1 |
2 |
alfik |
/////////////////////////////////////////////////////////////////////////
|
2 |
|
|
// $Id: tasking.cc 11654 2013-03-15 08:26:22Z sshwarts $
|
3 |
|
|
/////////////////////////////////////////////////////////////////////////
|
4 |
|
|
//
|
5 |
|
|
// Copyright (C) 2001-2012 The Bochs Project
|
6 |
|
|
//
|
7 |
|
|
// This library is free software; you can redistribute it and/or
|
8 |
|
|
// modify it under the terms of the GNU Lesser General Public
|
9 |
|
|
// License as published by the Free Software Foundation; either
|
10 |
|
|
// version 2 of the License, or (at your option) any later version.
|
11 |
|
|
//
|
12 |
|
|
// This library is distributed in the hope that it will be useful,
|
13 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
|
|
// Lesser General Public License for more details.
|
16 |
|
|
//
|
17 |
|
|
// You should have received a copy of the GNU Lesser General Public
|
18 |
|
|
// License along with this library; if not, write to the Free Software
|
19 |
|
|
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
|
20 |
|
|
/////////////////////////////////////////////////////////////////////////
|
21 |
|
|
|
22 |
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
23 |
|
|
#include "bochs.h"
|
24 |
|
|
#include "cpu.h"
|
25 |
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
26 |
|
|
|
27 |
|
|
// Notes:
|
28 |
|
|
// ======
|
29 |
|
|
|
30 |
|
|
// ======================
|
31 |
|
|
// 286 Task State Segment
|
32 |
|
|
// ======================
|
33 |
|
|
// dynamic item | hex dec offset
|
34 |
|
|
// 0 task LDT selector | 2a 42
|
35 |
|
|
// 1 DS selector | 28 40
|
36 |
|
|
// 1 SS selector | 26 38
|
37 |
|
|
// 1 CS selector | 24 36
|
38 |
|
|
// 1 ES selector | 22 34
|
39 |
|
|
// 1 DI | 20 32
|
40 |
|
|
// 1 SI | 1e 30
|
41 |
|
|
// 1 BP | 1c 28
|
42 |
|
|
// 1 SP | 1a 26
|
43 |
|
|
// 1 BX | 18 24
|
44 |
|
|
// 1 DX | 16 22
|
45 |
|
|
// 1 CX | 14 20
|
46 |
|
|
// 1 AX | 12 18
|
47 |
|
|
// 1 flag word | 10 16
|
48 |
|
|
// 1 IP (entry point) | 0e 14
|
49 |
|
|
// 0 SS for CPL 2 | 0c 12
|
50 |
|
|
// 0 SP for CPL 2 | 0a 10
|
51 |
|
|
// 0 SS for CPL 1 | 08 08
|
52 |
|
|
// 0 SP for CPL 1 | 06 06
|
53 |
|
|
// 0 SS for CPL 0 | 04 04
|
54 |
|
|
// 0 SP for CPL 0 | 02 02
|
55 |
|
|
// back link selector to TSS | 00 00
|
56 |
|
|
|
57 |
|
|
|
58 |
|
|
// ======================
|
59 |
|
|
// 386 Task State Segment
|
60 |
|
|
// ======================
|
61 |
|
|
// |31 16|15 0| hex dec
|
62 |
|
|
// |I/O Map Base |000000000000000000000|T| 64 100 static
|
63 |
|
|
// |0000000000000000| LDT | 60 96 static
|
64 |
|
|
// |0000000000000000| GS selector | 5c 92 dynamic
|
65 |
|
|
// |0000000000000000| FS selector | 58 88 dynamic
|
66 |
|
|
// |0000000000000000| DS selector | 54 84 dynamic
|
67 |
|
|
// |0000000000000000| SS selector | 50 80 dynamic
|
68 |
|
|
// |0000000000000000| CS selector | 4c 76 dynamic
|
69 |
|
|
// |0000000000000000| ES selector | 48 72 dynamic
|
70 |
|
|
// | EDI | 44 68 dynamic
|
71 |
|
|
// | ESI | 40 64 dynamic
|
72 |
|
|
// | EBP | 3c 60 dynamic
|
73 |
|
|
// | ESP | 38 56 dynamic
|
74 |
|
|
// | EBX | 34 52 dynamic
|
75 |
|
|
// | EDX | 30 48 dynamic
|
76 |
|
|
// | ECX | 2c 44 dynamic
|
77 |
|
|
// | EAX | 28 40 dynamic
|
78 |
|
|
// | EFLAGS | 24 36 dynamic
|
79 |
|
|
// | EIP (entry point) | 20 32 dynamic
|
80 |
|
|
// | CR3 (PDPR) | 1c 28 static
|
81 |
|
|
// |000000000000000 | SS for CPL 2 | 18 24 static
|
82 |
|
|
// | ESP for CPL 2 | 14 20 static
|
83 |
|
|
// |000000000000000 | SS for CPL 1 | 10 16 static
|
84 |
|
|
// | ESP for CPL 1 | 0c 12 static
|
85 |
|
|
// |000000000000000 | SS for CPL 0 | 08 08 static
|
86 |
|
|
// | ESP for CPL 0 | 04 04 static
|
87 |
|
|
// |000000000000000 | back link to prev TSS | 00 00 dynamic (updated only when return expected)
|
88 |
|
|
|
89 |
|
|
|
90 |
|
|
// ==================================================
|
91 |
|
|
// Effect of task switch on Busy, NT, and Link Fields
|
92 |
|
|
// ==================================================
|
93 |
|
|
|
94 |
|
|
// Field jump call/interrupt iret
|
95 |
|
|
// ------------------------------------------------------
|
96 |
|
|
// new busy bit Set Set No change
|
97 |
|
|
// old busy bit Cleared No change Cleared
|
98 |
|
|
// new NT flag No change Set No change
|
99 |
|
|
// old NT flag No change No change Cleared
|
100 |
|
|
// new link No change old TSS selector No change
|
101 |
|
|
// old link No change No change No change
|
102 |
|
|
// CR0.TS Set Set Set
|
103 |
|
|
|
104 |
|
|
// Note: I checked 386, 486, and Pentium, and they all exhibited
|
105 |
|
|
// exactly the same behaviour as above. There seems to
|
106 |
|
|
// be some misprints in the Intel docs.
|
107 |
|
|
|
108 |
|
|
void BX_CPU_C::task_switch(bxInstruction_c *i, bx_selector_t *tss_selector,
|
109 |
|
|
bx_descriptor_t *tss_descriptor, unsigned source,
|
110 |
|
|
Bit32u dword1, Bit32u dword2, bx_bool push_error, Bit32u error_code)
|
111 |
|
|
{
|
112 |
|
|
Bit32u obase32; // base address of old TSS
|
113 |
|
|
Bit32u nbase32; // base address of new TSS
|
114 |
|
|
Bit32u temp32, newCR3;
|
115 |
|
|
Bit16u raw_cs_selector, raw_ss_selector, raw_ds_selector, raw_es_selector,
|
116 |
|
|
raw_fs_selector, raw_gs_selector, raw_ldt_selector;
|
117 |
|
|
Bit16u trap_word;
|
118 |
|
|
bx_selector_t cs_selector, ss_selector, ds_selector, es_selector,
|
119 |
|
|
fs_selector, gs_selector, ldt_selector;
|
120 |
|
|
bx_descriptor_t cs_descriptor, ss_descriptor, ldt_descriptor;
|
121 |
|
|
Bit32u old_TSS_max, new_TSS_max, old_TSS_limit, new_TSS_limit;
|
122 |
|
|
Bit32u newEAX, newECX, newEDX, newEBX;
|
123 |
|
|
Bit32u newESP, newEBP, newESI, newEDI;
|
124 |
|
|
Bit32u newEFLAGS, newEIP;
|
125 |
|
|
|
126 |
|
|
BX_DEBUG(("TASKING: ENTER"));
|
127 |
|
|
|
128 |
|
|
invalidate_prefetch_q();
|
129 |
|
|
|
130 |
|
|
// Discard any traps and inhibits for new context; traps will
|
131 |
|
|
// resume upon return.
|
132 |
|
|
BX_CPU_THIS_PTR debug_trap &= ~BX_DEBUG_SINGLE_STEP_BIT;
|
133 |
|
|
BX_CPU_THIS_PTR inhibit_mask = 0;
|
134 |
|
|
|
135 |
|
|
// STEP 1: The following checks are made before calling task_switch(),
|
136 |
|
|
// for JMP & CALL only. These checks are NOT made for exceptions,
|
137 |
|
|
// interrupts & IRET.
|
138 |
|
|
//
|
139 |
|
|
// 1) TSS DPL must be >= CPL
|
140 |
|
|
// 2) TSS DPL must be >= TSS selector RPL
|
141 |
|
|
// 3) TSS descriptor is not busy.
|
142 |
|
|
|
143 |
|
|
// STEP 2: The processor performs limit-checking on the target TSS
|
144 |
|
|
// to verify that the TSS limit is greater than or equal
|
145 |
|
|
// to 67h (2Bh for 16-bit TSS).
|
146 |
|
|
|
147 |
|
|
// Gather info about new TSS
|
148 |
|
|
if (tss_descriptor->type <= 3) { // {1,3}
|
149 |
|
|
new_TSS_max = 0x2B;
|
150 |
|
|
}
|
151 |
|
|
else { // tss_descriptor->type = {9,11}
|
152 |
|
|
new_TSS_max = 0x67;
|
153 |
|
|
}
|
154 |
|
|
|
155 |
|
|
nbase32 = (Bit32u) tss_descriptor->u.segment.base;
|
156 |
|
|
new_TSS_limit = tss_descriptor->u.segment.limit_scaled;
|
157 |
|
|
|
158 |
|
|
if (new_TSS_limit < new_TSS_max) {
|
159 |
|
|
BX_ERROR(("task_switch(): new TSS limit < %d", new_TSS_max));
|
160 |
|
|
exception(BX_TS_EXCEPTION, tss_selector->value & 0xfffc);
|
161 |
|
|
}
|
162 |
|
|
|
163 |
|
|
#if BX_SUPPORT_SVM
|
164 |
|
|
if (BX_CPU_THIS_PTR in_svm_guest) {
|
165 |
|
|
if (SVM_INTERCEPT(SVM_INTERCEPT0_TASK_SWITCH))
|
166 |
|
|
SvmInterceptTaskSwitch(tss_selector->value, source, push_error, error_code);
|
167 |
|
|
}
|
168 |
|
|
#endif
|
169 |
|
|
|
170 |
|
|
#if BX_SUPPORT_VMX
|
171 |
|
|
if (BX_CPU_THIS_PTR in_vmx_guest)
|
172 |
|
|
VMexit_TaskSwitch(tss_selector->value, source);
|
173 |
|
|
#endif
|
174 |
|
|
|
175 |
|
|
// Gather info about old TSS
|
176 |
|
|
if (BX_CPU_THIS_PTR tr.cache.type <= 3) {
|
177 |
|
|
old_TSS_max = 0x29;
|
178 |
|
|
}
|
179 |
|
|
else {
|
180 |
|
|
old_TSS_max = 0x5F;
|
181 |
|
|
}
|
182 |
|
|
|
183 |
|
|
obase32 = (Bit32u) BX_CPU_THIS_PTR tr.cache.u.segment.base; // old TSS.base
|
184 |
|
|
old_TSS_limit = BX_CPU_THIS_PTR tr.cache.u.segment.limit_scaled;
|
185 |
|
|
|
186 |
|
|
if (old_TSS_limit < old_TSS_max) {
|
187 |
|
|
BX_ERROR(("task_switch(): old TSS limit < %d", old_TSS_max));
|
188 |
|
|
exception(BX_TS_EXCEPTION, BX_CPU_THIS_PTR tr.selector.value & 0xfffc);
|
189 |
|
|
}
|
190 |
|
|
|
191 |
|
|
if (obase32 == nbase32) {
|
192 |
|
|
BX_INFO(("TASK SWITCH: switching to the same TSS !"));
|
193 |
|
|
}
|
194 |
|
|
|
195 |
|
|
// Check that old TSS, new TSS, and all segment descriptors
|
196 |
|
|
// used in the task switch are paged in.
|
197 |
|
|
if (BX_CPU_THIS_PTR cr0.get_PG())
|
198 |
|
|
{
|
199 |
|
|
translate_linear(BX_TLB_ENTRY_OF(nbase32), nbase32, 0, BX_READ); // old TSS
|
200 |
|
|
translate_linear(BX_TLB_ENTRY_OF(nbase32 + new_TSS_max), nbase32 + new_TSS_max, 0, BX_READ);
|
201 |
|
|
|
202 |
|
|
// ??? Humm, we check the new TSS region with READ above,
|
203 |
|
|
// but sometimes we need to write the link field in that
|
204 |
|
|
// region. We also sometimes update other fields, perhaps
|
205 |
|
|
// we need to WRITE check them here also, so that we keep
|
206 |
|
|
// the written state consistent (ie, we don't encounter a
|
207 |
|
|
// page fault in the middle).
|
208 |
|
|
|
209 |
|
|
if (source == BX_TASK_FROM_CALL || source == BX_TASK_FROM_INT)
|
210 |
|
|
{
|
211 |
|
|
translate_linear(BX_TLB_ENTRY_OF(nbase32), nbase32, 0, BX_WRITE);
|
212 |
|
|
translate_linear(BX_TLB_ENTRY_OF(nbase32 + 1), nbase32 + 1, 0, BX_WRITE);
|
213 |
|
|
}
|
214 |
|
|
}
|
215 |
|
|
|
216 |
|
|
// Privilege and busy checks done in CALL, JUMP, INT, IRET
|
217 |
|
|
|
218 |
|
|
// Step 3: If JMP or IRET, clear busy bit in old task TSS descriptor,
|
219 |
|
|
// otherwise leave set.
|
220 |
|
|
|
221 |
|
|
// effect on Busy bit of old task
|
222 |
|
|
if (source == BX_TASK_FROM_JUMP || source == BX_TASK_FROM_IRET) {
|
223 |
|
|
// Bit is cleared
|
224 |
|
|
Bit32u laddr = (Bit32u) BX_CPU_THIS_PTR gdtr.base + (BX_CPU_THIS_PTR tr.selector.index<<3) + 4;
|
225 |
|
|
access_read_linear(laddr, 4, 0, BX_RW, &temp32);
|
226 |
|
|
temp32 &= ~0x200;
|
227 |
|
|
access_write_linear(laddr, 4, 0, &temp32);
|
228 |
|
|
}
|
229 |
|
|
|
230 |
|
|
// STEP 4: If the task switch was initiated with an IRET instruction,
|
231 |
|
|
// clears the NT flag in a temporarily saved EFLAGS image;
|
232 |
|
|
// if initiated with a CALL or JMP instruction, an exception, or
|
233 |
|
|
// an interrupt, the NT flag is left unchanged.
|
234 |
|
|
|
235 |
|
|
Bit32u oldEFLAGS = read_eflags();
|
236 |
|
|
|
237 |
|
|
/* if moving to busy task, clear NT bit */
|
238 |
|
|
if (tss_descriptor->type == BX_SYS_SEGMENT_BUSY_286_TSS ||
|
239 |
|
|
tss_descriptor->type == BX_SYS_SEGMENT_BUSY_386_TSS)
|
240 |
|
|
{
|
241 |
|
|
oldEFLAGS &= ~EFlagsNTMask;
|
242 |
|
|
}
|
243 |
|
|
|
244 |
|
|
// STEP 5: Save the current task state in the TSS. Up to this point,
|
245 |
|
|
// any exception that occurs aborts the task switch without
|
246 |
|
|
// changing the processor state.
|
247 |
|
|
|
248 |
|
|
/* save current machine state in old task's TSS */
|
249 |
|
|
|
250 |
|
|
if (BX_CPU_THIS_PTR tr.cache.type <= 3) {
|
251 |
|
|
// check that we won't page fault while writing
|
252 |
|
|
if (BX_CPU_THIS_PTR cr0.get_PG()) {
|
253 |
|
|
Bit32u start = Bit32u(obase32 + 14), end = Bit32u(obase32 + 41);
|
254 |
|
|
|
255 |
|
|
translate_linear(BX_TLB_ENTRY_OF(start), start, 0, BX_WRITE);
|
256 |
|
|
translate_linear(BX_TLB_ENTRY_OF(end), end, 0, BX_WRITE);
|
257 |
|
|
}
|
258 |
|
|
|
259 |
|
|
system_write_word(Bit32u(obase32 + 14), IP);
|
260 |
|
|
system_write_word(Bit32u(obase32 + 16), oldEFLAGS);
|
261 |
|
|
system_write_word(Bit32u(obase32 + 18), AX);
|
262 |
|
|
system_write_word(Bit32u(obase32 + 20), CX);
|
263 |
|
|
system_write_word(Bit32u(obase32 + 22), DX);
|
264 |
|
|
system_write_word(Bit32u(obase32 + 24), BX);
|
265 |
|
|
system_write_word(Bit32u(obase32 + 26), SP);
|
266 |
|
|
system_write_word(Bit32u(obase32 + 28), BP);
|
267 |
|
|
system_write_word(Bit32u(obase32 + 30), SI);
|
268 |
|
|
system_write_word(Bit32u(obase32 + 32), DI);
|
269 |
|
|
|
270 |
|
|
system_write_word(Bit32u(obase32 + 34),
|
271 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
|
272 |
|
|
system_write_word(Bit32u(obase32 + 36),
|
273 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
|
274 |
|
|
system_write_word(Bit32u(obase32 + 38),
|
275 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value);
|
276 |
|
|
system_write_word(Bit32u(obase32 + 40),
|
277 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
|
278 |
|
|
}
|
279 |
|
|
else {
|
280 |
|
|
// check that we won't page fault while writing
|
281 |
|
|
if (BX_CPU_THIS_PTR cr0.get_PG()) {
|
282 |
|
|
Bit32u start = Bit32u(obase32 + 0x20), end = Bit32u(obase32 + 0x5d);
|
283 |
|
|
|
284 |
|
|
translate_linear(BX_TLB_ENTRY_OF(start), start, 0, BX_WRITE);
|
285 |
|
|
translate_linear(BX_TLB_ENTRY_OF(end), end, 0, BX_WRITE);
|
286 |
|
|
}
|
287 |
|
|
|
288 |
|
|
system_write_dword(Bit32u(obase32 + 0x20), EIP);
|
289 |
|
|
system_write_dword(Bit32u(obase32 + 0x24), oldEFLAGS);
|
290 |
|
|
system_write_dword(Bit32u(obase32 + 0x28), EAX);
|
291 |
|
|
system_write_dword(Bit32u(obase32 + 0x2c), ECX);
|
292 |
|
|
system_write_dword(Bit32u(obase32 + 0x30), EDX);
|
293 |
|
|
system_write_dword(Bit32u(obase32 + 0x34), EBX);
|
294 |
|
|
system_write_dword(Bit32u(obase32 + 0x38), ESP);
|
295 |
|
|
system_write_dword(Bit32u(obase32 + 0x3c), EBP);
|
296 |
|
|
system_write_dword(Bit32u(obase32 + 0x40), ESI);
|
297 |
|
|
system_write_dword(Bit32u(obase32 + 0x44), EDI);
|
298 |
|
|
|
299 |
|
|
system_write_word(Bit32u(obase32 + 0x48),
|
300 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
|
301 |
|
|
system_write_word(Bit32u(obase32 + 0x4c),
|
302 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
|
303 |
|
|
system_write_word(Bit32u(obase32 + 0x50),
|
304 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value);
|
305 |
|
|
system_write_word(Bit32u(obase32 + 0x54),
|
306 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
|
307 |
|
|
system_write_word(Bit32u(obase32 + 0x58),
|
308 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
|
309 |
|
|
system_write_word(Bit32u(obase32 + 0x5c),
|
310 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
|
311 |
|
|
}
|
312 |
|
|
|
313 |
|
|
// effect on link field of new task
|
314 |
|
|
if (source == BX_TASK_FROM_CALL || source == BX_TASK_FROM_INT)
|
315 |
|
|
{
|
316 |
|
|
// set to selector of old task's TSS
|
317 |
|
|
system_write_word(nbase32, BX_CPU_THIS_PTR tr.selector.value);
|
318 |
|
|
}
|
319 |
|
|
|
320 |
|
|
// STEP 6: The new-task state is loaded from the TSS
|
321 |
|
|
|
322 |
|
|
if (tss_descriptor->type <= 3) {
|
323 |
|
|
newEIP = system_read_word(Bit32u(nbase32 + 14));
|
324 |
|
|
newEFLAGS = system_read_word(Bit32u(nbase32 + 16));
|
325 |
|
|
|
326 |
|
|
// incoming TSS is 16bit:
|
327 |
|
|
// - upper word of general registers is set to 0xFFFF
|
328 |
|
|
// - upper word of eflags is zero'd
|
329 |
|
|
// - FS, GS are zero'd
|
330 |
|
|
// - upper word of eIP is zero'd
|
331 |
|
|
Bit16u temp16 = system_read_word(Bit32u(nbase32 + 18));
|
332 |
|
|
newEAX = 0xffff0000 | temp16;
|
333 |
|
|
temp16 = system_read_word(Bit32u(nbase32 + 20));
|
334 |
|
|
newECX = 0xffff0000 | temp16;
|
335 |
|
|
temp16 = system_read_word(Bit32u(nbase32 + 22));
|
336 |
|
|
newEDX = 0xffff0000 | temp16;
|
337 |
|
|
temp16 = system_read_word(Bit32u(nbase32 + 24));
|
338 |
|
|
newEBX = 0xffff0000 | temp16;
|
339 |
|
|
temp16 = system_read_word(Bit32u(nbase32 + 26));
|
340 |
|
|
newESP = 0xffff0000 | temp16;
|
341 |
|
|
temp16 = system_read_word(Bit32u(nbase32 + 28));
|
342 |
|
|
newEBP = 0xffff0000 | temp16;
|
343 |
|
|
temp16 = system_read_word(Bit32u(nbase32 + 30));
|
344 |
|
|
newESI = 0xffff0000 | temp16;
|
345 |
|
|
temp16 = system_read_word(Bit32u(nbase32 + 32));
|
346 |
|
|
newEDI = 0xffff0000 | temp16;
|
347 |
|
|
|
348 |
|
|
raw_es_selector = system_read_word(Bit32u(nbase32 + 34));
|
349 |
|
|
raw_cs_selector = system_read_word(Bit32u(nbase32 + 36));
|
350 |
|
|
raw_ss_selector = system_read_word(Bit32u(nbase32 + 38));
|
351 |
|
|
raw_ds_selector = system_read_word(Bit32u(nbase32 + 40));
|
352 |
|
|
raw_ldt_selector = system_read_word(Bit32u(nbase32 + 42));
|
353 |
|
|
|
354 |
|
|
raw_fs_selector = 0; // use a NULL selector
|
355 |
|
|
raw_gs_selector = 0; // use a NULL selector
|
356 |
|
|
// No CR3 change for 286 task switch
|
357 |
|
|
newCR3 = 0; // keep compiler happy (not used)
|
358 |
|
|
trap_word = 0; // keep compiler happy (not used)
|
359 |
|
|
}
|
360 |
|
|
else {
|
361 |
|
|
if (BX_CPU_THIS_PTR cr0.get_PG())
|
362 |
|
|
newCR3 = system_read_dword(Bit32u(nbase32 + 0x1c));
|
363 |
|
|
else
|
364 |
|
|
newCR3 = 0; // keep compiler happy (not used)
|
365 |
|
|
|
366 |
|
|
newEIP = system_read_dword(Bit32u(nbase32 + 0x20));
|
367 |
|
|
newEFLAGS = system_read_dword(Bit32u(nbase32 + 0x24));
|
368 |
|
|
newEAX = system_read_dword(Bit32u(nbase32 + 0x28));
|
369 |
|
|
newECX = system_read_dword(Bit32u(nbase32 + 0x2c));
|
370 |
|
|
newEDX = system_read_dword(Bit32u(nbase32 + 0x30));
|
371 |
|
|
newEBX = system_read_dword(Bit32u(nbase32 + 0x34));
|
372 |
|
|
newESP = system_read_dword(Bit32u(nbase32 + 0x38));
|
373 |
|
|
newEBP = system_read_dword(Bit32u(nbase32 + 0x3c));
|
374 |
|
|
newESI = system_read_dword(Bit32u(nbase32 + 0x40));
|
375 |
|
|
newEDI = system_read_dword(Bit32u(nbase32 + 0x44));
|
376 |
|
|
|
377 |
|
|
raw_es_selector = system_read_word(Bit32u(nbase32 + 0x48));
|
378 |
|
|
raw_cs_selector = system_read_word(Bit32u(nbase32 + 0x4c));
|
379 |
|
|
raw_ss_selector = system_read_word(Bit32u(nbase32 + 0x50));
|
380 |
|
|
raw_ds_selector = system_read_word(Bit32u(nbase32 + 0x54));
|
381 |
|
|
raw_fs_selector = system_read_word(Bit32u(nbase32 + 0x58));
|
382 |
|
|
raw_gs_selector = system_read_word(Bit32u(nbase32 + 0x5c));
|
383 |
|
|
raw_ldt_selector = system_read_word(Bit32u(nbase32 + 0x60));
|
384 |
|
|
trap_word = system_read_word(Bit32u(nbase32 + 0x64));
|
385 |
|
|
}
|
386 |
|
|
|
387 |
|
|
// Step 7: If CALL, interrupt, or JMP, set busy flag in new task's
|
388 |
|
|
// TSS descriptor. If IRET, leave set.
|
389 |
|
|
|
390 |
|
|
if (source != BX_TASK_FROM_IRET)
|
391 |
|
|
{
|
392 |
|
|
// set the new task's busy bit
|
393 |
|
|
Bit32u laddr = (Bit32u)(BX_CPU_THIS_PTR gdtr.base) + (tss_selector->index<<3) + 4;
|
394 |
|
|
access_read_linear(laddr, 4, 0, BX_RW, &dword2);
|
395 |
|
|
dword2 |= 0x200;
|
396 |
|
|
access_write_linear(laddr, 4, 0, &dword2);
|
397 |
|
|
}
|
398 |
|
|
|
399 |
|
|
//
|
400 |
|
|
// Commit point. At this point, we commit to the new
|
401 |
|
|
// context. If an unrecoverable error occurs in further
|
402 |
|
|
// processing, we complete the task switch without performing
|
403 |
|
|
// additional access and segment availablility checks and
|
404 |
|
|
// generate the appropriate exception prior to beginning
|
405 |
|
|
// execution of the new task.
|
406 |
|
|
//
|
407 |
|
|
|
408 |
|
|
// Step 8: Load the task register with the segment selector and
|
409 |
|
|
// descriptor for the new task TSS.
|
410 |
|
|
|
411 |
|
|
BX_CPU_THIS_PTR tr.selector = *tss_selector;
|
412 |
|
|
BX_CPU_THIS_PTR tr.cache = *tss_descriptor;
|
413 |
|
|
BX_CPU_THIS_PTR tr.cache.type |= 2; // mark TSS in TR as busy
|
414 |
|
|
|
415 |
|
|
// Step 9: Set TS flag in the CR0 image stored in the new task TSS.
|
416 |
|
|
BX_CPU_THIS_PTR cr0.set_TS(1);
|
417 |
|
|
|
418 |
|
|
// Task switch clears LE/L3/L2/L1/L0 in DR7
|
419 |
|
|
BX_CPU_THIS_PTR dr7.val32 &= ~0x00000155;
|
420 |
|
|
|
421 |
|
|
// Step 10: If call or interrupt, set the NT flag in the eflags
|
422 |
|
|
// image stored in new task's TSS. If IRET or JMP,
|
423 |
|
|
// NT is restored from new TSS eflags image. (no change)
|
424 |
|
|
|
425 |
|
|
// effect on NT flag of new task
|
426 |
|
|
if (source == BX_TASK_FROM_CALL || source == BX_TASK_FROM_INT) {
|
427 |
|
|
newEFLAGS |= EFlagsNTMask; // NT flag is set
|
428 |
|
|
}
|
429 |
|
|
|
430 |
|
|
// Step 11: Load the new task (dynamic) state from new TSS.
|
431 |
|
|
// Any errors associated with loading and qualification of
|
432 |
|
|
// segment descriptors in this step occur in the new task's
|
433 |
|
|
// context. State loaded here includes LDTR, CR3,
|
434 |
|
|
// EFLAGS, EIP, general purpose registers, and segment
|
435 |
|
|
// descriptor parts of the segment registers.
|
436 |
|
|
|
437 |
|
|
BX_CPU_THIS_PTR prev_rip = EIP = newEIP;
|
438 |
|
|
|
439 |
|
|
EAX = newEAX;
|
440 |
|
|
ECX = newECX;
|
441 |
|
|
EDX = newEDX;
|
442 |
|
|
EBX = newEBX;
|
443 |
|
|
ESP = newESP;
|
444 |
|
|
EBP = newEBP;
|
445 |
|
|
ESI = newESI;
|
446 |
|
|
EDI = newEDI;
|
447 |
|
|
|
448 |
|
|
BX_CPU_THIS_PTR speculative_rsp = 0;
|
449 |
|
|
|
450 |
|
|
writeEFlags(newEFLAGS, EFlagsValidMask);
|
451 |
|
|
|
452 |
|
|
// Fill in selectors for all segment registers. If errors
|
453 |
|
|
// occur later, the selectors will at least be loaded.
|
454 |
|
|
parse_selector(raw_cs_selector, &cs_selector);
|
455 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector = cs_selector;
|
456 |
|
|
parse_selector(raw_ss_selector, &ss_selector);
|
457 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector = ss_selector;
|
458 |
|
|
parse_selector(raw_ds_selector, &ds_selector);
|
459 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector = ds_selector;
|
460 |
|
|
parse_selector(raw_es_selector, &es_selector);
|
461 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector = es_selector;
|
462 |
|
|
parse_selector(raw_fs_selector, &fs_selector);
|
463 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector = fs_selector;
|
464 |
|
|
parse_selector(raw_gs_selector, &gs_selector);
|
465 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector = gs_selector;
|
466 |
|
|
parse_selector(raw_ldt_selector, &ldt_selector);
|
467 |
|
|
BX_CPU_THIS_PTR ldtr.selector = ldt_selector;
|
468 |
|
|
|
469 |
|
|
// Start out with invalid descriptor caches, fill in with
|
470 |
|
|
// values only as they are validated
|
471 |
|
|
BX_CPU_THIS_PTR ldtr.cache.valid = 0;
|
472 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 0;
|
473 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 0;
|
474 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0;
|
475 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0;
|
476 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = 0;
|
477 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = 0;
|
478 |
|
|
|
479 |
|
|
if ((tss_descriptor->type >= 9) && BX_CPU_THIS_PTR cr0.get_PG()) {
|
480 |
|
|
// change CR3 only if it actually modified
|
481 |
|
|
if (newCR3 != BX_CPU_THIS_PTR cr3) {
|
482 |
|
|
BX_DEBUG(("task_switch changing CR3 to 0x%08x", newCR3));
|
483 |
|
|
|
484 |
|
|
if (! SetCR3(newCR3)) // Tell paging unit about new cr3 value
|
485 |
|
|
exception(BX_TS_EXCEPTION, 0);
|
486 |
|
|
|
487 |
|
|
#if BX_CPU_LEVEL >= 6
|
488 |
|
|
if (BX_CPU_THIS_PTR cr0.get_PG() && BX_CPU_THIS_PTR cr4.get_PAE()) {
|
489 |
|
|
if (! CheckPDPTR(newCR3)) {
|
490 |
|
|
BX_ERROR(("task_switch(exception after commit point): PDPTR check failed !"));
|
491 |
|
|
|
492 |
|
|
// clear PDPTRs before raising task switch exception
|
493 |
|
|
for (unsigned n=0; n<4; n++)
|
494 |
|
|
BX_CPU_THIS_PTR PDPTR_CACHE.entry[n] = 0;
|
495 |
|
|
|
496 |
|
|
exception(BX_TS_EXCEPTION, 0);
|
497 |
|
|
}
|
498 |
|
|
}
|
499 |
|
|
#endif
|
500 |
|
|
|
501 |
|
|
BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_TASK_SWITCH, newCR3);
|
502 |
|
|
}
|
503 |
|
|
}
|
504 |
|
|
|
505 |
|
|
unsigned save_CPL = CPL;
|
506 |
|
|
/* set CPL to 3 to force a privilege level change and stack switch if SS
|
507 |
|
|
is not properly loaded */
|
508 |
|
|
CPL = 3;
|
509 |
|
|
|
510 |
|
|
// LDTR
|
511 |
|
|
if (ldt_selector.ti) {
|
512 |
|
|
// LDT selector must be in GDT
|
513 |
|
|
BX_INFO(("task_switch(exception after commit point): bad LDT selector TI=1"));
|
514 |
|
|
exception(BX_TS_EXCEPTION, raw_ldt_selector & 0xfffc);
|
515 |
|
|
}
|
516 |
|
|
|
517 |
|
|
if ((raw_ldt_selector & 0xfffc) != 0) {
|
518 |
|
|
bx_bool good = fetch_raw_descriptor2(&ldt_selector, &dword1, &dword2);
|
519 |
|
|
if (!good) {
|
520 |
|
|
BX_ERROR(("task_switch(exception after commit point): bad LDT fetch"));
|
521 |
|
|
exception(BX_TS_EXCEPTION, raw_ldt_selector & 0xfffc);
|
522 |
|
|
}
|
523 |
|
|
|
524 |
|
|
parse_descriptor(dword1, dword2, &ldt_descriptor);
|
525 |
|
|
|
526 |
|
|
// LDT selector of new task is valid, else #TS(new task's LDT)
|
527 |
|
|
if (ldt_descriptor.valid==0 ||
|
528 |
|
|
ldt_descriptor.type!=BX_SYS_SEGMENT_LDT ||
|
529 |
|
|
ldt_descriptor.segment)
|
530 |
|
|
{
|
531 |
|
|
BX_ERROR(("task_switch(exception after commit point): bad LDT segment"));
|
532 |
|
|
exception(BX_TS_EXCEPTION, raw_ldt_selector & 0xfffc);
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
// LDT of new task is present in memory, else #TS(new tasks's LDT)
|
536 |
|
|
if (! IS_PRESENT(ldt_descriptor)) {
|
537 |
|
|
BX_ERROR(("task_switch(exception after commit point): LDT not present"));
|
538 |
|
|
exception(BX_TS_EXCEPTION, raw_ldt_selector & 0xfffc);
|
539 |
|
|
}
|
540 |
|
|
|
541 |
|
|
// All checks pass, fill in LDTR shadow cache
|
542 |
|
|
BX_CPU_THIS_PTR ldtr.cache = ldt_descriptor;
|
543 |
|
|
}
|
544 |
|
|
else {
|
545 |
|
|
// NULL LDT selector is OK, leave cache invalid
|
546 |
|
|
}
|
547 |
|
|
|
548 |
|
|
if (v8086_mode()) {
|
549 |
|
|
// load seg regs as 8086 registers
|
550 |
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], raw_ss_selector);
|
551 |
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], raw_ds_selector);
|
552 |
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], raw_es_selector);
|
553 |
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], raw_fs_selector);
|
554 |
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], raw_gs_selector);
|
555 |
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], raw_cs_selector);
|
556 |
|
|
// CPL is set from CS selector
|
557 |
|
|
}
|
558 |
|
|
else {
|
559 |
|
|
|
560 |
|
|
// SS
|
561 |
|
|
if ((raw_ss_selector & 0xfffc) != 0)
|
562 |
|
|
{
|
563 |
|
|
bx_bool good = fetch_raw_descriptor2(&ss_selector, &dword1, &dword2);
|
564 |
|
|
if (!good) {
|
565 |
|
|
BX_ERROR(("task_switch(exception after commit point): bad SS fetch"));
|
566 |
|
|
exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc);
|
567 |
|
|
}
|
568 |
|
|
|
569 |
|
|
parse_descriptor(dword1, dword2, &ss_descriptor);
|
570 |
|
|
|
571 |
|
|
// SS selector must be within its descriptor table limits else #TS(SS)
|
572 |
|
|
// SS descriptor AR byte must must indicate writable data segment,
|
573 |
|
|
// else #TS(SS)
|
574 |
|
|
if (ss_descriptor.valid==0 || ss_descriptor.segment==0 ||
|
575 |
|
|
IS_CODE_SEGMENT(ss_descriptor.type) ||
|
576 |
|
|
!IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type))
|
577 |
|
|
{
|
578 |
|
|
BX_ERROR(("task_switch(exception after commit point): SS not valid or writeable segment"));
|
579 |
|
|
exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc);
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
//
|
583 |
|
|
// Stack segment is present in memory, else #SS(new stack segment)
|
584 |
|
|
//
|
585 |
|
|
if (! IS_PRESENT(ss_descriptor)) {
|
586 |
|
|
BX_ERROR(("task_switch(exception after commit point): SS not present"));
|
587 |
|
|
exception(BX_SS_EXCEPTION, raw_ss_selector & 0xfffc);
|
588 |
|
|
}
|
589 |
|
|
|
590 |
|
|
// Stack segment DPL matches CS.RPL, else #TS(new stack segment)
|
591 |
|
|
if (ss_descriptor.dpl != cs_selector.rpl) {
|
592 |
|
|
BX_ERROR(("task_switch(exception after commit point): SS.rpl != CS.RPL"));
|
593 |
|
|
exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc);
|
594 |
|
|
}
|
595 |
|
|
|
596 |
|
|
// Stack segment DPL matches selector RPL, else #TS(new stack segment)
|
597 |
|
|
if (ss_descriptor.dpl != ss_selector.rpl) {
|
598 |
|
|
BX_ERROR(("task_switch(exception after commit point): SS.dpl != SS.rpl"));
|
599 |
|
|
exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc);
|
600 |
|
|
}
|
601 |
|
|
|
602 |
|
|
touch_segment(&ss_selector, &ss_descriptor);
|
603 |
|
|
|
604 |
|
|
// All checks pass, fill in shadow cache
|
605 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache = ss_descriptor;
|
606 |
|
|
|
607 |
|
|
invalidate_stack_cache();
|
608 |
|
|
}
|
609 |
|
|
else {
|
610 |
|
|
// SS selector is valid, else #TS(new stack segment)
|
611 |
|
|
BX_ERROR(("task_switch(exception after commit point): SS NULL"));
|
612 |
|
|
exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc);
|
613 |
|
|
}
|
614 |
|
|
|
615 |
|
|
CPL = save_CPL;
|
616 |
|
|
|
617 |
|
|
task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS],
|
618 |
|
|
&ds_selector, raw_ds_selector, cs_selector.rpl);
|
619 |
|
|
task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES],
|
620 |
|
|
&es_selector, raw_es_selector, cs_selector.rpl);
|
621 |
|
|
task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS],
|
622 |
|
|
&fs_selector, raw_fs_selector, cs_selector.rpl);
|
623 |
|
|
task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS],
|
624 |
|
|
&gs_selector, raw_gs_selector, cs_selector.rpl);
|
625 |
|
|
|
626 |
|
|
// if new selector is not null then perform following checks:
|
627 |
|
|
// index must be within its descriptor table limits else #TS(selector)
|
628 |
|
|
// AR byte must indicate data or readable code else #TS(selector)
|
629 |
|
|
// if data or non-conforming code then:
|
630 |
|
|
// DPL must be >= CPL else #TS(selector)
|
631 |
|
|
// DPL must be >= RPL else #TS(selector)
|
632 |
|
|
// AR byte must indicate PRESENT else #NP(selector)
|
633 |
|
|
// load cache with new segment descriptor and set valid bit
|
634 |
|
|
|
635 |
|
|
// CS
|
636 |
|
|
if ((raw_cs_selector & 0xfffc) != 0) {
|
637 |
|
|
bx_bool good = fetch_raw_descriptor2(&cs_selector, &dword1, &dword2);
|
638 |
|
|
if (!good) {
|
639 |
|
|
BX_ERROR(("task_switch(exception after commit point): bad CS fetch"));
|
640 |
|
|
exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc);
|
641 |
|
|
}
|
642 |
|
|
|
643 |
|
|
parse_descriptor(dword1, dword2, &cs_descriptor);
|
644 |
|
|
|
645 |
|
|
// CS descriptor AR byte must indicate code segment else #TS(CS)
|
646 |
|
|
if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
|
647 |
|
|
IS_DATA_SEGMENT(cs_descriptor.type))
|
648 |
|
|
{
|
649 |
|
|
BX_ERROR(("task_switch(exception after commit point): CS not valid executable seg"));
|
650 |
|
|
exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc);
|
651 |
|
|
}
|
652 |
|
|
|
653 |
|
|
// if non-conforming then DPL must equal selector RPL else #TS(CS)
|
654 |
|
|
if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) &&
|
655 |
|
|
cs_descriptor.dpl != cs_selector.rpl)
|
656 |
|
|
{
|
657 |
|
|
BX_ERROR(("task_switch(exception after commit point): non-conforming: CS.dpl!=CS.RPL"));
|
658 |
|
|
exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc);
|
659 |
|
|
}
|
660 |
|
|
|
661 |
|
|
// if conforming then DPL must be <= selector RPL else #TS(CS)
|
662 |
|
|
if (IS_CODE_SEGMENT_CONFORMING(cs_descriptor.type) &&
|
663 |
|
|
cs_descriptor.dpl > cs_selector.rpl)
|
664 |
|
|
{
|
665 |
|
|
BX_ERROR(("task_switch(exception after commit point): conforming: CS.dpl>RPL"));
|
666 |
|
|
exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc);
|
667 |
|
|
}
|
668 |
|
|
|
669 |
|
|
// Code segment is present in memory, else #NP(new code segment)
|
670 |
|
|
if (! IS_PRESENT(cs_descriptor)) {
|
671 |
|
|
BX_ERROR(("task_switch(exception after commit point): CS.p==0"));
|
672 |
|
|
exception(BX_NP_EXCEPTION, raw_cs_selector & 0xfffc);
|
673 |
|
|
}
|
674 |
|
|
|
675 |
|
|
touch_segment(&cs_selector, &cs_descriptor);
|
676 |
|
|
|
677 |
|
|
#ifdef BX_SUPPORT_CS_LIMIT_DEMOTION
|
678 |
|
|
// Handle special case of CS.LIMIT demotion (new descriptor limit is smaller than current one)
|
679 |
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled > cs_descriptor.u.segment.limit_scaled)
|
680 |
|
|
BX_CPU_THIS_PTR iCache.flushICacheEntries();
|
681 |
|
|
#endif
|
682 |
|
|
|
683 |
|
|
// All checks pass, fill in shadow cache
|
684 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache = cs_descriptor;
|
685 |
|
|
}
|
686 |
|
|
else {
|
687 |
|
|
// If new cs selector is null #TS(CS)
|
688 |
|
|
BX_ERROR(("task_switch(exception after commit point): CS NULL"));
|
689 |
|
|
exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc);
|
690 |
|
|
}
|
691 |
|
|
|
692 |
|
|
updateFetchModeMask(/* CS reloaded */);
|
693 |
|
|
|
694 |
|
|
#if BX_CPU_LEVEL >= 4
|
695 |
|
|
handleAlignmentCheck(); // task switch, CPL was modified
|
696 |
|
|
#endif
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
if (tss_descriptor->type >= 9 && (trap_word & 0x1)) {
|
700 |
|
|
BX_CPU_THIS_PTR debug_trap |= BX_DEBUG_TRAP_TASK_SWITCH_BIT; // BT flag
|
701 |
|
|
BX_CPU_THIS_PTR async_event = 1; // so processor knows to check
|
702 |
|
|
BX_INFO(("task_switch: T bit set in new TSS"));
|
703 |
|
|
}
|
704 |
|
|
|
705 |
|
|
#if BX_CPU_LEVEL >= 6
|
706 |
|
|
handleSseModeChange(); /* CR0.TS changes */
|
707 |
|
|
#if BX_SUPPORT_AVX
|
708 |
|
|
handleAvxModeChange();
|
709 |
|
|
#endif
|
710 |
|
|
#endif
|
711 |
|
|
|
712 |
|
|
//
|
713 |
|
|
// Step 12: Begin execution of new task.
|
714 |
|
|
//
|
715 |
|
|
BX_DEBUG(("TASKING: LEAVE"));
|
716 |
|
|
|
717 |
|
|
RSP_SPECULATIVE;
|
718 |
|
|
|
719 |
|
|
// push error code onto stack
|
720 |
|
|
if (push_error) {
|
721 |
|
|
if (tss_descriptor->type >= 9) // TSS386
|
722 |
|
|
push_32(error_code);
|
723 |
|
|
else
|
724 |
|
|
push_16(error_code);
|
725 |
|
|
}
|
726 |
|
|
|
727 |
|
|
// instruction pointer must be in CS limit, else #GP(0)
|
728 |
|
|
if (EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) {
|
729 |
|
|
BX_ERROR(("task_switch: EIP > CS.limit"));
|
730 |
|
|
exception(BX_GP_EXCEPTION, 0);
|
731 |
|
|
}
|
732 |
|
|
|
733 |
|
|
RSP_COMMIT;
|
734 |
|
|
}
|
735 |
|
|
|
736 |
|
|
void BX_CPU_C::task_switch_load_selector(bx_segment_reg_t *seg,
|
737 |
|
|
bx_selector_t *selector, Bit16u raw_selector, Bit8u cs_rpl)
|
738 |
|
|
{
|
739 |
|
|
bx_descriptor_t descriptor;
|
740 |
|
|
Bit32u dword1, dword2;
|
741 |
|
|
|
742 |
|
|
// NULL selector is OK, will leave cache invalid
|
743 |
|
|
if ((raw_selector & 0xfffc) != 0)
|
744 |
|
|
{
|
745 |
|
|
bx_bool good = fetch_raw_descriptor2(selector, &dword1, &dword2);
|
746 |
|
|
if (!good) {
|
747 |
|
|
BX_ERROR(("task_switch(%s): bad selector fetch !", strseg(seg)));
|
748 |
|
|
exception(BX_TS_EXCEPTION, raw_selector & 0xfffc);
|
749 |
|
|
}
|
750 |
|
|
|
751 |
|
|
parse_descriptor(dword1, dword2, &descriptor);
|
752 |
|
|
|
753 |
|
|
/* AR byte must indicate data or readable code segment else #TS(selector) */
|
754 |
|
|
if (descriptor.segment==0 || (IS_CODE_SEGMENT(descriptor.type) &&
|
755 |
|
|
IS_CODE_SEGMENT_READABLE(descriptor.type) == 0))
|
756 |
|
|
{
|
757 |
|
|
BX_ERROR(("task_switch(%s): not data or readable code !", strseg(seg)));
|
758 |
|
|
exception(BX_TS_EXCEPTION, raw_selector & 0xfffc);
|
759 |
|
|
}
|
760 |
|
|
|
761 |
|
|
/* If data or non-conforming code, then both the RPL and the CPL
|
762 |
|
|
* must be less than or equal to DPL in AR byte else #GP(selector) */
|
763 |
|
|
if (IS_DATA_SEGMENT(descriptor.type) ||
|
764 |
|
|
IS_CODE_SEGMENT_NON_CONFORMING(descriptor.type))
|
765 |
|
|
{
|
766 |
|
|
if ((selector->rpl > descriptor.dpl) || (cs_rpl > descriptor.dpl)) {
|
767 |
|
|
BX_ERROR(("load_seg_reg(%s): RPL & CPL must be <= DPL", strseg(seg)));
|
768 |
|
|
exception(BX_TS_EXCEPTION, raw_selector & 0xfffc);
|
769 |
|
|
}
|
770 |
|
|
}
|
771 |
|
|
|
772 |
|
|
if (! IS_PRESENT(descriptor)) {
|
773 |
|
|
BX_ERROR(("task_switch(%s): descriptor not present !", strseg(seg)));
|
774 |
|
|
exception(BX_NP_EXCEPTION, raw_selector & 0xfffc);
|
775 |
|
|
}
|
776 |
|
|
|
777 |
|
|
touch_segment(selector, &descriptor);
|
778 |
|
|
|
779 |
|
|
// All checks pass, fill in shadow cache
|
780 |
|
|
seg->cache = descriptor;
|
781 |
|
|
}
|
782 |
|
|
}
|
783 |
|
|
|
784 |
|
|
void BX_CPU_C::get_SS_ESP_from_TSS(unsigned pl, Bit16u *ss, Bit32u *esp)
|
785 |
|
|
{
|
786 |
|
|
if (BX_CPU_THIS_PTR tr.cache.valid==0)
|
787 |
|
|
BX_PANIC(("get_SS_ESP_from_TSS: TR.cache invalid"));
|
788 |
|
|
|
789 |
|
|
if (BX_CPU_THIS_PTR tr.cache.type==BX_SYS_SEGMENT_AVAIL_386_TSS ||
|
790 |
|
|
BX_CPU_THIS_PTR tr.cache.type==BX_SYS_SEGMENT_BUSY_386_TSS)
|
791 |
|
|
{
|
792 |
|
|
// 32-bit TSS
|
793 |
|
|
Bit32u TSSstackaddr = 8*pl + 4;
|
794 |
|
|
if ((TSSstackaddr+7) > BX_CPU_THIS_PTR tr.cache.u.segment.limit_scaled) {
|
795 |
|
|
BX_DEBUG(("get_SS_ESP_from_TSS(386): TSSstackaddr > TSS.LIMIT"));
|
796 |
|
|
exception(BX_TS_EXCEPTION, BX_CPU_THIS_PTR tr.selector.value & 0xfffc);
|
797 |
|
|
}
|
798 |
|
|
*ss = system_read_word (BX_CPU_THIS_PTR tr.cache.u.segment.base + TSSstackaddr + 4);
|
799 |
|
|
*esp = system_read_dword(BX_CPU_THIS_PTR tr.cache.u.segment.base + TSSstackaddr);
|
800 |
|
|
}
|
801 |
|
|
else if (BX_CPU_THIS_PTR tr.cache.type==BX_SYS_SEGMENT_AVAIL_286_TSS ||
|
802 |
|
|
BX_CPU_THIS_PTR tr.cache.type==BX_SYS_SEGMENT_BUSY_286_TSS)
|
803 |
|
|
{
|
804 |
|
|
// 16-bit TSS
|
805 |
|
|
Bit32u TSSstackaddr = 4*pl + 2;
|
806 |
|
|
if ((TSSstackaddr+3) > BX_CPU_THIS_PTR tr.cache.u.segment.limit_scaled) {
|
807 |
|
|
BX_DEBUG(("get_SS_ESP_from_TSS(286): TSSstackaddr > TSS.LIMIT"));
|
808 |
|
|
exception(BX_TS_EXCEPTION, BX_CPU_THIS_PTR tr.selector.value & 0xfffc);
|
809 |
|
|
}
|
810 |
|
|
*ss = system_read_word(BX_CPU_THIS_PTR tr.cache.u.segment.base + TSSstackaddr + 2);
|
811 |
|
|
*esp = (Bit32u) system_read_word(BX_CPU_THIS_PTR tr.cache.u.segment.base + TSSstackaddr);
|
812 |
|
|
}
|
813 |
|
|
else {
|
814 |
|
|
BX_PANIC(("get_SS_ESP_from_TSS: TR is bogus type (%u)", (unsigned) BX_CPU_THIS_PTR tr.cache.type));
|
815 |
|
|
}
|
816 |
|
|
}
|
817 |
|
|
|
818 |
|
|
#if BX_SUPPORT_X86_64
|
819 |
|
|
Bit64u BX_CPU_C::get_RSP_from_TSS(unsigned pl)
|
820 |
|
|
{
|
821 |
|
|
if (BX_CPU_THIS_PTR tr.cache.valid==0)
|
822 |
|
|
BX_PANIC(("get_RSP_from_TSS: TR.cache invalid"));
|
823 |
|
|
|
824 |
|
|
// 32-bit TSS
|
825 |
|
|
Bit32u TSSstackaddr = 8*pl + 4;
|
826 |
|
|
if ((TSSstackaddr+7) > BX_CPU_THIS_PTR tr.cache.u.segment.limit_scaled) {
|
827 |
|
|
BX_DEBUG(("get_RSP_from_TSS(): TSSstackaddr > TSS.LIMIT"));
|
828 |
|
|
exception(BX_TS_EXCEPTION, BX_CPU_THIS_PTR tr.selector.value & 0xfffc);
|
829 |
|
|
}
|
830 |
|
|
|
831 |
|
|
Bit64u rsp = system_read_qword(BX_CPU_THIS_PTR tr.cache.u.segment.base + TSSstackaddr);
|
832 |
|
|
|
833 |
|
|
if (! IsCanonical(rsp)) {
|
834 |
|
|
BX_ERROR(("get_RSP_from_TSS: canonical address failure 0x%08x%08x", GET32H(rsp), GET32L(rsp)));
|
835 |
|
|
exception(BX_SS_EXCEPTION, BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value & 0xfffc);
|
836 |
|
|
}
|
837 |
|
|
|
838 |
|
|
return rsp;
|
839 |
|
|
}
|
840 |
|
|
#endif // #if BX_SUPPORT_X86_64
|