1 |
2 |
wzab |
-------------------------------------------------------------------------------
|
2 |
|
|
-- Title : axil2ipb
|
3 |
|
|
-- Project :
|
4 |
|
|
-------------------------------------------------------------------------------
|
5 |
|
|
-- File : axil2ipb.vhd
|
6 |
|
|
-- Author : Wojciech M. Zabolotny <wzab@ise.pw.edu.pl>
|
7 |
|
|
-- Company : Institute of Electronic Systems, Warsaw University of Technology
|
8 |
|
|
-- Created : 2016-04-24
|
9 |
|
|
-- Last update: 2016-05-14
|
10 |
|
|
-- License : This is a PUBLIC DOMAIN code, published under
|
11 |
|
|
-- Creative Commons CC0 license
|
12 |
|
|
-- Platform :
|
13 |
|
|
-- Standard : VHDL'93/02
|
14 |
|
|
-------------------------------------------------------------------------------
|
15 |
|
|
-- Description: AXI Lite -> IPbus bridge
|
16 |
|
|
-------------------------------------------------------------------------------
|
17 |
|
|
-- Copyright (c) 2016
|
18 |
|
|
-------------------------------------------------------------------------------
|
19 |
|
|
-- Revisions :
|
20 |
|
|
-- Date Version Author Description
|
21 |
|
|
-- 2016-04-24 1.0 WZab Created
|
22 |
|
|
-------------------------------------------------------------------------------
|
23 |
|
|
|
24 |
|
|
-- The AXI implementation is based on the description of AXI provided by
|
25 |
|
|
-- Rich Griffin in "Designing a Custom AXI-lite Slave Peripheral"
|
26 |
|
|
-- available at:
|
27 |
|
|
-- silica.com/wcsstore/Silica/Silica+Content+Library/Silica+Home/resources/71b10b18-9c9c-44c6-b62d-9a031b8f3df8/SILICA_Xilinx_Designing_a_custom_axi_slave_rev1.pdf
|
28 |
|
|
--
|
29 |
|
|
-- The IPbus implementation is based on the description provided in
|
30 |
|
|
-- "Notes on Firmware Implementation of an IPbus SoC Bus"
|
31 |
|
|
-- available at:
|
32 |
|
|
-- https://svnweb.cern.ch/trac/cactus/export/32752/trunk/doc/IPbus_firmware_notes.pdf
|
33 |
|
|
|
34 |
|
|
-------------------------------------------------------------------------------
|
35 |
|
|
-- Implementation details
|
36 |
|
|
-------------------------------------------------------------------------------
|
37 |
|
|
-- In the AXI bus the read and write accesses may be handled independently
|
38 |
|
|
-- In the IPbus they can't therefore we must provide an arbitration scheme.
|
39 |
|
|
-- We assume "Write before read"
|
40 |
|
|
--
|
41 |
|
|
-- We must avoid duplicated writes and reads (which may corruppt e.g.
|
42 |
|
|
-- FIFO slaves at IPbus!)
|
43 |
|
|
--
|
44 |
|
|
-- Additionally the IPbus uses the word adressing, while AXI uses the byte
|
45 |
|
|
-- addressing. That is handled by the function a_axi2ipb, which additionally
|
46 |
|
|
-- zeroes bits not used by the IPbus segment...
|
47 |
|
|
|
48 |
|
|
|
49 |
|
|
|
50 |
|
|
library IEEE;
|
51 |
|
|
use IEEE.STD_LOGIC_1164.all;
|
52 |
|
|
library work;
|
53 |
|
|
use work.ipbus.all;
|
54 |
|
|
|
55 |
|
|
entity axil2ipb is
|
56 |
|
|
|
57 |
|
|
generic (
|
58 |
|
|
ADRWIDTH : integer := 15);
|
59 |
|
|
|
60 |
|
|
port (
|
61 |
|
|
---------------------------------------------------------------------------
|
62 |
|
|
-- AXI Interface
|
63 |
|
|
---------------------------------------------------------------------------
|
64 |
|
|
-- Clock and Reset
|
65 |
|
|
S_AXI_ACLK : in std_logic;
|
66 |
|
|
S_AXI_ARESETN : in std_logic;
|
67 |
|
|
-- Write Address Channel
|
68 |
|
|
S_AXI_AWADDR : in std_logic_vector(ADRWIDTH-1 downto 0);
|
69 |
|
|
S_AXI_AWVALID : in std_logic;
|
70 |
|
|
S_AXI_AWREADY : out std_logic;
|
71 |
|
|
-- Write Data Channel
|
72 |
|
|
S_AXI_WDATA : in std_logic_vector(31 downto 0);
|
73 |
|
|
S_AXI_WSTRB : in std_logic_vector(3 downto 0);
|
74 |
|
|
S_AXI_WVALID : in std_logic;
|
75 |
|
|
S_AXI_WREADY : out std_logic;
|
76 |
|
|
-- Read Address Channel
|
77 |
|
|
S_AXI_ARADDR : in std_logic_vector(ADRWIDTH-1 downto 0);
|
78 |
|
|
S_AXI_ARVALID : in std_logic;
|
79 |
|
|
S_AXI_ARREADY : out std_logic;
|
80 |
|
|
-- Read Data Channel
|
81 |
|
|
S_AXI_RDATA : out std_logic_vector(31 downto 0);
|
82 |
|
|
S_AXI_RRESP : out std_logic_vector(1 downto 0);
|
83 |
|
|
S_AXI_RVALID : out std_logic;
|
84 |
|
|
S_AXI_RREADY : in std_logic;
|
85 |
|
|
-- Write Response Channel
|
86 |
|
|
S_AXI_BRESP : out std_logic_vector(1 downto 0);
|
87 |
|
|
S_AXI_BVALID : out std_logic;
|
88 |
|
|
S_AXI_BREADY : in std_logic;
|
89 |
4 |
wzab |
-- AWPROT and ARPROT - required by Altera
|
90 |
|
|
--S_AXI_ARPROT : in std_logic_vector(2 downto 0);
|
91 |
|
|
--S_AXI_AWPROT : in std_logic_vector(2 downto 0);
|
92 |
2 |
wzab |
-- Here we have the IPbus ports
|
93 |
|
|
ipb_clk : out std_logic;
|
94 |
|
|
ipb_rst : out std_logic;
|
95 |
|
|
-- master_ipb_out - flattened due to Vivado inability to handle user types
|
96 |
|
|
-- in BD
|
97 |
|
|
ipb_addr : out std_logic_vector(31 downto 0);
|
98 |
|
|
ipb_wdata : out std_logic_vector(31 downto 0);
|
99 |
|
|
ipb_strobe : out std_logic;
|
100 |
|
|
ipb_write : out std_logic;
|
101 |
|
|
-- master_ipb_in - flattened due to Vivado inability to handle user types
|
102 |
|
|
-- in BD
|
103 |
|
|
ipb_rdata : in std_logic_vector(31 downto 0);
|
104 |
|
|
ipb_ack : in std_logic;
|
105 |
|
|
ipb_err : std_logic
|
106 |
|
|
);
|
107 |
|
|
|
108 |
|
|
end entity axil2ipb;
|
109 |
|
|
|
110 |
|
|
architecture beh of axil2ipb is
|
111 |
|
|
|
112 |
|
|
function a_axi2ipb (
|
113 |
|
|
constant axi_addr : std_logic_vector(ADRWIDTH-1 downto 0))
|
114 |
|
|
return std_logic_vector is
|
115 |
|
|
variable ipb_addr : std_logic_vector(31 downto 0);
|
116 |
|
|
begin -- function a_axi2ipb
|
117 |
|
|
ipb_addr := (others => '0');
|
118 |
|
|
-- Divide the address by 4 (we use word addresses, not the byte addresses)
|
119 |
|
|
ipb_addr(ADRWIDTH-3 downto 0) := axi_addr(ADRWIDTH-1 downto 2);
|
120 |
|
|
return ipb_addr;
|
121 |
|
|
end function a_axi2ipb;
|
122 |
|
|
|
123 |
|
|
signal master_ipb_out : ipb_wbus;
|
124 |
|
|
signal master_ipb_in : ipb_rbus;
|
125 |
|
|
signal read_wait, read_wait_in, write_wait, write_wait_in : boolean := false;
|
126 |
|
|
signal rdata, rdata_in, addr, addr_in, wdata, wdata_in : std_logic_vector(31 downto 0) := (others => '0');
|
127 |
|
|
signal bresp, rresp, bresp_in, rresp_in : std_logic_vector(1 downto 0) := "00";
|
128 |
|
|
signal del_bresp, del_rresp, del_bresp_in, del_rresp_in : boolean := false;
|
129 |
|
|
|
130 |
|
|
begin -- architecture beh
|
131 |
|
|
|
132 |
|
|
ipb_clk <= S_AXI_ACLK;
|
133 |
|
|
ipb_rst <= not S_AXI_ARESETN;
|
134 |
|
|
-- We keep the master_ipb... signals internally in hope, that one day
|
135 |
|
|
-- Xilinx/Vivado will be able to handle user defined records in ports of BD blocks...
|
136 |
|
|
ipb_addr <= master_ipb_out.ipb_addr;
|
137 |
|
|
ipb_wdata <= master_ipb_out.ipb_wdata;
|
138 |
|
|
ipb_strobe <= master_ipb_out.ipb_strobe;
|
139 |
|
|
ipb_write <= master_ipb_out.ipb_write;
|
140 |
|
|
|
141 |
|
|
master_ipb_in.ipb_rdata <= ipb_rdata;
|
142 |
|
|
master_ipb_in.ipb_ack <= ipb_ack;
|
143 |
|
|
master_ipb_in.ipb_err <= ipb_err;
|
144 |
|
|
|
145 |
|
|
qq : process (S_AXI_ARADDR, S_AXI_ARVALID, S_AXI_AWADDR, S_AXI_AWVALID,
|
146 |
|
|
S_AXI_BREADY, S_AXI_RREADY, S_AXI_WDATA, S_AXI_WSTRB,
|
147 |
|
|
S_AXI_WVALID, addr, bresp, del_bresp, del_rresp, master_ipb_in,
|
148 |
|
|
rdata, read_wait, rresp, wdata, write_wait) is
|
149 |
|
|
variable is_read, is_write : boolean := false;
|
150 |
|
|
begin -- process qq
|
151 |
|
|
-- Defaults
|
152 |
|
|
is_read := false;
|
153 |
|
|
is_write := false;
|
154 |
|
|
master_ipb_out.ipb_strobe <= '0';
|
155 |
|
|
master_ipb_out.ipb_addr <= (others => '0');
|
156 |
|
|
master_ipb_out.ipb_wdata <= (others => '0');
|
157 |
|
|
master_ipb_out.ipb_write <= '0';
|
158 |
|
|
-- Flags handling delayed acceptance of results
|
159 |
|
|
del_bresp_in <= del_bresp;
|
160 |
|
|
del_rresp_in <= del_rresp;
|
161 |
|
|
-- Registers storing the results
|
162 |
|
|
bresp_in <= bresp;
|
163 |
|
|
rresp_in <= rresp;
|
164 |
|
|
rdata_in <= rdata;
|
165 |
|
|
wdata_in <= wdata;
|
166 |
|
|
read_wait_in <= read_wait;
|
167 |
|
|
write_wait_in <= write_wait;
|
168 |
|
|
addr_in <= addr;
|
169 |
|
|
S_AXI_BVALID <= '0';
|
170 |
|
|
S_AXI_BRESP <= (others => '0');
|
171 |
|
|
S_AXI_ARREADY <= '0';
|
172 |
|
|
S_AXI_RVALID <= '0';
|
173 |
|
|
S_AXI_RDATA <= (others => '0');
|
174 |
|
|
S_AXI_RRESP <= (others => '0');
|
175 |
|
|
S_AXI_AWREADY <= '0';
|
176 |
|
|
S_AXI_WREADY <= '0';
|
177 |
|
|
|
178 |
|
|
-- Real processing
|
179 |
|
|
-- Handling of delayed responses
|
180 |
|
|
if del_bresp then
|
181 |
|
|
S_AXI_BRESP <= bresp;
|
182 |
|
|
S_AXI_BVALID <= '1';
|
183 |
|
|
if S_AXI_BREADY = '1' then
|
184 |
|
|
del_bresp_in <= false;
|
185 |
|
|
end if;
|
186 |
|
|
elsif del_rresp then
|
187 |
|
|
S_AXI_RRESP <= rresp;
|
188 |
|
|
S_AXI_RDATA <= rdata;
|
189 |
|
|
S_AXI_RVALID <= '1';
|
190 |
|
|
if S_AXI_RREADY = '1' then
|
191 |
|
|
del_rresp_in <= false;
|
192 |
|
|
end if;
|
193 |
|
|
-- Handling of new transactions
|
194 |
|
|
elsif (S_AXI_AWVALID = '1' and S_AXI_WVALID = '1') or write_wait then
|
195 |
|
|
is_write := true;
|
196 |
|
|
elsif S_AXI_ARVALID = '1' or read_wait then
|
197 |
|
|
is_read := true;
|
198 |
|
|
end if;
|
199 |
|
|
-- Set the IPbus signals
|
200 |
|
|
if is_write then
|
201 |
|
|
-- Check if this is a new transmission
|
202 |
|
|
if S_AXI_AWVALID = '1' and S_AXI_WVALID = '1' and write_wait = false then
|
203 |
|
|
-- This is a new transmission
|
204 |
|
|
-- Check if this is a correct 32-bit write
|
205 |
|
|
if S_AXI_WSTRB /= "1111" then
|
206 |
|
|
-- Erroneouos write. If slave is ready to accept status, inform about it
|
207 |
|
|
S_AXI_AWREADY <= '1';
|
208 |
|
|
S_AXI_WREADY <= '1';
|
209 |
|
|
S_AXI_BRESP <= "10";
|
210 |
|
|
S_AXI_BVALID <= '1';
|
211 |
|
|
if S_AXI_BREADY = '0' then
|
212 |
|
|
-- Prepare delayed response
|
213 |
|
|
bresp_in <= "10";
|
214 |
|
|
del_bresp_in <= true;
|
215 |
|
|
end if;
|
216 |
|
|
else
|
217 |
|
|
-- Correct write
|
218 |
|
|
-- Write transaction on IPbus
|
219 |
|
|
master_ipb_out.ipb_addr <= a_axi2ipb(S_AXI_AWADDR);
|
220 |
|
|
master_ipb_out.ipb_wdata <= S_AXI_WDATA;
|
221 |
|
|
master_ipb_out.ipb_strobe <= '1';
|
222 |
|
|
master_ipb_out.ipb_write <= '1';
|
223 |
|
|
-- Store data for the next cycles
|
224 |
|
|
addr_in <= a_axi2ipb(S_AXI_AWADDR);
|
225 |
|
|
wdata_in <= S_AXI_WDATA;
|
226 |
|
|
S_AXI_AWREADY <= '1';
|
227 |
|
|
S_AXI_WREADY <= '1';
|
228 |
|
|
write_wait_in <= true;
|
229 |
|
|
end if;
|
230 |
|
|
else
|
231 |
|
|
-- This the next cycle of the write transmission
|
232 |
|
|
master_ipb_out.ipb_addr <= addr;
|
233 |
|
|
master_ipb_out.ipb_wdata <= wdata;
|
234 |
|
|
master_ipb_out.ipb_strobe <= '1';
|
235 |
|
|
master_ipb_out.ipb_write <= '1';
|
236 |
|
|
end if;
|
237 |
|
|
-- Check the slave response
|
238 |
|
|
if master_ipb_in.ipb_err = '1' then
|
239 |
|
|
write_wait_in <= false;
|
240 |
|
|
S_AXI_BRESP <= "10";
|
241 |
|
|
S_AXI_BVALID <= '1';
|
242 |
|
|
if S_AXI_BREADY = '0' then
|
243 |
|
|
-- Prepare delayed response
|
244 |
|
|
bresp_in <= "10";
|
245 |
|
|
del_bresp_in <= true;
|
246 |
|
|
end if;
|
247 |
|
|
elsif master_ipb_in.ipb_ack = '1' then
|
248 |
|
|
write_wait_in <= false;
|
249 |
|
|
S_AXI_BRESP <= "00";
|
250 |
|
|
S_AXI_BVALID <= '1';
|
251 |
|
|
if S_AXI_BREADY = '0' then
|
252 |
|
|
-- Prepare delayed response
|
253 |
|
|
bresp_in <= "00";
|
254 |
|
|
del_bresp_in <= true;
|
255 |
|
|
end if;
|
256 |
|
|
end if;
|
257 |
|
|
elsif is_read then
|
258 |
|
|
-- Read transaction on IPbus
|
259 |
|
|
if S_AXI_ARVALID = '1' and read_wait = false then
|
260 |
|
|
addr_in <= a_axi2ipb(S_AXI_ARADDR);
|
261 |
|
|
master_ipb_out.ipb_addr <= a_axi2ipb(S_AXI_ARADDR);
|
262 |
|
|
S_AXI_ARREADY <= '1';
|
263 |
|
|
-- Remember that we are in read
|
264 |
|
|
read_wait_in <= true;
|
265 |
|
|
else
|
266 |
|
|
master_ipb_out.ipb_addr <= addr;
|
267 |
|
|
end if;
|
268 |
|
|
master_ipb_out.ipb_strobe <= '1';
|
269 |
|
|
master_ipb_out.ipb_write <= '0';
|
270 |
|
|
-- Check the slave response
|
271 |
|
|
if master_ipb_in.ipb_err = '1' then
|
272 |
|
|
S_AXI_RRESP <= "10";
|
273 |
|
|
S_AXI_RDATA <= master_ipb_in.ipb_rdata;
|
274 |
|
|
S_AXI_RVALID <= '1';
|
275 |
|
|
read_wait_in <= false;
|
276 |
|
|
if S_AXI_RREADY = '0' then
|
277 |
|
|
-- Prepare delayed response
|
278 |
|
|
rresp_in <= "10";
|
279 |
|
|
rdata_in <= master_ipb_in.ipb_rdata;
|
280 |
|
|
del_rresp_in <= true;
|
281 |
|
|
end if;
|
282 |
|
|
elsif master_ipb_in.ipb_ack = '1' then
|
283 |
|
|
S_AXI_RRESP <= "00";
|
284 |
|
|
S_AXI_RDATA <= master_ipb_in.ipb_rdata;
|
285 |
|
|
S_AXI_RVALID <= '1';
|
286 |
|
|
read_wait_in <= false;
|
287 |
|
|
if S_AXI_RREADY = '0' then
|
288 |
|
|
-- Prepare delayed response
|
289 |
|
|
rresp_in <= "00";
|
290 |
|
|
rdata_in <= master_ipb_in.ipb_rdata;
|
291 |
|
|
del_rresp_in <= true;
|
292 |
|
|
end if;
|
293 |
|
|
end if;
|
294 |
|
|
end if;
|
295 |
|
|
end process qq;
|
296 |
|
|
|
297 |
|
|
process (S_AXI_ACLK) is
|
298 |
|
|
begin -- process
|
299 |
|
|
if S_AXI_ACLK'event and S_AXI_ACLK = '1' then -- rising clock edge
|
300 |
|
|
if S_AXI_ARESETN = '0' then -- synchronous reset (active low)
|
301 |
|
|
del_rresp <= false;
|
302 |
|
|
del_bresp <= false;
|
303 |
|
|
rdata <= (others => '0');
|
304 |
|
|
wdata <= (others => '0');
|
305 |
|
|
rresp <= (others => '0');
|
306 |
|
|
bresp <= (others => '0');
|
307 |
|
|
addr <= (others => '0');
|
308 |
|
|
read_wait <= false;
|
309 |
|
|
write_wait <= false;
|
310 |
|
|
else
|
311 |
|
|
del_rresp <= del_rresp_in;
|
312 |
|
|
del_bresp <= del_bresp_in;
|
313 |
|
|
addr <= addr_in;
|
314 |
|
|
rdata <= rdata_in;
|
315 |
|
|
wdata <= wdata_in;
|
316 |
|
|
rresp <= rresp_in;
|
317 |
|
|
bresp <= bresp_in;
|
318 |
|
|
read_wait <= read_wait_in;
|
319 |
|
|
write_wait <= write_wait_in;
|
320 |
|
|
end if;
|
321 |
|
|
end if;
|
322 |
|
|
end process;
|
323 |
|
|
|
324 |
|
|
|
325 |
|
|
end architecture beh;
|