);
|
| 142 |
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
| 143 |
|
|
Bit32u lpf = AlignedAccessLPFOf(laddr, (3 & BX_CPU_THIS_PTR alignment_check_mask));
|
| 144 |
|
|
#else
|
| 145 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 146 |
|
|
#endif
|
| 147 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 148 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 149 |
|
|
// See if the TLB entry privilege level allows us write access
|
| 150 |
|
|
// from this CPL.
|
| 151 |
|
|
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
|
| 152 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 153 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 154 |
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
| 155 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 4, CPL, BX_WRITE, (Bit8u*) &data);
|
| 156 |
|
|
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
|
| 157 |
|
|
pageWriteStampTable.decWriteStamp(pAddr, 4);
|
| 158 |
|
|
WriteHostDWordToLittleEndian(hostAddr, data);
|
| 159 |
|
|
return;
|
| 160 |
|
|
}
|
| 161 |
|
|
}
|
| 162 |
|
|
|
| 163 |
|
|
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
|
| 164 |
|
|
if (BX_CPU_THIS_PTR alignment_check()) {
|
| 165 |
|
|
if (laddr & 3) {
|
| 166 |
|
|
BX_ERROR(("write_virtual_dword_32(): #AC misaligned access"));
|
| 167 |
|
|
exception(BX_AC_EXCEPTION, 0);
|
| 168 |
|
|
}
|
| 169 |
|
|
}
|
| 170 |
|
|
#endif
|
| 171 |
|
|
|
| 172 |
|
|
access_write_linear(laddr, 4, CPL, (void *) &data);
|
| 173 |
|
|
return;
|
| 174 |
|
|
}
|
| 175 |
|
|
else {
|
| 176 |
|
|
BX_ERROR(("write_virtual_dword_32(): segment limit violation"));
|
| 177 |
|
|
exception(int_number(s), 0);
|
| 178 |
|
|
}
|
| 179 |
|
|
}
|
| 180 |
|
|
|
| 181 |
|
|
if (!write_virtual_checks(seg, offset, 4))
|
| 182 |
|
|
exception(int_number(s), 0);
|
| 183 |
|
|
goto accessOK;
|
| 184 |
|
|
}
|
| 185 |
|
|
|
| 186 |
|
|
void BX_CPP_AttrRegparmN(3)
|
| 187 |
|
|
BX_CPU_C::write_virtual_qword_32(unsigned s, Bit32u offset, Bit64u data)
|
| 188 |
|
|
{
|
| 189 |
|
|
Bit32u laddr;
|
| 190 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 191 |
|
|
|
| 192 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 193 |
|
|
|
| 194 |
|
|
if (seg->cache.valid & SegAccessWOK) {
|
| 195 |
|
|
if (offset <= (seg->cache.u.segment.limit_scaled-7)) {
|
| 196 |
|
|
accessOK:
|
| 197 |
|
|
laddr = get_laddr32(s, offset);
|
| 198 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 7);
|
| 199 |
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
| 200 |
|
|
Bit32u lpf = AlignedAccessLPFOf(laddr, (7 & BX_CPU_THIS_PTR alignment_check_mask));
|
| 201 |
|
|
#else
|
| 202 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 203 |
|
|
#endif
|
| 204 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 205 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 206 |
|
|
// See if the TLB entry privilege level allows us write access
|
| 207 |
|
|
// from this CPL.
|
| 208 |
|
|
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
|
| 209 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 210 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 211 |
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
| 212 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 8, CPL, BX_WRITE, (Bit8u*) &data);
|
| 213 |
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
| 214 |
|
|
pageWriteStampTable.decWriteStamp(pAddr, 8);
|
| 215 |
|
|
WriteHostQWordToLittleEndian(hostAddr, data);
|
| 216 |
|
|
return;
|
| 217 |
|
|
}
|
| 218 |
|
|
}
|
| 219 |
|
|
|
| 220 |
|
|
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
|
| 221 |
|
|
if (BX_CPU_THIS_PTR alignment_check()) {
|
| 222 |
|
|
if (laddr & 7) {
|
| 223 |
|
|
BX_ERROR(("write_virtual_qword_32(): #AC misaligned access"));
|
| 224 |
|
|
exception(BX_AC_EXCEPTION, 0);
|
| 225 |
|
|
}
|
| 226 |
|
|
}
|
| 227 |
|
|
#endif
|
| 228 |
|
|
|
| 229 |
|
|
access_write_linear(laddr, 8, CPL, (void *) &data);
|
| 230 |
|
|
return;
|
| 231 |
|
|
}
|
| 232 |
|
|
else {
|
| 233 |
|
|
BX_ERROR(("write_virtual_qword_32(): segment limit violation"));
|
| 234 |
|
|
exception(int_number(s), 0);
|
| 235 |
|
|
}
|
| 236 |
|
|
}
|
| 237 |
|
|
|
| 238 |
|
|
if (!write_virtual_checks(seg, offset, 8))
|
| 239 |
|
|
exception(int_number(s), 0);
|
| 240 |
|
|
goto accessOK;
|
| 241 |
|
|
}
|
| 242 |
|
|
|
| 243 |
|
|
#if BX_CPU_LEVEL >= 6
|
| 244 |
|
|
|
| 245 |
|
|
void BX_CPP_AttrRegparmN(3)
|
| 246 |
|
|
BX_CPU_C::write_virtual_xmmword_32(unsigned s, Bit32u offset, const BxPackedXmmRegister *data)
|
| 247 |
|
|
{
|
| 248 |
|
|
Bit32u laddr;
|
| 249 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 250 |
|
|
|
| 251 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 252 |
|
|
|
| 253 |
|
|
if (seg->cache.valid & SegAccessWOK) {
|
| 254 |
|
|
if (offset <= (seg->cache.u.segment.limit_scaled-15)) {
|
| 255 |
|
|
accessOK:
|
| 256 |
|
|
laddr = get_laddr32(s, offset);
|
| 257 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 15);
|
| 258 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 259 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 260 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 261 |
|
|
// See if the TLB entry privilege level allows us write access
|
| 262 |
|
|
// from this CPL.
|
| 263 |
|
|
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
|
| 264 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 265 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 266 |
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
| 267 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 16, CPL, BX_WRITE, (Bit8u*) data);
|
| 268 |
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
| 269 |
|
|
pageWriteStampTable.decWriteStamp(pAddr, 16);
|
| 270 |
|
|
WriteHostQWordToLittleEndian(hostAddr, data->xmm64u(0));
|
| 271 |
|
|
WriteHostQWordToLittleEndian(hostAddr+1, data->xmm64u(1));
|
| 272 |
|
|
return;
|
| 273 |
|
|
}
|
| 274 |
|
|
}
|
| 275 |
|
|
|
| 276 |
|
|
access_write_linear(laddr, 16, CPL, (void *) data);
|
| 277 |
|
|
return;
|
| 278 |
|
|
}
|
| 279 |
|
|
else {
|
| 280 |
|
|
BX_ERROR(("write_virtual_xmmword_32(): segment limit violation"));
|
| 281 |
|
|
exception(int_number(s), 0);
|
| 282 |
|
|
}
|
| 283 |
|
|
}
|
| 284 |
|
|
|
| 285 |
|
|
if (!write_virtual_checks(seg, offset, 16))
|
| 286 |
|
|
exception(int_number(s), 0);
|
| 287 |
|
|
goto accessOK;
|
| 288 |
|
|
}
|
| 289 |
|
|
|
| 290 |
|
|
void BX_CPP_AttrRegparmN(3)
|
| 291 |
|
|
BX_CPU_C::write_virtual_xmmword_aligned_32(unsigned s, Bit32u offset, const BxPackedXmmRegister *data)
|
| 292 |
|
|
{
|
| 293 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 294 |
|
|
|
| 295 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 296 |
|
|
|
| 297 |
|
|
Bit32u laddr = get_laddr32(s, offset);
|
| 298 |
|
|
// must check alignment here because #GP on misaligned access is higher
|
| 299 |
|
|
// priority than other segment related faults
|
| 300 |
|
|
if (laddr & 15) {
|
| 301 |
|
|
BX_ERROR(("write_virtual_xmmword_aligned_32(): #GP misaligned access"));
|
| 302 |
|
|
exception(BX_GP_EXCEPTION, 0);
|
| 303 |
|
|
}
|
| 304 |
|
|
|
| 305 |
|
|
if (seg->cache.valid & SegAccessWOK) {
|
| 306 |
|
|
if (offset <= (seg->cache.u.segment.limit_scaled-15)) {
|
| 307 |
|
|
accessOK:
|
| 308 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
|
| 309 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 310 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 311 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 312 |
|
|
// See if the TLB entry privilege level allows us write access
|
| 313 |
|
|
// from this CPL.
|
| 314 |
|
|
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
|
| 315 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 316 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 317 |
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
| 318 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 16, CPL, BX_WRITE, (Bit8u*) data);
|
| 319 |
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
| 320 |
|
|
pageWriteStampTable.decWriteStamp(pAddr, 16);
|
| 321 |
|
|
WriteHostQWordToLittleEndian(hostAddr, data->xmm64u(0));
|
| 322 |
|
|
WriteHostQWordToLittleEndian(hostAddr+1, data->xmm64u(1));
|
| 323 |
|
|
return;
|
| 324 |
|
|
}
|
| 325 |
|
|
}
|
| 326 |
|
|
access_write_linear(laddr, 16, CPL, (void *) data);
|
| 327 |
|
|
return;
|
| 328 |
|
|
}
|
| 329 |
|
|
else {
|
| 330 |
|
|
BX_ERROR(("write_virtual_xmmword_aligned_32(): segment limit violation"));
|
| 331 |
|
|
exception(int_number(s), 0);
|
| 332 |
|
|
}
|
| 333 |
|
|
}
|
| 334 |
|
|
|
| 335 |
|
|
if (!write_virtual_checks(seg, offset, 16))
|
| 336 |
|
|
exception(int_number(s), 0);
|
| 337 |
|
|
goto accessOK;
|
| 338 |
|
|
}
|
| 339 |
|
|
|
| 340 |
|
|
#if BX_SUPPORT_AVX
|
| 341 |
|
|
|
| 342 |
|
|
void BX_CPU_C::write_virtual_ymmword_32(unsigned s, Bit32u offset, const BxPackedAvxRegister *data)
|
| 343 |
|
|
{
|
| 344 |
|
|
Bit32u laddr;
|
| 345 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 346 |
|
|
|
| 347 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 348 |
|
|
|
| 349 |
|
|
if (seg->cache.valid & SegAccessWOK) {
|
| 350 |
|
|
if (offset <= (seg->cache.u.segment.limit_scaled-31)) {
|
| 351 |
|
|
accessOK:
|
| 352 |
|
|
laddr = get_laddr32(s, offset);
|
| 353 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 31);
|
| 354 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 355 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 356 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 357 |
|
|
// See if the TLB entry privilege level allows us write access
|
| 358 |
|
|
// from this CPL.
|
| 359 |
|
|
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
|
| 360 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 361 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 362 |
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
| 363 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 32, CPL, BX_WRITE, (Bit8u*) data);
|
| 364 |
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
| 365 |
|
|
pageWriteStampTable.decWriteStamp(pAddr, 32);
|
| 366 |
|
|
for (unsigned n=0; n < 4; n++) {
|
| 367 |
|
|
WriteHostQWordToLittleEndian(hostAddr+n, data->avx64u(n));
|
| 368 |
|
|
}
|
| 369 |
|
|
return;
|
| 370 |
|
|
}
|
| 371 |
|
|
}
|
| 372 |
|
|
|
| 373 |
|
|
access_write_linear(laddr, 32, CPL, (void *) data);
|
| 374 |
|
|
return;
|
| 375 |
|
|
}
|
| 376 |
|
|
else {
|
| 377 |
|
|
BX_ERROR(("write_virtual_ymmword_32(): segment limit violation"));
|
| 378 |
|
|
exception(int_number(s), 0);
|
| 379 |
|
|
}
|
| 380 |
|
|
}
|
| 381 |
|
|
|
| 382 |
|
|
if (!write_virtual_checks(seg, offset, 32))
|
| 383 |
|
|
exception(int_number(s), 0);
|
| 384 |
|
|
goto accessOK;
|
| 385 |
|
|
}
|
| 386 |
|
|
|
| 387 |
|
|
void BX_CPU_C::write_virtual_ymmword_aligned_32(unsigned s, Bit32u offset, const BxPackedAvxRegister *data)
|
| 388 |
|
|
{
|
| 389 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 390 |
|
|
|
| 391 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 392 |
|
|
|
| 393 |
|
|
Bit32u laddr = get_laddr32(s, offset);
|
| 394 |
|
|
// must check alignment here because #GP on misaligned access is higher
|
| 395 |
|
|
// priority than other segment related faults
|
| 396 |
|
|
if (laddr & 31) {
|
| 397 |
|
|
BX_ERROR(("write_virtual_ymmword_aligned_32(): #GP misaligned access"));
|
| 398 |
|
|
exception(BX_GP_EXCEPTION, 0);
|
| 399 |
|
|
}
|
| 400 |
|
|
|
| 401 |
|
|
if (seg->cache.valid & SegAccessWOK) {
|
| 402 |
|
|
if (offset <= (seg->cache.u.segment.limit_scaled-31)) {
|
| 403 |
|
|
accessOK:
|
| 404 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
|
| 405 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 406 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 407 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 408 |
|
|
// See if the TLB entry privilege level allows us write access
|
| 409 |
|
|
// from this CPL.
|
| 410 |
|
|
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
|
| 411 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 412 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 413 |
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
| 414 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 32, CPL, BX_WRITE, (Bit8u*) data);
|
| 415 |
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
| 416 |
|
|
pageWriteStampTable.decWriteStamp(pAddr, 32);
|
| 417 |
|
|
for (unsigned n=0; n < 4; n++) {
|
| 418 |
|
|
WriteHostQWordToLittleEndian(hostAddr+n, data->avx64u(n));
|
| 419 |
|
|
}
|
| 420 |
|
|
return;
|
| 421 |
|
|
}
|
| 422 |
|
|
}
|
| 423 |
|
|
access_write_linear(laddr, 32, CPL, (void *) data);
|
| 424 |
|
|
return;
|
| 425 |
|
|
}
|
| 426 |
|
|
else {
|
| 427 |
|
|
BX_ERROR(("write_virtual_ymmword_aligned_32(): segment limit violation"));
|
| 428 |
|
|
exception(int_number(s), 0);
|
| 429 |
|
|
}
|
| 430 |
|
|
}
|
| 431 |
|
|
|
| 432 |
|
|
if (!write_virtual_checks(seg, offset, 32))
|
| 433 |
|
|
exception(int_number(s), 0);
|
| 434 |
|
|
goto accessOK;
|
| 435 |
|
|
}
|
| 436 |
|
|
|
| 437 |
|
|
#endif // BX_SUPPORT_AVX
|
| 438 |
|
|
|
| 439 |
|
|
#endif
|
| 440 |
|
|
|
| 441 |
|
|
Bit8u BX_CPP_AttrRegparmN(2)
|
| 442 |
|
|
BX_CPU_C::read_virtual_byte_32(unsigned s, Bit32u offset)
|
| 443 |
|
|
{
|
| 444 |
|
|
Bit32u laddr;
|
| 445 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 446 |
|
|
Bit8u data;
|
| 447 |
|
|
|
| 448 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 449 |
|
|
|
| 450 |
|
|
if (seg->cache.valid & SegAccessROK) {
|
| 451 |
|
|
if (offset <= seg->cache.u.segment.limit_scaled) {
|
| 452 |
|
|
accessOK:
|
| 453 |
|
|
laddr = get_laddr32(s, offset);
|
| 454 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
|
| 455 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 456 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 457 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 458 |
|
|
// See if the TLB entry privilege level allows us read access
|
| 459 |
|
|
// from this CPL.
|
| 460 |
|
|
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
|
| 461 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 462 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 463 |
|
|
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
|
| 464 |
|
|
data = *hostAddr;
|
| 465 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 1, CPL, BX_READ, (Bit8u*) &data);
|
| 466 |
|
|
|
| 467 |
|
|
return data;
|
| 468 |
|
|
}
|
| 469 |
|
|
}
|
| 470 |
|
|
access_read_linear(laddr, 1, CPL, BX_READ, (void *) &data);
|
| 471 |
|
|
return data;
|
| 472 |
|
|
}
|
| 473 |
|
|
else {
|
| 474 |
|
|
BX_ERROR(("read_virtual_byte_32(): segment limit violation"));
|
| 475 |
|
|
exception(int_number(s), 0);
|
| 476 |
|
|
}
|
| 477 |
|
|
}
|
| 478 |
|
|
|
| 479 |
|
|
if (!read_virtual_checks(seg, offset, 1))
|
| 480 |
|
|
exception(int_number(s), 0);
|
| 481 |
|
|
goto accessOK;
|
| 482 |
|
|
}
|
| 483 |
|
|
|
| 484 |
|
|
Bit16u BX_CPP_AttrRegparmN(2)
|
| 485 |
|
|
BX_CPU_C::read_virtual_word_32(unsigned s, Bit32u offset)
|
| 486 |
|
|
{
|
| 487 |
|
|
Bit32u laddr;
|
| 488 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 489 |
|
|
Bit16u data;
|
| 490 |
|
|
|
| 491 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 492 |
|
|
|
| 493 |
|
|
if (seg->cache.valid & SegAccessROK) {
|
| 494 |
|
|
if (offset < seg->cache.u.segment.limit_scaled) {
|
| 495 |
|
|
accessOK:
|
| 496 |
|
|
laddr = get_laddr32(s, offset);
|
| 497 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1);
|
| 498 |
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
| 499 |
|
|
Bit32u lpf = AlignedAccessLPFOf(laddr, (1 & BX_CPU_THIS_PTR alignment_check_mask));
|
| 500 |
|
|
#else
|
| 501 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 502 |
|
|
#endif
|
| 503 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 504 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 505 |
|
|
// See if the TLB entry privilege level allows us read access
|
| 506 |
|
|
// from this CPL.
|
| 507 |
|
|
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
|
| 508 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 509 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 510 |
|
|
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
|
| 511 |
|
|
ReadHostWordFromLittleEndian(hostAddr, data);
|
| 512 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 2, CPL, BX_READ, (Bit8u*) &data);
|
| 513 |
|
|
return data;
|
| 514 |
|
|
}
|
| 515 |
|
|
}
|
| 516 |
|
|
|
| 517 |
|
|
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
|
| 518 |
|
|
if (BX_CPU_THIS_PTR alignment_check()) {
|
| 519 |
|
|
if (laddr & 1) {
|
| 520 |
|
|
BX_ERROR(("read_virtual_word_32(): #AC misaligned access"));
|
| 521 |
|
|
exception(BX_AC_EXCEPTION, 0);
|
| 522 |
|
|
}
|
| 523 |
|
|
}
|
| 524 |
|
|
#endif
|
| 525 |
|
|
|
| 526 |
|
|
access_read_linear(laddr, 2, CPL, BX_READ, (void *) &data);
|
| 527 |
|
|
return data;
|
| 528 |
|
|
}
|
| 529 |
|
|
else {
|
| 530 |
|
|
BX_ERROR(("read_virtual_word_32(): segment limit violation"));
|
| 531 |
|
|
exception(int_number(s), 0);
|
| 532 |
|
|
}
|
| 533 |
|
|
}
|
| 534 |
|
|
|
| 535 |
|
|
if (!read_virtual_checks(seg, offset, 2))
|
| 536 |
|
|
exception(int_number(s), 0);
|
| 537 |
|
|
goto accessOK;
|
| 538 |
|
|
}
|
| 539 |
|
|
|
| 540 |
|
|
Bit32u BX_CPP_AttrRegparmN(2)
|
| 541 |
|
|
BX_CPU_C::read_virtual_dword_32(unsigned s, Bit32u offset)
|
| 542 |
|
|
{
|
| 543 |
|
|
Bit32u laddr;
|
| 544 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 545 |
|
|
Bit32u data;
|
| 546 |
|
|
|
| 547 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 548 |
|
|
|
| 549 |
|
|
if (seg->cache.valid & SegAccessROK) {
|
| 550 |
|
|
if (offset < (seg->cache.u.segment.limit_scaled-2)) {
|
| 551 |
|
|
accessOK:
|
| 552 |
|
|
laddr = get_laddr32(s, offset);
|
| 553 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3);
|
| 554 |
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
| 555 |
|
|
Bit32u lpf = AlignedAccessLPFOf(laddr, (3 & BX_CPU_THIS_PTR alignment_check_mask));
|
| 556 |
|
|
#else
|
| 557 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 558 |
|
|
#endif
|
| 559 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 560 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 561 |
|
|
// See if the TLB entry privilege level allows us read access
|
| 562 |
|
|
// from this CPL.
|
| 563 |
|
|
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
|
| 564 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 565 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 566 |
|
|
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
|
| 567 |
|
|
ReadHostDWordFromLittleEndian(hostAddr, data);
|
| 568 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 4, CPL, BX_READ, (Bit8u*) &data);
|
| 569 |
|
|
return data;
|
| 570 |
|
|
}
|
| 571 |
|
|
}
|
| 572 |
|
|
|
| 573 |
|
|
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
|
| 574 |
|
|
if (BX_CPU_THIS_PTR alignment_check()) {
|
| 575 |
|
|
if (laddr & 3) {
|
| 576 |
|
|
BX_ERROR(("read_virtual_dword_32(): #AC misaligned access"));
|
| 577 |
|
|
exception(BX_AC_EXCEPTION, 0);
|
| 578 |
|
|
}
|
| 579 |
|
|
}
|
| 580 |
|
|
#endif
|
| 581 |
|
|
|
| 582 |
|
|
access_read_linear(laddr, 4, CPL, BX_READ, (void *) &data);
|
| 583 |
|
|
return data;
|
| 584 |
|
|
}
|
| 585 |
|
|
else {
|
| 586 |
|
|
BX_ERROR(("read_virtual_dword_32(): segment limit violation"));
|
| 587 |
|
|
exception(int_number(s), 0);
|
| 588 |
|
|
}
|
| 589 |
|
|
}
|
| 590 |
|
|
|
| 591 |
|
|
if (!read_virtual_checks(seg, offset, 4))
|
| 592 |
|
|
exception(int_number(s), 0);
|
| 593 |
|
|
goto accessOK;
|
| 594 |
|
|
}
|
| 595 |
|
|
|
| 596 |
|
|
Bit64u BX_CPP_AttrRegparmN(2)
|
| 597 |
|
|
BX_CPU_C::read_virtual_qword_32(unsigned s, Bit32u offset)
|
| 598 |
|
|
{
|
| 599 |
|
|
Bit32u laddr;
|
| 600 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 601 |
|
|
Bit64u data;
|
| 602 |
|
|
|
| 603 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 604 |
|
|
|
| 605 |
|
|
if (seg->cache.valid & SegAccessROK) {
|
| 606 |
|
|
if (offset <= (seg->cache.u.segment.limit_scaled-7)) {
|
| 607 |
|
|
accessOK:
|
| 608 |
|
|
laddr = get_laddr32(s, offset);
|
| 609 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 7);
|
| 610 |
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
| 611 |
|
|
Bit32u lpf = AlignedAccessLPFOf(laddr, (7 & BX_CPU_THIS_PTR alignment_check_mask));
|
| 612 |
|
|
#else
|
| 613 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 614 |
|
|
#endif
|
| 615 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 616 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 617 |
|
|
// See if the TLB entry privilege level allows us read access
|
| 618 |
|
|
// from this CPL.
|
| 619 |
|
|
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
|
| 620 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 621 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 622 |
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
| 623 |
|
|
ReadHostQWordFromLittleEndian(hostAddr, data);
|
| 624 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 8, CPL, BX_READ, (Bit8u*) &data);
|
| 625 |
|
|
return data;
|
| 626 |
|
|
}
|
| 627 |
|
|
}
|
| 628 |
|
|
|
| 629 |
|
|
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
|
| 630 |
|
|
if (BX_CPU_THIS_PTR alignment_check()) {
|
| 631 |
|
|
if (laddr & 7) {
|
| 632 |
|
|
BX_ERROR(("read_virtual_qword_32(): #AC misaligned access"));
|
| 633 |
|
|
exception(BX_AC_EXCEPTION, 0);
|
| 634 |
|
|
}
|
| 635 |
|
|
}
|
| 636 |
|
|
#endif
|
| 637 |
|
|
|
| 638 |
|
|
access_read_linear(laddr, 8, CPL, BX_READ, (void *) &data);
|
| 639 |
|
|
return data;
|
| 640 |
|
|
}
|
| 641 |
|
|
else {
|
| 642 |
|
|
BX_ERROR(("read_virtual_qword_32(): segment limit violation"));
|
| 643 |
|
|
exception(int_number(s), 0);
|
| 644 |
|
|
}
|
| 645 |
|
|
}
|
| 646 |
|
|
|
| 647 |
|
|
if (!read_virtual_checks(seg, offset, 8))
|
| 648 |
|
|
exception(int_number(s), 0);
|
| 649 |
|
|
goto accessOK;
|
| 650 |
|
|
}
|
| 651 |
|
|
|
| 652 |
|
|
#if BX_CPU_LEVEL >= 6
|
| 653 |
|
|
|
| 654 |
|
|
void BX_CPP_AttrRegparmN(3)
|
| 655 |
|
|
BX_CPU_C::read_virtual_xmmword_32(unsigned s, Bit32u offset, BxPackedXmmRegister *data)
|
| 656 |
|
|
{
|
| 657 |
|
|
Bit32u laddr;
|
| 658 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 659 |
|
|
|
| 660 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 661 |
|
|
|
| 662 |
|
|
if (seg->cache.valid & SegAccessROK) {
|
| 663 |
|
|
if (offset <= (seg->cache.u.segment.limit_scaled-15)) {
|
| 664 |
|
|
accessOK:
|
| 665 |
|
|
laddr = get_laddr32(s, offset);
|
| 666 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 15);
|
| 667 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 668 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 669 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 670 |
|
|
// See if the TLB entry privilege level allows us read access
|
| 671 |
|
|
// from this CPL.
|
| 672 |
|
|
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
|
| 673 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 674 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 675 |
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
| 676 |
|
|
ReadHostQWordFromLittleEndian(hostAddr, data->xmm64u(0));
|
| 677 |
|
|
ReadHostQWordFromLittleEndian(hostAddr+1, data->xmm64u(1));
|
| 678 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 16, CPL, BX_READ, (Bit8u*) data);
|
| 679 |
|
|
return;
|
| 680 |
|
|
}
|
| 681 |
|
|
}
|
| 682 |
|
|
access_read_linear(laddr, 16, CPL, BX_READ, (void *) data);
|
| 683 |
|
|
return;
|
| 684 |
|
|
}
|
| 685 |
|
|
else {
|
| 686 |
|
|
BX_ERROR(("read_virtual_xmmword_32(): segment limit violation"));
|
| 687 |
|
|
exception(int_number(s), 0);
|
| 688 |
|
|
}
|
| 689 |
|
|
}
|
| 690 |
|
|
|
| 691 |
|
|
if (!read_virtual_checks(seg, offset, 16))
|
| 692 |
|
|
exception(int_number(s), 0);
|
| 693 |
|
|
goto accessOK;
|
| 694 |
|
|
}
|
| 695 |
|
|
|
| 696 |
|
|
void BX_CPP_AttrRegparmN(3)
|
| 697 |
|
|
BX_CPU_C::read_virtual_xmmword_aligned_32(unsigned s, Bit32u offset, BxPackedXmmRegister *data)
|
| 698 |
|
|
{
|
| 699 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 700 |
|
|
|
| 701 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 702 |
|
|
|
| 703 |
|
|
Bit32u laddr = get_laddr32(s, offset);
|
| 704 |
|
|
// must check alignment here because #GP on misaligned access is higher
|
| 705 |
|
|
// priority than other segment related faults
|
| 706 |
|
|
if (laddr & 15) {
|
| 707 |
|
|
BX_ERROR(("read_virtual_xmmword_aligned_32(): #GP misaligned access"));
|
| 708 |
|
|
exception(BX_GP_EXCEPTION, 0);
|
| 709 |
|
|
}
|
| 710 |
|
|
|
| 711 |
|
|
if (seg->cache.valid & SegAccessROK) {
|
| 712 |
|
|
if (offset <= (seg->cache.u.segment.limit_scaled-15)) {
|
| 713 |
|
|
accessOK:
|
| 714 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
|
| 715 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 716 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 717 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 718 |
|
|
// See if the TLB entry privilege level allows us read access
|
| 719 |
|
|
// from this CPL.
|
| 720 |
|
|
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
|
| 721 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 722 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 723 |
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
| 724 |
|
|
ReadHostQWordFromLittleEndian(hostAddr, data->xmm64u(0));
|
| 725 |
|
|
ReadHostQWordFromLittleEndian(hostAddr+1, data->xmm64u(1));
|
| 726 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 16, CPL, BX_READ, (Bit8u*) data);
|
| 727 |
|
|
return;
|
| 728 |
|
|
}
|
| 729 |
|
|
}
|
| 730 |
|
|
access_read_linear(laddr, 16, CPL, BX_READ, (void *) data);
|
| 731 |
|
|
return;
|
| 732 |
|
|
}
|
| 733 |
|
|
else {
|
| 734 |
|
|
BX_ERROR(("read_virtual_xmmword_aligned_32(): segment limit violation"));
|
| 735 |
|
|
exception(int_number(s), 0);
|
| 736 |
|
|
}
|
| 737 |
|
|
}
|
| 738 |
|
|
|
| 739 |
|
|
if (!read_virtual_checks(seg, offset, 16))
|
| 740 |
|
|
exception(int_number(s), 0);
|
| 741 |
|
|
goto accessOK;
|
| 742 |
|
|
}
|
| 743 |
|
|
|
| 744 |
|
|
#if BX_SUPPORT_AVX
|
| 745 |
|
|
|
| 746 |
|
|
void BX_CPU_C::read_virtual_ymmword_32(unsigned s, Bit32u offset, BxPackedAvxRegister *data)
|
| 747 |
|
|
{
|
| 748 |
|
|
Bit32u laddr;
|
| 749 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 750 |
|
|
|
| 751 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 752 |
|
|
|
| 753 |
|
|
if (seg->cache.valid & SegAccessROK) {
|
| 754 |
|
|
if (offset <= (seg->cache.u.segment.limit_scaled-31)) {
|
| 755 |
|
|
accessOK:
|
| 756 |
|
|
laddr = get_laddr32(s, offset);
|
| 757 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 31);
|
| 758 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 759 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 760 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 761 |
|
|
// See if the TLB entry privilege level allows us read access
|
| 762 |
|
|
// from this CPL.
|
| 763 |
|
|
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
|
| 764 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 765 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 766 |
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
| 767 |
|
|
for (unsigned n=0; n < 4; n++) {
|
| 768 |
|
|
ReadHostQWordFromLittleEndian(hostAddr+n, data->avx64u(n));
|
| 769 |
|
|
}
|
| 770 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 32, CPL, BX_READ, (Bit8u*) data);
|
| 771 |
|
|
return;
|
| 772 |
|
|
}
|
| 773 |
|
|
}
|
| 774 |
|
|
access_read_linear(laddr, 32, CPL, BX_READ, (void *) data);
|
| 775 |
|
|
return;
|
| 776 |
|
|
}
|
| 777 |
|
|
else {
|
| 778 |
|
|
BX_ERROR(("read_virtual_ymmword_32: segment limit violation"));
|
| 779 |
|
|
exception(int_number(s), 0);
|
| 780 |
|
|
}
|
| 781 |
|
|
}
|
| 782 |
|
|
|
| 783 |
|
|
if (!read_virtual_checks(seg, offset, 32))
|
| 784 |
|
|
exception(int_number(s), 0);
|
| 785 |
|
|
goto accessOK;
|
| 786 |
|
|
}
|
| 787 |
|
|
|
| 788 |
|
|
void BX_CPU_C::read_virtual_ymmword_aligned_32(unsigned s, Bit32u offset, BxPackedAvxRegister *data)
|
| 789 |
|
|
{
|
| 790 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 791 |
|
|
|
| 792 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 793 |
|
|
|
| 794 |
|
|
Bit32u laddr = get_laddr32(s, offset);
|
| 795 |
|
|
// must check alignment here because #GP on misaligned access is higher
|
| 796 |
|
|
// priority than other segment related faults
|
| 797 |
|
|
if (laddr & 31) {
|
| 798 |
|
|
BX_ERROR(("read_virtual_ymmword_aligned_32(): #GP misaligned access"));
|
| 799 |
|
|
exception(BX_GP_EXCEPTION, 0);
|
| 800 |
|
|
}
|
| 801 |
|
|
|
| 802 |
|
|
if (seg->cache.valid & SegAccessROK) {
|
| 803 |
|
|
if (offset <= (seg->cache.u.segment.limit_scaled-31)) {
|
| 804 |
|
|
accessOK:
|
| 805 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
|
| 806 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 807 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 808 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 809 |
|
|
// See if the TLB entry privilege level allows us read access
|
| 810 |
|
|
// from this CPL.
|
| 811 |
|
|
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
|
| 812 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 813 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 814 |
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
| 815 |
|
|
for (unsigned n=0; n < 4; n++) {
|
| 816 |
|
|
ReadHostQWordFromLittleEndian(hostAddr+n, data->avx64u(n));
|
| 817 |
|
|
}
|
| 818 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 32, CPL, BX_READ, (Bit8u*) data);
|
| 819 |
|
|
return;
|
| 820 |
|
|
}
|
| 821 |
|
|
}
|
| 822 |
|
|
access_read_linear(laddr, 32, CPL, BX_READ, (void *) data);
|
| 823 |
|
|
return;
|
| 824 |
|
|
}
|
| 825 |
|
|
else {
|
| 826 |
|
|
BX_ERROR(("read_virtual_ymmword_aligned_32(): segment limit violation"));
|
| 827 |
|
|
exception(int_number(s), 0);
|
| 828 |
|
|
}
|
| 829 |
|
|
}
|
| 830 |
|
|
|
| 831 |
|
|
if (!read_virtual_checks(seg, offset, 32))
|
| 832 |
|
|
exception(int_number(s), 0);
|
| 833 |
|
|
goto accessOK;
|
| 834 |
|
|
}
|
| 835 |
|
|
|
| 836 |
|
|
#endif
|
| 837 |
|
|
|
| 838 |
|
|
#endif
|
| 839 |
|
|
|
| 840 |
|
|
//////////////////////////////////////////////////////////////
|
| 841 |
|
|
// special Read-Modify-Write operations //
|
| 842 |
|
|
// address translation info is kept across read/write calls //
|
| 843 |
|
|
//////////////////////////////////////////////////////////////
|
| 844 |
|
|
|
| 845 |
|
|
Bit8u BX_CPP_AttrRegparmN(2)
|
| 846 |
|
|
BX_CPU_C::read_RMW_virtual_byte_32(unsigned s, Bit32u offset)
|
| 847 |
|
|
{
|
| 848 |
|
|
Bit32u laddr;
|
| 849 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 850 |
|
|
Bit8u data;
|
| 851 |
|
|
|
| 852 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 853 |
|
|
|
| 854 |
|
|
if (seg->cache.valid & SegAccessWOK) {
|
| 855 |
|
|
if (offset <= seg->cache.u.segment.limit_scaled) {
|
| 856 |
|
|
accessOK:
|
| 857 |
|
|
laddr = get_laddr32(s, offset);
|
| 858 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
|
| 859 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 860 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 861 |
|
|
//AO change next line
|
| 862 |
|
|
if (0) { //tlbEntry->lpf == lpf) {
|
| 863 |
|
|
// See if the TLB entry privilege level allows us write access
|
| 864 |
|
|
// from this CPL.
|
| 865 |
|
|
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
|
| 866 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 867 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 868 |
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
| 869 |
|
|
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
|
| 870 |
|
|
pageWriteStampTable.decWriteStamp(pAddr, 1);
|
| 871 |
|
|
data = *hostAddr;
|
| 872 |
|
|
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
|
| 873 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress1 = pAddr;
|
| 874 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 1, CPL, BX_READ, (Bit8u*) &data);
|
| 875 |
|
|
return data;
|
| 876 |
|
|
}
|
| 877 |
|
|
}
|
| 878 |
|
|
access_read_linear(laddr, 1, CPL, BX_RW, (void *) &data);
|
| 879 |
|
|
return data;
|
| 880 |
|
|
}
|
| 881 |
|
|
else {
|
| 882 |
|
|
BX_ERROR(("read_RMW_virtual_byte_32(): segment limit violation"));
|
| 883 |
|
|
exception(int_number(s), 0);
|
| 884 |
|
|
}
|
| 885 |
|
|
}
|
| 886 |
|
|
|
| 887 |
|
|
if (!write_virtual_checks(seg, offset, 1))
|
| 888 |
|
|
exception(int_number(s), 0);
|
| 889 |
|
|
goto accessOK;
|
| 890 |
|
|
}
|
| 891 |
|
|
|
| 892 |
|
|
Bit16u BX_CPP_AttrRegparmN(2)
|
| 893 |
|
|
BX_CPU_C::read_RMW_virtual_word_32(unsigned s, Bit32u offset)
|
| 894 |
|
|
{
|
| 895 |
|
|
Bit32u laddr;
|
| 896 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 897 |
|
|
Bit16u data;
|
| 898 |
|
|
|
| 899 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 900 |
|
|
|
| 901 |
|
|
if (seg->cache.valid & SegAccessWOK) {
|
| 902 |
|
|
if (offset < seg->cache.u.segment.limit_scaled) {
|
| 903 |
|
|
accessOK:
|
| 904 |
|
|
laddr = get_laddr32(s, offset);
|
| 905 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1);
|
| 906 |
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
| 907 |
|
|
Bit32u lpf = AlignedAccessLPFOf(laddr, (1 & BX_CPU_THIS_PTR alignment_check_mask));
|
| 908 |
|
|
#else
|
| 909 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 910 |
|
|
#endif
|
| 911 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 912 |
|
|
//AO change next line
|
| 913 |
|
|
if (0) { //tlbEntry->lpf == lpf) {
|
| 914 |
|
|
// See if the TLB entry privilege level allows us write access
|
| 915 |
|
|
// from this CPL.
|
| 916 |
|
|
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
|
| 917 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 918 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 919 |
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
| 920 |
|
|
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
|
| 921 |
|
|
pageWriteStampTable.decWriteStamp(pAddr, 2);
|
| 922 |
|
|
ReadHostWordFromLittleEndian(hostAddr, data);
|
| 923 |
|
|
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
|
| 924 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress1 = pAddr;
|
| 925 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 2, CPL, BX_READ, (Bit8u*) &data);
|
| 926 |
|
|
return data;
|
| 927 |
|
|
}
|
| 928 |
|
|
}
|
| 929 |
|
|
|
| 930 |
|
|
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
|
| 931 |
|
|
if (BX_CPU_THIS_PTR alignment_check()) {
|
| 932 |
|
|
if (laddr & 1) {
|
| 933 |
|
|
BX_ERROR(("read_RMW_virtual_word_32(): #AC misaligned access"));
|
| 934 |
|
|
exception(BX_AC_EXCEPTION, 0);
|
| 935 |
|
|
}
|
| 936 |
|
|
}
|
| 937 |
|
|
#endif
|
| 938 |
|
|
|
| 939 |
|
|
access_read_linear(laddr, 2, CPL, BX_RW, (void *) &data);
|
| 940 |
|
|
return data;
|
| 941 |
|
|
}
|
| 942 |
|
|
else {
|
| 943 |
|
|
BX_ERROR(("read_RMW_virtual_word_32(): segment limit violation"));
|
| 944 |
|
|
exception(int_number(s), 0);
|
| 945 |
|
|
}
|
| 946 |
|
|
}
|
| 947 |
|
|
|
| 948 |
|
|
if (!write_virtual_checks(seg, offset, 2))
|
| 949 |
|
|
exception(int_number(s), 0);
|
| 950 |
|
|
goto accessOK;
|
| 951 |
|
|
}
|
| 952 |
|
|
|
| 953 |
|
|
Bit32u BX_CPP_AttrRegparmN(2)
|
| 954 |
|
|
BX_CPU_C::read_RMW_virtual_dword_32(unsigned s, Bit32u offset)
|
| 955 |
|
|
{
|
| 956 |
|
|
Bit32u laddr;
|
| 957 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 958 |
|
|
Bit32u data;
|
| 959 |
|
|
|
| 960 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 961 |
|
|
|
| 962 |
|
|
if (seg->cache.valid & SegAccessWOK) {
|
| 963 |
|
|
if (offset < (seg->cache.u.segment.limit_scaled-2)) {
|
| 964 |
|
|
accessOK:
|
| 965 |
|
|
laddr = get_laddr32(s, offset);
|
| 966 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3);
|
| 967 |
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
| 968 |
|
|
Bit32u lpf = AlignedAccessLPFOf(laddr, (3 & BX_CPU_THIS_PTR alignment_check_mask));
|
| 969 |
|
|
#else
|
| 970 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 971 |
|
|
#endif
|
| 972 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 973 |
|
|
//AO change next line
|
| 974 |
|
|
if (0) { //tlbEntry->lpf == lpf) {
|
| 975 |
|
|
// See if the TLB entry privilege level allows us write access
|
| 976 |
|
|
// from this CPL.
|
| 977 |
|
|
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
|
| 978 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 979 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 980 |
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
| 981 |
|
|
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
|
| 982 |
|
|
pageWriteStampTable.decWriteStamp(pAddr, 4);
|
| 983 |
|
|
ReadHostDWordFromLittleEndian(hostAddr, data);
|
| 984 |
|
|
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
|
| 985 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress1 = pAddr;
|
| 986 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 4, CPL, BX_READ, (Bit8u*) &data);
|
| 987 |
|
|
return data;
|
| 988 |
|
|
}
|
| 989 |
|
|
}
|
| 990 |
|
|
|
| 991 |
|
|
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
|
| 992 |
|
|
if (BX_CPU_THIS_PTR alignment_check()) {
|
| 993 |
|
|
if (laddr & 3) {
|
| 994 |
|
|
BX_ERROR(("read_RMW_virtual_dword_32(): #AC misaligned access"));
|
| 995 |
|
|
exception(BX_AC_EXCEPTION, 0);
|
| 996 |
|
|
}
|
| 997 |
|
|
}
|
| 998 |
|
|
#endif
|
| 999 |
|
|
|
| 1000 |
|
|
access_read_linear(laddr, 4, CPL, BX_RW, (void *) &data);
|
| 1001 |
|
|
return data;
|
| 1002 |
|
|
}
|
| 1003 |
|
|
else {
|
| 1004 |
|
|
BX_ERROR(("read_RMW_virtual_dword_32(): segment limit violation"));
|
| 1005 |
|
|
exception(int_number(s), 0);
|
| 1006 |
|
|
}
|
| 1007 |
|
|
}
|
| 1008 |
|
|
|
| 1009 |
|
|
if (!write_virtual_checks(seg, offset, 4))
|
| 1010 |
|
|
exception(int_number(s), 0);
|
| 1011 |
|
|
goto accessOK;
|
| 1012 |
|
|
}
|
| 1013 |
|
|
|
| 1014 |
|
|
Bit64u BX_CPP_AttrRegparmN(2)
|
| 1015 |
|
|
BX_CPU_C::read_RMW_virtual_qword_32(unsigned s, Bit32u offset)
|
| 1016 |
|
|
{
|
| 1017 |
|
|
Bit32u laddr;
|
| 1018 |
|
|
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
|
| 1019 |
|
|
Bit64u data;
|
| 1020 |
|
|
|
| 1021 |
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
| 1022 |
|
|
|
| 1023 |
|
|
if (seg->cache.valid & SegAccessWOK) {
|
| 1024 |
|
|
if (offset <= (seg->cache.u.segment.limit_scaled-7)) {
|
| 1025 |
|
|
accessOK:
|
| 1026 |
|
|
laddr = get_laddr32(s, offset);
|
| 1027 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 7);
|
| 1028 |
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
| 1029 |
|
|
Bit32u lpf = AlignedAccessLPFOf(laddr, (7 & BX_CPU_THIS_PTR alignment_check_mask));
|
| 1030 |
|
|
#else
|
| 1031 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 1032 |
|
|
#endif
|
| 1033 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 1034 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 1035 |
|
|
// See if the TLB entry privilege level allows us write access
|
| 1036 |
|
|
// from this CPL.
|
| 1037 |
|
|
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
|
| 1038 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 1039 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 1040 |
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
| 1041 |
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
| 1042 |
|
|
pageWriteStampTable.decWriteStamp(pAddr, 8);
|
| 1043 |
|
|
ReadHostQWordFromLittleEndian(hostAddr, data);
|
| 1044 |
|
|
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
|
| 1045 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress1 = pAddr;
|
| 1046 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 8, CPL, BX_READ, (Bit8u*) &data);
|
| 1047 |
|
|
return data;
|
| 1048 |
|
|
}
|
| 1049 |
|
|
}
|
| 1050 |
|
|
|
| 1051 |
|
|
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
|
| 1052 |
|
|
if (BX_CPU_THIS_PTR alignment_check()) {
|
| 1053 |
|
|
if (laddr & 7) {
|
| 1054 |
|
|
BX_ERROR(("read_RMW_virtual_qword_32(): #AC misaligned access"));
|
| 1055 |
|
|
exception(BX_AC_EXCEPTION, 0);
|
| 1056 |
|
|
}
|
| 1057 |
|
|
}
|
| 1058 |
|
|
#endif
|
| 1059 |
|
|
|
| 1060 |
|
|
access_read_linear(laddr, 8, CPL, BX_RW, (void *) &data);
|
| 1061 |
|
|
return data;
|
| 1062 |
|
|
}
|
| 1063 |
|
|
else {
|
| 1064 |
|
|
BX_ERROR(("read_RMW_virtual_qword_32(): segment limit violation"));
|
| 1065 |
|
|
exception(int_number(s), 0);
|
| 1066 |
|
|
}
|
| 1067 |
|
|
}
|
| 1068 |
|
|
|
| 1069 |
|
|
if (!write_virtual_checks(seg, offset, 8))
|
| 1070 |
|
|
exception(int_number(s), 0);
|
| 1071 |
|
|
goto accessOK;
|
| 1072 |
|
|
}
|
| 1073 |
|
|
|
| 1074 |
|
|
void BX_CPP_AttrRegparmN(1)
|
| 1075 |
|
|
BX_CPU_C::write_RMW_virtual_byte(Bit8u val8)
|
| 1076 |
|
|
{
|
| 1077 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1078 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 1, BX_WRITE, 0, (Bit8u*) &val8);
|
| 1079 |
|
|
|
| 1080 |
|
|
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
|
| 1081 |
|
|
// Pages > 2 means it stores a host address for direct access.
|
| 1082 |
|
|
Bit8u *hostAddr = (Bit8u *) BX_CPU_THIS_PTR address_xlation.pages;
|
| 1083 |
|
|
*hostAddr = val8;
|
| 1084 |
|
|
}
|
| 1085 |
|
|
else {
|
| 1086 |
|
|
// address_xlation.pages must be 1
|
| 1087 |
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val8);
|
| 1088 |
|
|
}
|
| 1089 |
|
|
}
|
| 1090 |
|
|
|
| 1091 |
|
|
void BX_CPP_AttrRegparmN(1)
|
| 1092 |
|
|
BX_CPU_C::write_RMW_virtual_word(Bit16u val16)
|
| 1093 |
|
|
{
|
| 1094 |
|
|
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
|
| 1095 |
|
|
// Pages > 2 means it stores a host address for direct access.
|
| 1096 |
|
|
Bit16u *hostAddr = (Bit16u *) BX_CPU_THIS_PTR address_xlation.pages;
|
| 1097 |
|
|
WriteHostWordToLittleEndian(hostAddr, val16);
|
| 1098 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1099 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 2, BX_WRITE, 0, (Bit8u*) &val16);
|
| 1100 |
|
|
}
|
| 1101 |
|
|
else if (BX_CPU_THIS_PTR address_xlation.pages == 1) {
|
| 1102 |
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, 2, &val16);
|
| 1103 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1104 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 2, BX_WRITE, 0, (Bit8u*) &val16);
|
| 1105 |
|
|
}
|
| 1106 |
|
|
else {
|
| 1107 |
|
|
#ifdef BX_LITTLE_ENDIAN
|
| 1108 |
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val16);
|
| 1109 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1110 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 1, BX_WRITE, 0, (Bit8u*) &val16);
|
| 1111 |
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2, 1, ((Bit8u *) &val16) + 1);
|
| 1112 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1113 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress2, 1, BX_WRITE, 0, ((Bit8u*) &val16)+1);
|
| 1114 |
|
|
#else
|
| 1115 |
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, 1, ((Bit8u *) &val16) + 1);
|
| 1116 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1117 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 1, BX_WRITE, 0, ((Bit8u*) &val16)+1);
|
| 1118 |
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2, 1, &val16);
|
| 1119 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1120 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress2, 1, BX_WRITE, 0, (Bit8u*) &val16);
|
| 1121 |
|
|
#endif
|
| 1122 |
|
|
}
|
| 1123 |
|
|
}
|
| 1124 |
|
|
|
| 1125 |
|
|
void BX_CPP_AttrRegparmN(1)
|
| 1126 |
|
|
BX_CPU_C::write_RMW_virtual_dword(Bit32u val32)
|
| 1127 |
|
|
{
|
| 1128 |
|
|
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
|
| 1129 |
|
|
// Pages > 2 means it stores a host address for direct access.
|
| 1130 |
|
|
Bit32u *hostAddr = (Bit32u *) BX_CPU_THIS_PTR address_xlation.pages;
|
| 1131 |
|
|
WriteHostDWordToLittleEndian(hostAddr, val32);
|
| 1132 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1133 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 4, BX_WRITE, 0, (Bit8u*) &val32);
|
| 1134 |
|
|
}
|
| 1135 |
|
|
else if (BX_CPU_THIS_PTR address_xlation.pages == 1) {
|
| 1136 |
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, 4, &val32);
|
| 1137 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1138 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 4, BX_WRITE, 0, (Bit8u*) &val32);
|
| 1139 |
|
|
}
|
| 1140 |
|
|
else {
|
| 1141 |
|
|
#ifdef BX_LITTLE_ENDIAN
|
| 1142 |
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
|
| 1143 |
|
|
BX_CPU_THIS_PTR address_xlation.len1, &val32);
|
| 1144 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1145 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress1,
|
| 1146 |
|
|
BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE, 0, (Bit8u*) &val32);
|
| 1147 |
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
|
| 1148 |
|
|
BX_CPU_THIS_PTR address_xlation.len2,
|
| 1149 |
|
|
((Bit8u *) &val32) + BX_CPU_THIS_PTR address_xlation.len1);
|
| 1150 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1151 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress2,
|
| 1152 |
|
|
BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE, 0,
|
| 1153 |
|
|
((Bit8u *) &val32) + BX_CPU_THIS_PTR address_xlation.len1);
|
| 1154 |
|
|
#else
|
| 1155 |
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
|
| 1156 |
|
|
BX_CPU_THIS_PTR address_xlation.len1,
|
| 1157 |
|
|
((Bit8u *) &val32) + (4 - BX_CPU_THIS_PTR address_xlation.len1));
|
| 1158 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1159 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress1,
|
| 1160 |
|
|
BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE, 0,
|
| 1161 |
|
|
((Bit8u *) &val32) + (4 - BX_CPU_THIS_PTR address_xlation.len1));
|
| 1162 |
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
|
| 1163 |
|
|
BX_CPU_THIS_PTR address_xlation.len2, &val32);
|
| 1164 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1165 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress2,
|
| 1166 |
|
|
BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE, 0, (Bit8u*) &val32);
|
| 1167 |
|
|
#endif
|
| 1168 |
|
|
}
|
| 1169 |
|
|
}
|
| 1170 |
|
|
|
| 1171 |
|
|
void BX_CPP_AttrRegparmN(1)
|
| 1172 |
|
|
BX_CPU_C::write_RMW_virtual_qword(Bit64u val64)
|
| 1173 |
|
|
{
|
| 1174 |
|
|
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
|
| 1175 |
|
|
// Pages > 2 means it stores a host address for direct access.
|
| 1176 |
|
|
Bit64u *hostAddr = (Bit64u *) BX_CPU_THIS_PTR address_xlation.pages;
|
| 1177 |
|
|
WriteHostQWordToLittleEndian(hostAddr, val64);
|
| 1178 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1179 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 8, BX_WRITE, 0, (Bit8u*) &val64);
|
| 1180 |
|
|
}
|
| 1181 |
|
|
else if (BX_CPU_THIS_PTR address_xlation.pages == 1) {
|
| 1182 |
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, 8, &val64);
|
| 1183 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1184 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 8, BX_WRITE, 0, (Bit8u*) &val64);
|
| 1185 |
|
|
}
|
| 1186 |
|
|
else {
|
| 1187 |
|
|
#ifdef BX_LITTLE_ENDIAN
|
| 1188 |
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
|
| 1189 |
|
|
BX_CPU_THIS_PTR address_xlation.len1, &val64);
|
| 1190 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1191 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress1,
|
| 1192 |
|
|
BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE, 0, (Bit8u*) &val64);
|
| 1193 |
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
|
| 1194 |
|
|
BX_CPU_THIS_PTR address_xlation.len2,
|
| 1195 |
|
|
((Bit8u *) &val64) + BX_CPU_THIS_PTR address_xlation.len1);
|
| 1196 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1197 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress2,
|
| 1198 |
|
|
BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE, 0,
|
| 1199 |
|
|
((Bit8u *) &val64) + BX_CPU_THIS_PTR address_xlation.len1);
|
| 1200 |
|
|
#else
|
| 1201 |
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
|
| 1202 |
|
|
BX_CPU_THIS_PTR address_xlation.len1,
|
| 1203 |
|
|
((Bit8u *) &val64) + (8 - BX_CPU_THIS_PTR address_xlation.len1));
|
| 1204 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1205 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress1,
|
| 1206 |
|
|
BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE, 0,
|
| 1207 |
|
|
((Bit8u *) &val64) + (8 - BX_CPU_THIS_PTR address_xlation.len1));
|
| 1208 |
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
|
| 1209 |
|
|
BX_CPU_THIS_PTR address_xlation.len2, &val64);
|
| 1210 |
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
| 1211 |
|
|
BX_CPU_THIS_PTR address_xlation.paddress2,
|
| 1212 |
|
|
BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE, 0, (Bit8u*) &val64);
|
| 1213 |
|
|
#endif
|
| 1214 |
|
|
}
|
| 1215 |
|
|
}
|
| 1216 |
|
|
|
| 1217 |
|
|
//
|
| 1218 |
|
|
// Write data to new stack, these methods are required for emulation
|
| 1219 |
|
|
// correctness but not performance critical.
|
| 1220 |
|
|
//
|
| 1221 |
|
|
|
| 1222 |
|
|
// assuming the write happens in legacy mode
|
| 1223 |
|
|
void BX_CPU_C::write_new_stack_word_32(bx_segment_reg_t *seg, Bit32u offset, unsigned curr_pl, Bit16u data)
|
| 1224 |
|
|
{
|
| 1225 |
|
|
Bit32u laddr;
|
| 1226 |
|
|
|
| 1227 |
|
|
if (seg->cache.valid & SegAccessWOK) {
|
| 1228 |
|
|
if (offset < seg->cache.u.segment.limit_scaled) {
|
| 1229 |
|
|
accessOK:
|
| 1230 |
|
|
laddr = (Bit32u)(seg->cache.u.segment.base) + offset;
|
| 1231 |
|
|
bx_bool user = (curr_pl == 3);
|
| 1232 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1);
|
| 1233 |
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
| 1234 |
|
|
Bit32u lpf = AlignedAccessLPFOf(laddr, (1 & BX_CPU_THIS_PTR alignment_check_mask));
|
| 1235 |
|
|
#else
|
| 1236 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 1237 |
|
|
#endif
|
| 1238 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 1239 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 1240 |
|
|
// See if the TLB entry privilege level allows us write access
|
| 1241 |
|
|
// from this CPL.
|
| 1242 |
|
|
if (tlbEntry->accessBits & (0x04 << user)) {
|
| 1243 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 1244 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 1245 |
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
| 1246 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 2, curr_pl, BX_WRITE, (Bit8u*) &data);
|
| 1247 |
|
|
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
|
| 1248 |
|
|
pageWriteStampTable.decWriteStamp(pAddr, 2);
|
| 1249 |
|
|
WriteHostWordToLittleEndian(hostAddr, data);
|
| 1250 |
|
|
return;
|
| 1251 |
|
|
}
|
| 1252 |
|
|
}
|
| 1253 |
|
|
|
| 1254 |
|
|
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
|
| 1255 |
|
|
if (BX_CPU_THIS_PTR alignment_check() && user) {
|
| 1256 |
|
|
if (laddr & 1) {
|
| 1257 |
|
|
BX_ERROR(("write_new_stack_word_32(): #AC misaligned access"));
|
| 1258 |
|
|
exception(BX_AC_EXCEPTION, 0);
|
| 1259 |
|
|
}
|
| 1260 |
|
|
}
|
| 1261 |
|
|
#endif
|
| 1262 |
|
|
|
| 1263 |
|
|
access_write_linear(laddr, 2, curr_pl, (void *) &data);
|
| 1264 |
|
|
return;
|
| 1265 |
|
|
}
|
| 1266 |
|
|
else {
|
| 1267 |
|
|
BX_ERROR(("write_new_stack_word_32(): segment limit violation"));
|
| 1268 |
|
|
exception(BX_SS_EXCEPTION,
|
| 1269 |
|
|
seg->selector.rpl != CPL ? (seg->selector.value & 0xfffc) : 0);
|
| 1270 |
|
|
}
|
| 1271 |
|
|
}
|
| 1272 |
|
|
|
| 1273 |
|
|
// add error code when segment violation occurs when pushing into new stack
|
| 1274 |
|
|
if (!write_virtual_checks(seg, offset, 2))
|
| 1275 |
|
|
exception(BX_SS_EXCEPTION,
|
| 1276 |
|
|
seg->selector.rpl != CPL ? (seg->selector.value & 0xfffc) : 0);
|
| 1277 |
|
|
goto accessOK;
|
| 1278 |
|
|
}
|
| 1279 |
|
|
|
| 1280 |
|
|
// assuming the write happens in legacy mode
|
| 1281 |
|
|
void BX_CPU_C::write_new_stack_dword_32(bx_segment_reg_t *seg, Bit32u offset, unsigned curr_pl, Bit32u data)
|
| 1282 |
|
|
{
|
| 1283 |
|
|
Bit32u laddr;
|
| 1284 |
|
|
|
| 1285 |
|
|
if (seg->cache.valid & SegAccessWOK) {
|
| 1286 |
|
|
if (offset < (seg->cache.u.segment.limit_scaled-2)) {
|
| 1287 |
|
|
accessOK:
|
| 1288 |
|
|
laddr = (Bit32u)(seg->cache.u.segment.base) + offset;
|
| 1289 |
|
|
bx_bool user = (curr_pl == 3);
|
| 1290 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3);
|
| 1291 |
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
| 1292 |
|
|
Bit32u lpf = AlignedAccessLPFOf(laddr, (3 & BX_CPU_THIS_PTR alignment_check_mask));
|
| 1293 |
|
|
#else
|
| 1294 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 1295 |
|
|
#endif
|
| 1296 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 1297 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 1298 |
|
|
// See if the TLB entry privilege level allows us write access
|
| 1299 |
|
|
// from this CPL.
|
| 1300 |
|
|
if (tlbEntry->accessBits & (0x04 << user)) {
|
| 1301 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 1302 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 1303 |
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
| 1304 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 4, curr_pl, BX_WRITE, (Bit8u*) &data);
|
| 1305 |
|
|
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
|
| 1306 |
|
|
pageWriteStampTable.decWriteStamp(pAddr, 4);
|
| 1307 |
|
|
WriteHostDWordToLittleEndian(hostAddr, data);
|
| 1308 |
|
|
return;
|
| 1309 |
|
|
}
|
| 1310 |
|
|
}
|
| 1311 |
|
|
|
| 1312 |
|
|
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
|
| 1313 |
|
|
if (BX_CPU_THIS_PTR alignment_check() && user) {
|
| 1314 |
|
|
if (laddr & 3) {
|
| 1315 |
|
|
BX_ERROR(("write_new_stack_dword_32(): #AC misaligned access"));
|
| 1316 |
|
|
exception(BX_AC_EXCEPTION, 0);
|
| 1317 |
|
|
}
|
| 1318 |
|
|
}
|
| 1319 |
|
|
#endif
|
| 1320 |
|
|
|
| 1321 |
|
|
access_write_linear(laddr, 4, curr_pl, (void *) &data);
|
| 1322 |
|
|
return;
|
| 1323 |
|
|
}
|
| 1324 |
|
|
else {
|
| 1325 |
|
|
BX_ERROR(("write_new_stack_dword_32(): segment limit violation"));
|
| 1326 |
|
|
exception(BX_SS_EXCEPTION,
|
| 1327 |
|
|
seg->selector.rpl != CPL ? (seg->selector.value & 0xfffc) : 0);
|
| 1328 |
|
|
}
|
| 1329 |
|
|
}
|
| 1330 |
|
|
|
| 1331 |
|
|
// add error code when segment violation occurs when pushing into new stack
|
| 1332 |
|
|
if (!write_virtual_checks(seg, offset, 4))
|
| 1333 |
|
|
exception(BX_SS_EXCEPTION,
|
| 1334 |
|
|
seg->selector.rpl != CPL ? (seg->selector.value & 0xfffc) : 0);
|
| 1335 |
|
|
goto accessOK;
|
| 1336 |
|
|
}
|
| 1337 |
|
|
|
| 1338 |
|
|
// assuming the write happens in legacy mode
|
| 1339 |
|
|
void BX_CPU_C::write_new_stack_qword_32(bx_segment_reg_t *seg, Bit32u offset, unsigned curr_pl, Bit64u data)
|
| 1340 |
|
|
{
|
| 1341 |
|
|
Bit32u laddr;
|
| 1342 |
|
|
|
| 1343 |
|
|
if (seg->cache.valid & SegAccessWOK) {
|
| 1344 |
|
|
if (offset <= (seg->cache.u.segment.limit_scaled-7)) {
|
| 1345 |
|
|
accessOK:
|
| 1346 |
|
|
laddr = (Bit32u)(seg->cache.u.segment.base) + offset;
|
| 1347 |
|
|
bx_bool user = (curr_pl == 3);
|
| 1348 |
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 7);
|
| 1349 |
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
| 1350 |
|
|
Bit32u lpf = AlignedAccessLPFOf(laddr, (7 & BX_CPU_THIS_PTR alignment_check_mask));
|
| 1351 |
|
|
#else
|
| 1352 |
|
|
Bit32u lpf = LPFOf(laddr);
|
| 1353 |
|
|
#endif
|
| 1354 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
| 1355 |
|
|
if (tlbEntry->lpf == lpf) {
|
| 1356 |
|
|
// See if the TLB entry privilege level allows us write access
|
| 1357 |
|
|
// from this CPL.
|
| 1358 |
|
|
if (tlbEntry->accessBits & (0x04 << user)) {
|
| 1359 |
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
| 1360 |
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
| 1361 |
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
| 1362 |
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 8, curr_pl, BX_WRITE, (Bit8u*) &data);
|
| 1363 |
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
| 1364 |
|
|
pageWriteStampTable.decWriteStamp(pAddr, 8);
|
| 1365 |
|
|
WriteHostQWordToLittleEndian(hostAddr, data);
|
| 1366 |
|
|
return;
|
| 1367 |
|
|
}
|
| 1368 |
|
|
}
|
| 1369 |
|
|
|
| 1370 |
|
|
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
|
| 1371 |
|
|
if (BX_CPU_THIS_PTR alignment_check() && user) {
|
| 1372 |
|
|
if (laddr & 7) {
|
| 1373 |
|
|
BX_ERROR(("write_new_stack_qword_32(): #AC misaligned access"));
|
| 1374 |
|
|
exception(BX_AC_EXCEPTION, 0);
|
| 1375 |
|
|
}
|
| 1376 |
|
|
}
|
| 1377 |
|
|
#endif
|
| 1378 |
|
|
|
| 1379 |
|
|
access_write_linear(laddr, 8, curr_pl, (void *) &data);
|
| 1380 |
|
|
return;
|
| 1381 |
|
|
}
|
| 1382 |
|
|
else {
|
| 1383 |
|
|
BX_ERROR(("write_new_stack_qword_32(): segment limit violation"));
|
| 1384 |
|
|
exception(BX_SS_EXCEPTION,
|
| 1385 |
|
|
seg->selector.rpl != CPL ? (seg->selector.value & 0xfffc) : 0);
|
| 1386 |
|
|
}
|
| 1387 |
|
|
}
|
| 1388 |
|
|
|
| 1389 |
|
|
// add error code when segment violation occurs when pushing into new stack
|
| 1390 |
|
|
if (!write_virtual_checks(seg, offset, 8))
|
| 1391 |
|
|
exception(BX_SS_EXCEPTION,
|
| 1392 |
|
|
seg->selector.rpl != CPL ? (seg->selector.value & 0xfffc) : 0);
|
| 1393 |
|
|
goto accessOK;
|
| 1394 |
|
|
}
|