| 1 |
5 |
danv |
-------------------------------------------------------------------------------
|
| 2 |
|
|
--
|
| 3 |
|
|
-- Copyright (C) 2009
|
| 4 |
|
|
-- ASTRON (Netherlands Institute for Radio Astronomy) <http://www.astron.nl/>
|
| 5 |
|
|
-- P.O.Box 2, 7990 AA Dwingeloo, The Netherlands
|
| 6 |
|
|
--
|
| 7 |
|
|
-- This program is free software: you can redistribute it and/or modify
|
| 8 |
|
|
-- it under the terms of the GNU General Public License as published by
|
| 9 |
|
|
-- the Free Software Foundation, either version 3 of the License, or
|
| 10 |
|
|
-- (at your option) any later version.
|
| 11 |
|
|
--
|
| 12 |
|
|
-- This program is distributed in the hope that it will be useful,
|
| 13 |
|
|
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 14 |
|
|
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 15 |
|
|
-- GNU General Public License for more details.
|
| 16 |
|
|
--
|
| 17 |
|
|
-- You should have received a copy of the GNU General Public License
|
| 18 |
|
|
-- along with this program. If not, see <http://www.gnu.org/licenses/>.
|
| 19 |
|
|
--
|
| 20 |
|
|
-------------------------------------------------------------------------------
|
| 21 |
|
|
|
| 22 |
|
|
LIBRARY IEEE, common_pkg_lib, common_components_lib;
|
| 23 |
|
|
USE IEEE.std_logic_1164.ALL;
|
| 24 |
|
|
USE common_pkg_lib.common_pkg.ALL;
|
| 25 |
|
|
|
| 26 |
|
|
ARCHITECTURE str OF common_adder_tree IS
|
| 27 |
|
|
|
| 28 |
|
|
-- common_add_sub pipelining
|
| 29 |
|
|
CONSTANT c_pipeline_in : NATURAL := 0;
|
| 30 |
|
|
CONSTANT c_pipeline_out : NATURAL := g_pipeline;
|
| 31 |
|
|
|
| 32 |
|
|
-- There is no need to internally work with the adder tree sum width for
|
| 33 |
|
|
-- worst case bit growth of c_sum_w = g_dat_w+ceil_log2(g_nof_inputs),
|
| 34 |
|
|
-- because any MSbits that are not in the output sum do not need to be kept
|
| 35 |
|
|
-- at the internal stages either. The worst case bit growth for
|
| 36 |
|
|
-- g_nof_inputs = 1 still becomes ceil_log2(g_nof_inputs) = 1, which can be
|
| 37 |
|
|
-- regarded as due to an adder stage that adds 0 to the single in_dat.
|
| 38 |
|
|
-- However it also does not cause extra logic to internally account for bit
|
| 39 |
|
|
-- growth at every stage, because synthesis will optimize unused MSbits away
|
| 40 |
|
|
-- when g_sum_w < c_sum_w.
|
| 41 |
|
|
|
| 42 |
|
|
CONSTANT c_w : NATURAL := g_dat_w; -- input data width
|
| 43 |
|
|
CONSTANT c_sum_w : NATURAL := g_dat_w+ceil_log2(g_nof_inputs); -- adder tree sum width
|
| 44 |
|
|
|
| 45 |
|
|
CONSTANT c_N : NATURAL := g_nof_inputs; -- nof inputs to the adder tree
|
| 46 |
|
|
CONSTANT c_nof_stages : NATURAL := ceil_log2(c_N); -- nof stages in the adder tree
|
| 47 |
|
|
|
| 48 |
|
|
-- Allocate c_sum_w for each field and allocate c_N fields for the input
|
| 49 |
|
|
-- stage and use this array for all stages. Hence the stage vectors
|
| 50 |
|
|
-- are longer than necessary and wider than necessary, but that is OK, the
|
| 51 |
|
|
-- important thing is that they are sufficiently long.
|
| 52 |
|
|
TYPE t_stage_arr IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(c_N*c_sum_w-1 DOWNTO 0);
|
| 53 |
|
|
|
| 54 |
|
|
SIGNAL adds : t_stage_arr(-1 TO c_nof_stages-1);
|
| 55 |
|
|
|
| 56 |
|
|
BEGIN
|
| 57 |
|
|
|
| 58 |
|
|
-- The tabel below lists how many two port adders (+) and one port pipes (.)
|
| 59 |
|
|
-- to match the adder latency, there are at each stage of the adder tree.
|
| 60 |
|
|
--
|
| 61 |
|
|
-- nof +,. nof +,. nof +,. nof +,. nof +,.
|
| 62 |
|
|
-- stage 0 stage 1 stage 2 stage 3 --> total
|
| 63 |
|
|
-- N = 2 1,0 - - - 1
|
| 64 |
|
|
-- 3 1,1 1,0 - - 3
|
| 65 |
|
|
-- 4 2,0 1,0 - - 3
|
| 66 |
|
|
-- 5 2,1 1,1 1,0 - 6
|
| 67 |
|
|
-- 6 3,0 1,1 1,0 - 6
|
| 68 |
|
|
-- 7 3,1 2,0 1,0 - 7
|
| 69 |
|
|
-- 8 4,0 2,0 1,0 - 7
|
| 70 |
|
|
-- 9 4,1 2,1 1,1 1,0 11 < N + nof stages
|
| 71 |
|
|
-- 10 5,0 2,1 1,1 1,0 11
|
| 72 |
|
|
-- 11 5,1 3,0 1,1 1,0 12
|
| 73 |
|
|
-- 12 6,0 3,0 1,1 1,0 12
|
| 74 |
|
|
-- 13 6,1 3,1 2,0 1,0 14
|
| 75 |
|
|
--
|
| 76 |
|
|
-- input output nof
|
| 77 |
|
|
-- stage nof + nof . width width input
|
| 78 |
|
|
-- - - - - w+0 -
|
| 79 |
|
|
-- 0 (N+0)/2 ((N+0)/1) MOD 2 w+0 w+1 N
|
| 80 |
|
|
-- 1 (N+1)/4 ((N+1)/2) MOD 2 w+1 w+2 (N+0)/2 + ((N+0)/1) MOD 2
|
| 81 |
|
|
-- 2 (N+3)/8 ((N+3)/4) MOD 2 w+2 w+3 (N+3)/8 + ((N+3)/4) MOD 2
|
| 82 |
|
|
-- 3 (N+7)/16 ((N+7)/8) MOD 2 w+3 w+4 (N+7)/16 + ((N+7)/8) MOD 2
|
| 83 |
|
|
--
|
| 84 |
|
|
-- j (N+(2**j)-1)/(2**(j+1)) ((N+(2**j)-1)/(2**j)) MOD 2 w+j w+j+1
|
| 85 |
|
|
|
| 86 |
|
|
-- Keep in_dat in stage -1 of adds. Store each subsequent stage of the adder
|
| 87 |
|
|
-- tree in into adds. Until finally the total sum in the last stage.
|
| 88 |
|
|
|
| 89 |
|
|
gen_tree : IF g_nof_inputs > 1 GENERATE
|
| 90 |
|
|
-- Input wires
|
| 91 |
|
|
adds(-1)(in_dat'RANGE) <= in_dat;
|
| 92 |
|
|
|
| 93 |
|
|
-- Adder tree
|
| 94 |
|
|
gen_stage : FOR j IN 0 TO c_nof_stages-1 GENERATE
|
| 95 |
|
|
gen_add : FOR i IN 0 TO (c_N+(2**j)-1)/(2**(j+1)) - 1 GENERATE
|
| 96 |
|
|
u_addj : ENTITY work.common_add_sub
|
| 97 |
|
|
GENERIC MAP (
|
| 98 |
|
|
g_direction => "ADD",
|
| 99 |
|
|
g_representation => g_representation,
|
| 100 |
|
|
g_pipeline_input => c_pipeline_in,
|
| 101 |
|
|
g_pipeline_output => c_pipeline_out,
|
| 102 |
|
|
g_in_dat_w => c_w+j,
|
| 103 |
|
|
g_out_dat_w => c_w+j+1
|
| 104 |
|
|
)
|
| 105 |
|
|
PORT MAP (
|
| 106 |
|
|
clk => clk,
|
| 107 |
|
|
clken => clken,
|
| 108 |
|
|
in_a => adds(j-1)((2*i+1)*(c_w+j)-1 DOWNTO (2*i+0)*(c_w+j)),
|
| 109 |
|
|
in_b => adds(j-1)((2*i+2)*(c_w+j)-1 DOWNTO (2*i+1)*(c_w+j)),
|
| 110 |
|
|
result => adds(j)((i+1)*(c_w+j+1)-1 DOWNTO i*(c_w+j+1))
|
| 111 |
|
|
);
|
| 112 |
|
|
END GENERATE;
|
| 113 |
|
|
|
| 114 |
|
|
gen_pipe : IF ((c_N+(2**j)-1)/(2**j)) MOD 2 /= 0 GENERATE
|
| 115 |
|
|
u_pipej : ENTITY common_components_lib.common_pipeline
|
| 116 |
|
|
GENERIC MAP (
|
| 117 |
|
|
g_representation => g_representation,
|
| 118 |
|
|
g_pipeline => g_pipeline,
|
| 119 |
|
|
g_in_dat_w => c_w+j,
|
| 120 |
|
|
g_out_dat_w => c_w+j+1
|
| 121 |
|
|
)
|
| 122 |
|
|
PORT MAP (
|
| 123 |
|
|
clk => clk,
|
| 124 |
|
|
clken => clken,
|
| 125 |
|
|
in_dat => adds(j-1)((2*((c_N+(2**j)-1)/(2**(j+1)))+1)*(c_w+j)-1 DOWNTO
|
| 126 |
|
|
(2*((c_N+(2**j)-1)/(2**(j+1)))+0)*(c_w+j)),
|
| 127 |
|
|
out_dat => adds(j)(((c_N+(2**j)-1)/(2**(j+1))+1)*(c_w+j+1)-1 DOWNTO
|
| 128 |
|
|
((c_N+(2**j)-1)/(2**(j+1)) )*(c_w+j+1))
|
| 129 |
|
|
);
|
| 130 |
|
|
END GENERATE;
|
| 131 |
|
|
END GENERATE;
|
| 132 |
|
|
|
| 133 |
|
|
-- Map final sum to larger output vector using sign extension or to smaller width output vector preserving the LS part
|
| 134 |
|
|
sum <= RESIZE_SVEC(adds(c_nof_stages-1)(c_sum_w-1 DOWNTO 0), g_sum_w) WHEN g_representation="SIGNED" ELSE
|
| 135 |
|
|
RESIZE_UVEC(adds(c_nof_stages-1)(c_sum_w-1 DOWNTO 0), g_sum_w);
|
| 136 |
|
|
END GENERATE; -- gen_tree
|
| 137 |
|
|
|
| 138 |
|
|
no_tree : IF g_nof_inputs = 1 GENERATE
|
| 139 |
|
|
-- For g_nof_inputs = 1 gen_tree yields wires sum <= in_dat, therefore
|
| 140 |
|
|
-- here use common_pipeline to support g_pipeline. Note c_sum_w =
|
| 141 |
|
|
-- g_dat_w+1 also for g_nof_inputs = 1, because we assume an adder stage
|
| 142 |
|
|
-- that adds 0 to the single in_dat.
|
| 143 |
|
|
u_reg : ENTITY common_components_lib.common_pipeline
|
| 144 |
|
|
GENERIC MAP (
|
| 145 |
|
|
g_representation => g_representation,
|
| 146 |
|
|
g_pipeline => g_pipeline,
|
| 147 |
|
|
g_in_dat_w => g_dat_w,
|
| 148 |
|
|
g_out_dat_w => g_sum_w
|
| 149 |
|
|
)
|
| 150 |
|
|
PORT MAP (
|
| 151 |
|
|
clk => clk,
|
| 152 |
|
|
clken => clken,
|
| 153 |
|
|
in_dat => in_dat,
|
| 154 |
|
|
out_dat => sum
|
| 155 |
|
|
);
|
| 156 |
|
|
END GENERATE; -- no_tree
|
| 157 |
|
|
|
| 158 |
|
|
END str;
|