1 |
2 |
danv |
--------------------------------------------------------------------------------
|
2 |
|
|
--
|
3 |
3 |
danv |
-- Copyright 2020
|
4 |
2 |
danv |
-- ASTRON (Netherlands Institute for Radio Astronomy) <http://www.astron.nl/>
|
5 |
|
|
-- P.O.Box 2, 7990 AA Dwingeloo, The Netherlands
|
6 |
3 |
danv |
--
|
7 |
|
|
-- Licensed under the Apache License, Version 2.0 (the "License");
|
8 |
|
|
-- you may not use this file except in compliance with the License.
|
9 |
|
|
-- You may obtain a copy of the License at
|
10 |
|
|
--
|
11 |
|
|
-- http://www.apache.org/licenses/LICENSE-2.0
|
12 |
|
|
--
|
13 |
|
|
-- Unless required by applicable law or agreed to in writing, software
|
14 |
|
|
-- distributed under the License is distributed on an "AS IS" BASIS,
|
15 |
|
|
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
16 |
|
|
-- See the License for the specific language governing permissions and
|
17 |
|
|
-- limitations under the License.
|
18 |
2 |
danv |
--
|
19 |
|
|
--------------------------------------------------------------------------------
|
20 |
|
|
-- Purpose: The fft_r2_wide unit performs a complex FFT that is partly pipelined
|
21 |
|
|
-- and partly parallel.
|
22 |
|
|
--
|
23 |
|
|
-- Description:
|
24 |
|
|
-- The fft_r2_wide supports:
|
25 |
|
|
--
|
26 |
|
|
-- * Complex input
|
27 |
|
|
-- For complex input use_separate = false.
|
28 |
|
|
--
|
29 |
|
|
-- When use_reorder=true then the output bins of the FFT are re-ordered to
|
30 |
|
|
-- undo the bit-reversed (or bit-flipped) default radix 2 FFT output order.
|
31 |
|
|
-- The fft_r2_wide then outputs first 0 Hz and the positive frequencies
|
32 |
|
|
-- and then the negative frequencies. The use_reorder is performed at both
|
33 |
|
|
-- the pipelined stage and the parallel stage.
|
34 |
|
|
--
|
35 |
|
|
-- When use_fft_shift=true then the fft_r2_wide then outputs the frequency
|
36 |
|
|
-- bins in incrementing order, so first the negative frequencies, then 0 Hz
|
37 |
|
|
-- and then the positive frequencies.
|
38 |
|
|
-- When use_fft_shift = true then also use_reorder must be true.
|
39 |
|
|
--
|
40 |
|
|
-- * Two real inputs:
|
41 |
|
|
-- When use_separate=true then the fft_r2_wide can be used to process two
|
42 |
|
|
-- real streams. The first real stream (A) presented on the real input, the
|
43 |
|
|
-- second real stream (B) presented on the imaginary input. The separation
|
44 |
|
|
-- unit outputs the spectrum of A and B in an alternating way.
|
45 |
|
|
-- When use_separate = true then also use_reorder must be true.
|
46 |
|
|
-- When use_separate = true then the use_fft_shift must be false, because
|
47 |
|
|
-- fft_shift() only applies to spectra for complex input.
|
48 |
|
|
--
|
49 |
|
|
-- Remarks:
|
50 |
|
|
-- . This fft_r2_wide also support wb_factor = 1 (= only a fft_r2_pipe
|
51 |
|
|
-- instance) or wb_factor = g_fft.nof_points (= only a fft_r2_par instance).
|
52 |
|
|
-- Care must be taken to properly account for guard_w and out_gain_w,
|
53 |
|
|
-- therefore it is best to simply use a structural approach that generates
|
54 |
|
|
-- seperate instances for each case:
|
55 |
|
|
-- . wb_factor = 1 --> pipe
|
56 |
|
|
-- . wb_factor > 1 AND wb_factor < g_fft.nof_points --> wide
|
57 |
|
|
-- . wb_factor = g_fft.nof_points --> par
|
58 |
|
|
-- . This fft_r2_wide uses the use_reorder in the pipeline FFT, in the parallel
|
59 |
|
|
-- FFT and also has reorder memory in the fft_sepa_wide instance. The reorder
|
60 |
|
|
-- memories in the FFTs can maybe be saved by using only the reorder memory
|
61 |
|
|
-- in the fft_sepa_wide instance. This would require changing the indexing in
|
62 |
|
|
-- fft_sepa_wide instance.
|
63 |
|
|
-- . The reorder memory in the pipeline FFT, parallel FFT and in the
|
64 |
|
|
-- fft_sepa_wide could make reuse of a reorder component from the reorder
|
65 |
|
|
-- library instead of using a dedicated local solution.
|
66 |
|
|
|
67 |
|
|
library ieee, common_pkg_lib, common_components_lib, common_requantize_lib, rTwoSDF_lib;
|
68 |
|
|
use IEEE.std_logic_1164.all;
|
69 |
|
|
use common_pkg_lib.common_pkg.all;
|
70 |
|
|
use rTwoSDF_lib.rTwoSDFPkg.all;
|
71 |
|
|
use work.fft_pkg.all;
|
72 |
|
|
|
73 |
|
|
entity fft_r2_wide is
|
74 |
|
|
generic (
|
75 |
|
|
g_fft : t_fft := c_fft; -- generics for the FFT
|
76 |
|
|
g_pft_pipeline : t_fft_pipeline := c_fft_pipeline; -- For the pipelined part, from rTwoSDF_lib.rTwoSDFPkg
|
77 |
|
|
g_fft_pipeline : t_fft_pipeline := c_fft_pipeline -- For the parallel part, from rTwoSDF_lib.rTwoSDFPkg
|
78 |
|
|
);
|
79 |
|
|
port (
|
80 |
|
|
clk : in std_logic;
|
81 |
|
|
rst : in std_logic := '0';
|
82 |
|
|
in_re_arr : in t_fft_slv_arr(g_fft.wb_factor-1 downto 0); -- = time samples t3, t2, t1, t0
|
83 |
|
|
in_im_arr : in t_fft_slv_arr(g_fft.wb_factor-1 downto 0);
|
84 |
|
|
in_val : in std_logic := '1';
|
85 |
|
|
out_re_arr : out t_fft_slv_arr(g_fft.wb_factor-1 downto 0);
|
86 |
|
|
out_im_arr : out t_fft_slv_arr(g_fft.wb_factor-1 downto 0);
|
87 |
|
|
out_val : out std_logic
|
88 |
|
|
);
|
89 |
|
|
end entity fft_r2_wide;
|
90 |
|
|
|
91 |
|
|
architecture rtl of fft_r2_wide is
|
92 |
|
|
|
93 |
|
|
type t_fft_arr is array(integer range <> ) of t_fft; -- An array of t_fft's generics.
|
94 |
|
|
|
95 |
|
|
----------------------------------------------------------
|
96 |
|
|
-- This function creates an array of t_fft generics
|
97 |
|
|
-- for the pipelined fft's of the first stage.The array is
|
98 |
|
|
-- based on the g_fft generic that belongs to the
|
99 |
|
|
-- fft_r2_wide entity.
|
100 |
|
|
-- Most imortant in the settings are twiddle_offset and
|
101 |
|
|
-- the nof_points.
|
102 |
|
|
----------------------------------------------------------
|
103 |
|
|
function func_create_generic_for_pipe_fft(input : t_fft) return t_fft_arr is
|
104 |
|
|
variable v_nof_points : natural := input.nof_points/input.wb_factor; -- The nof_points for the pipelined fft stages
|
105 |
|
|
variable v_return : t_fft_arr(input.wb_factor-1 downto 0) := (others => input); -- Variable that holds the return values
|
106 |
|
|
begin
|
107 |
|
|
for I in 0 to input.wb_factor-1 loop
|
108 |
|
|
v_return(I).use_reorder := input.use_reorder; -- Pass on use_reorder
|
109 |
|
|
v_return(I).use_fft_shift := false; -- FFT shift function is forced to false
|
110 |
|
|
v_return(I).use_separate := false; -- Separate function is forced to false.
|
111 |
|
|
v_return(I).twiddle_offset := I; -- Twiddle offset is set to the order number of the pipelined fft.
|
112 |
|
|
v_return(I).nof_points := v_nof_points; -- Set the nof points
|
113 |
|
|
v_return(I).in_dat_w := input.stage_dat_w; -- Set the input width
|
114 |
|
|
v_return(I).out_dat_w := input.stage_dat_w; -- Set the output width.
|
115 |
|
|
v_return(I).out_gain_w := 0; -- Output gain is forced to 0
|
116 |
|
|
v_return(I).guard_w := 0; -- Set the guard_w to 0 to enable scaling at every stage.
|
117 |
|
|
v_return(I).guard_enable := false; -- No input guard.
|
118 |
|
|
end loop;
|
119 |
|
|
return v_return;
|
120 |
|
|
end;
|
121 |
|
|
|
122 |
|
|
----------------------------------------------------------
|
123 |
|
|
-- This function creates t_fft generic for the
|
124 |
|
|
-- parallel fft stage, based on the g_fft generic that
|
125 |
|
|
-- belongs to the fft_r2_wide entity.
|
126 |
|
|
----------------------------------------------------------
|
127 |
|
|
function func_create_generic_for_par_fft(input : t_fft) return t_fft is
|
128 |
|
|
variable v_return : t_fft := input; -- Variable that holds the return value
|
129 |
|
|
begin
|
130 |
|
|
v_return.use_reorder := input.use_reorder; -- Pass on use_reorder
|
131 |
|
|
v_return.use_fft_shift := input.use_fft_shift; -- Pass on use_fft_shift
|
132 |
|
|
v_return.use_separate := false; -- Separate function is forced to false, because it is handled outside the parallel fft
|
133 |
|
|
v_return.twiddle_offset := 0; -- Twiddle offset is forced to 0, which is also the input.twiddle_offset default
|
134 |
|
|
v_return.nof_points := input.wb_factor; -- Set the number of points to wb_factor
|
135 |
|
|
v_return.in_dat_w := input.stage_dat_w; -- Specify the input width
|
136 |
|
|
v_return.out_dat_w := input.stage_dat_w; -- Output width
|
137 |
|
|
v_return.out_gain_w := 0; -- Output gain is forced to 0, because it is handled outside the parallel fft
|
138 |
|
|
v_return.guard_w := input.guard_w; -- Set the guard_w here to skip the scaling on the last stages
|
139 |
|
|
v_return.guard_enable := false; -- No input guard.
|
140 |
|
|
return v_return;
|
141 |
|
|
end;
|
142 |
|
|
|
143 |
|
|
constant c_pipeline_remove_lsb : natural := 0;
|
144 |
|
|
|
145 |
|
|
constant c_fft_r2_pipe_arr : t_fft_arr(g_fft.wb_factor-1 downto 0) := func_create_generic_for_pipe_fft(g_fft);
|
146 |
|
|
constant c_fft_r2_par : t_fft := func_create_generic_for_par_fft(g_fft);
|
147 |
|
|
|
148 |
|
|
constant c_in_scale_w : natural := g_fft.stage_dat_w - g_fft.in_dat_w - sel_a_b(g_fft.guard_enable, g_fft.guard_w, 0);
|
149 |
|
|
|
150 |
|
|
constant c_out_scale_w : integer := c_fft_r2_par.out_dat_w - g_fft.out_dat_w - g_fft.out_gain_w; -- Estimate number of LSBs to throw away when > 0 or insert when < 0
|
151 |
|
|
|
152 |
|
|
signal in_fft_pipe_re_arr : t_fft_slv_arr(g_fft.wb_factor-1 downto 0);
|
153 |
|
|
signal in_fft_pipe_im_arr : t_fft_slv_arr(g_fft.wb_factor-1 downto 0);
|
154 |
|
|
|
155 |
|
|
signal out_fft_pipe_re_arr : t_fft_slv_arr(g_fft.wb_factor-1 downto 0);
|
156 |
|
|
signal out_fft_pipe_im_arr : t_fft_slv_arr(g_fft.wb_factor-1 downto 0);
|
157 |
|
|
|
158 |
|
|
signal in_fft_par_re_arr : t_fft_slv_arr(g_fft.wb_factor-1 downto 0);
|
159 |
|
|
signal in_fft_par_im_arr : t_fft_slv_arr(g_fft.wb_factor-1 downto 0);
|
160 |
|
|
|
161 |
|
|
signal fft_pipe_out_re : std_logic_vector(g_fft.out_dat_w-1 downto 0);
|
162 |
|
|
signal fft_pipe_out_im : std_logic_vector(g_fft.out_dat_w-1 downto 0);
|
163 |
|
|
|
164 |
|
|
signal fft_out_re_arr : t_fft_slv_arr(g_fft.wb_factor-1 downto 0);
|
165 |
|
|
signal fft_out_im_arr : t_fft_slv_arr(g_fft.wb_factor-1 downto 0);
|
166 |
|
|
signal fft_out_val : std_logic;
|
167 |
|
|
|
168 |
|
|
signal sep_out_re_arr : t_fft_slv_arr(g_fft.wb_factor-1 downto 0);
|
169 |
|
|
signal sep_out_im_arr : t_fft_slv_arr(g_fft.wb_factor-1 downto 0);
|
170 |
|
|
signal sep_out_val : std_logic;
|
171 |
|
|
|
172 |
|
|
signal int_val : std_logic_vector(g_fft.wb_factor-1 downto 0);
|
173 |
|
|
|
174 |
|
|
signal out_cplx : std_logic_vector(c_nof_complex*g_fft.stage_dat_w-1 downto 0);
|
175 |
|
|
signal in_cplx : std_logic_vector(c_nof_complex*g_fft.stage_dat_w-1 downto 0);
|
176 |
|
|
|
177 |
|
|
begin
|
178 |
|
|
|
179 |
|
|
-- Default to fft_r2_pipe when g_fft.wb_factor=1
|
180 |
|
|
gen_fft_r2_pipe : if g_fft.wb_factor=1 generate
|
181 |
|
|
u_fft_r2_pipe : entity work.fft_r2_pipe
|
182 |
|
|
generic map (
|
183 |
|
|
g_fft => g_fft,
|
184 |
|
|
g_pipeline => g_pft_pipeline
|
185 |
|
|
)
|
186 |
|
|
port map (
|
187 |
|
|
clk => clk,
|
188 |
|
|
rst => rst,
|
189 |
|
|
in_re => in_re_arr(0)(g_fft.in_dat_w-1 downto 0),
|
190 |
|
|
in_im => in_im_arr(0)(g_fft.in_dat_w-1 downto 0),
|
191 |
|
|
in_val => in_val,
|
192 |
|
|
out_re => fft_pipe_out_re,
|
193 |
|
|
out_im => fft_pipe_out_im,
|
194 |
|
|
out_val => out_val
|
195 |
|
|
);
|
196 |
|
|
|
197 |
|
|
out_re_arr(0) <= resize_fft_svec(fft_pipe_out_re);
|
198 |
|
|
out_im_arr(0) <= resize_fft_svec(fft_pipe_out_im);
|
199 |
|
|
end generate;
|
200 |
|
|
|
201 |
|
|
-- Default to fft_r2_par when g_fft.wb_factor=g_fft.nof_points
|
202 |
|
|
gen_fft_r2_par : if g_fft.wb_factor=g_fft.nof_points generate
|
203 |
|
|
u_fft_r2_par : entity work.fft_r2_par
|
204 |
|
|
generic map (
|
205 |
|
|
g_fft => g_fft,
|
206 |
|
|
g_pipeline => g_fft_pipeline
|
207 |
|
|
)
|
208 |
|
|
port map (
|
209 |
|
|
clk => clk,
|
210 |
|
|
rst => rst,
|
211 |
|
|
in_re_arr => in_re_arr,
|
212 |
|
|
in_im_arr => in_im_arr,
|
213 |
|
|
in_val => in_val,
|
214 |
|
|
out_re_arr => out_re_arr,
|
215 |
|
|
out_im_arr => out_im_arr,
|
216 |
|
|
out_val => out_val
|
217 |
|
|
);
|
218 |
|
|
end generate;
|
219 |
|
|
|
220 |
|
|
-- Create wideband FFT as combinination of g_fft.wb_factor instances of fft_r2_pipe with one instance of fft_r2_par
|
221 |
|
|
gen_fft_r2_wide : if g_fft.wb_factor>1 and g_fft.wb_factor<g_fft.nof_points generate
|
222 |
|
|
|
223 |
|
|
---------------------------------------------------------------
|
224 |
|
|
-- PIPELINED FFT STAGE
|
225 |
|
|
---------------------------------------------------------------
|
226 |
|
|
|
227 |
|
|
-- Inputs are prepared/scaled for the pipelined ffts
|
228 |
|
|
gen_fft_pipe_inputs : for I in 0 to g_fft.wb_factor-1 generate
|
229 |
|
|
in_fft_pipe_re_arr(I) <= scale_and_resize_svec(in_re_arr(I), c_in_scale_w, c_fft_slv_w);
|
230 |
|
|
in_fft_pipe_im_arr(I) <= scale_and_resize_svec(in_im_arr(I), c_in_scale_w, c_fft_slv_w);
|
231 |
|
|
end generate;
|
232 |
|
|
|
233 |
|
|
-- The first stage of the wideband fft consist of the generation of g_fft.wb_factor
|
234 |
|
|
-- pipelined fft's. These pipelines fft's operate in parallel.
|
235 |
|
|
gen_pipelined_ffts : for I in g_fft.wb_factor-1 downto 0 generate
|
236 |
|
|
u_pft : entity work.fft_r2_pipe
|
237 |
|
|
generic map (
|
238 |
|
|
g_fft => c_fft_r2_pipe_arr(I), -- generics for the pipelined FFTs
|
239 |
|
|
g_pipeline => g_pft_pipeline -- pipeline generics for the pipelined FFTs
|
240 |
|
|
)
|
241 |
|
|
port map (
|
242 |
|
|
clk => clk,
|
243 |
|
|
rst => rst,
|
244 |
|
|
in_re => in_fft_pipe_re_arr(I)(c_fft_r2_pipe_arr(I).in_dat_w-1 downto 0),
|
245 |
|
|
in_im => in_fft_pipe_im_arr(I)(c_fft_r2_pipe_arr(I).in_dat_w-1 downto 0),
|
246 |
|
|
in_val => in_val,
|
247 |
|
|
out_re => out_fft_pipe_re_arr(I)(c_fft_r2_pipe_arr(I).out_dat_w-1 downto 0),
|
248 |
|
|
out_im => out_fft_pipe_im_arr(I)(c_fft_r2_pipe_arr(I).out_dat_w-1 downto 0),
|
249 |
|
|
out_val => int_val(I)
|
250 |
|
|
);
|
251 |
|
|
end generate;
|
252 |
|
|
|
253 |
|
|
|
254 |
|
|
---------------------------------------------------------------
|
255 |
|
|
-- PARALLEL FFT STAGE
|
256 |
|
|
---------------------------------------------------------------
|
257 |
|
|
|
258 |
|
|
-- Create input for parallel FFT
|
259 |
|
|
gen_inputs_for_par : for I in g_fft.wb_factor-1 downto 0 generate
|
260 |
|
|
in_fft_par_re_arr(I) <= resize_fft_svec(out_fft_pipe_re_arr(I)(c_fft_r2_pipe_arr(I).out_dat_w-1 downto 0));
|
261 |
|
|
in_fft_par_im_arr(I) <= resize_fft_svec(out_fft_pipe_im_arr(I)(c_fft_r2_pipe_arr(I).out_dat_w-1 downto 0));
|
262 |
|
|
end generate;
|
263 |
|
|
|
264 |
|
|
-- The g_fft.wb_factor outputs of the pipelined fft's are offered
|
265 |
|
|
-- to the input of a single parallel FFT.
|
266 |
|
|
u_fft : entity work.fft_r2_par
|
267 |
|
|
generic map (
|
268 |
|
|
g_fft => c_fft_r2_par, -- generics for the FFT
|
269 |
|
|
g_pipeline => g_fft_pipeline -- pipeline generics for the parallel FFT
|
270 |
|
|
)
|
271 |
|
|
port map (
|
272 |
|
|
clk => clk,
|
273 |
|
|
rst => rst,
|
274 |
|
|
in_re_arr => in_fft_par_re_arr,
|
275 |
|
|
in_im_arr => in_fft_par_im_arr,
|
276 |
|
|
in_val => int_val(0),
|
277 |
|
|
out_re_arr => fft_out_re_arr,
|
278 |
|
|
out_im_arr => fft_out_im_arr,
|
279 |
|
|
out_val => fft_out_val
|
280 |
|
|
);
|
281 |
|
|
|
282 |
|
|
---------------------------------------------------------------
|
283 |
|
|
-- OPTIONAL: SEPARATION STAGE
|
284 |
|
|
---------------------------------------------------------------
|
285 |
|
|
-- When the separate functionality is required:
|
286 |
|
|
gen_separate : if g_fft.use_separate generate
|
287 |
|
|
u_separator : entity work.fft_sepa_wide
|
288 |
|
|
generic map (
|
289 |
|
|
g_fft => g_fft
|
290 |
|
|
)
|
291 |
|
|
port map (
|
292 |
|
|
clk => clk,
|
293 |
|
|
rst => rst,
|
294 |
|
|
in_re_arr => fft_out_re_arr,
|
295 |
|
|
in_im_arr => fft_out_im_arr,
|
296 |
|
|
in_val => fft_out_val,
|
297 |
|
|
out_re_arr => sep_out_re_arr,
|
298 |
|
|
out_im_arr => sep_out_im_arr,
|
299 |
|
|
out_val => sep_out_val
|
300 |
|
|
);
|
301 |
|
|
end generate;
|
302 |
|
|
|
303 |
|
|
-- In case no separtion is required, the output of the parallel fft is used.
|
304 |
|
|
no_separate : if g_fft.use_separate=false generate
|
305 |
|
|
sep_out_re_arr <= fft_out_re_arr;
|
306 |
|
|
sep_out_im_arr <= fft_out_im_arr;
|
307 |
|
|
sep_out_val <= fft_out_val;
|
308 |
|
|
end generate;
|
309 |
|
|
|
310 |
|
|
---------------------------------------------------------------
|
311 |
|
|
-- OUTPUT QUANTIZER
|
312 |
|
|
---------------------------------------------------------------
|
313 |
|
|
gen_output_requantizers : for I in g_fft.wb_factor-1 downto 0 generate
|
314 |
|
|
u_requantize_output_re : entity common_requantize_lib.common_requantize
|
315 |
|
|
generic map (
|
316 |
|
|
g_representation => "SIGNED",
|
317 |
|
|
g_lsb_w => c_out_scale_w,
|
318 |
|
|
g_lsb_round => TRUE,
|
319 |
|
|
g_lsb_round_clip => FALSE,
|
320 |
|
|
g_msb_clip => FALSE,
|
321 |
|
|
g_msb_clip_symmetric => FALSE,
|
322 |
|
|
g_pipeline_remove_lsb => c_pipeline_remove_lsb,
|
323 |
|
|
g_pipeline_remove_msb => 0,
|
324 |
|
|
g_in_dat_w => g_fft.stage_dat_w,
|
325 |
|
|
g_out_dat_w => g_fft.out_dat_w
|
326 |
|
|
)
|
327 |
|
|
port map (
|
328 |
|
|
clk => clk,
|
329 |
|
|
in_dat => sep_out_re_arr(I),
|
330 |
|
|
out_dat => out_re_arr(I),
|
331 |
|
|
out_ovr => open
|
332 |
|
|
);
|
333 |
|
|
|
334 |
|
|
u_requantize_output_im : entity common_requantize_lib.common_requantize
|
335 |
|
|
generic map (
|
336 |
|
|
g_representation => "SIGNED",
|
337 |
|
|
g_lsb_w => c_out_scale_w,
|
338 |
|
|
g_lsb_round => TRUE,
|
339 |
|
|
g_lsb_round_clip => FALSE,
|
340 |
|
|
g_msb_clip => FALSE,
|
341 |
|
|
g_msb_clip_symmetric => FALSE,
|
342 |
|
|
g_pipeline_remove_lsb => c_pipeline_remove_lsb,
|
343 |
|
|
g_pipeline_remove_msb => 0,
|
344 |
|
|
g_in_dat_w => g_fft.stage_dat_w,
|
345 |
|
|
g_out_dat_w => g_fft.out_dat_w
|
346 |
|
|
)
|
347 |
|
|
port map (
|
348 |
|
|
clk => clk,
|
349 |
|
|
in_dat => sep_out_im_arr(I),
|
350 |
|
|
out_dat => out_im_arr(I),
|
351 |
|
|
out_ovr => open
|
352 |
|
|
);
|
353 |
|
|
end generate;
|
354 |
|
|
|
355 |
|
|
u_out_val : entity common_components_lib.common_pipeline_sl
|
356 |
|
|
generic map (
|
357 |
|
|
g_pipeline => c_pipeline_remove_lsb
|
358 |
|
|
)
|
359 |
|
|
port map (
|
360 |
|
|
rst => rst,
|
361 |
|
|
clk => clk,
|
362 |
|
|
in_dat => sep_out_val,
|
363 |
|
|
out_dat => out_val
|
364 |
|
|
);
|
365 |
|
|
|
366 |
|
|
end generate;
|
367 |
|
|
end rtl;
|