1 |
2 |
howe.r.j.8 |
-- FILE: uart.vhd
|
2 |
|
|
-- BRIEF: UART TX/RX module
|
3 |
|
|
-- LICENSE: MIT
|
4 |
|
|
-- COPYRIGHT: Richard James Howe (2019, 2020)
|
5 |
|
|
--
|
6 |
|
|
-- The UART (Universal Asynchronous Receiver/Transmitter) is one of the simplest
|
7 |
|
|
-- serial communication methods available. It is often used for debugging, for
|
8 |
|
|
-- issuing commands to embedded devices and sometimes even for uploading firmware
|
9 |
|
|
-- to devices. The data format and speed are configurable but there is no method
|
10 |
|
|
-- for automatically configuring a UART, both sides must have agreed on the
|
11 |
|
|
-- settings before hand. Configurable options include; baud, use of an
|
12 |
|
|
-- even of odd parity bit, number of data bits and number of stop bits.
|
13 |
|
|
--
|
14 |
|
|
-- The clock is not transmitted as part of the signal (which is why baud
|
15 |
|
|
-- must be agreed upon before hand), a single packet starts with a 'start bit',
|
16 |
|
|
-- where the line goes low. The receiver must synchronize to this start bit (it
|
17 |
|
|
-- resets the clock that generates pulse at the sample rate and baud when it
|
18 |
|
|
-- encounters a start bit).
|
19 |
|
|
--
|
20 |
|
|
-- A transmission with 8 data bits, 1 parity bit and 1 stop bit looks like
|
21 |
|
|
-- this:
|
22 |
|
|
-- ____ ______________________________ ________________
|
23 |
|
|
-- \_/|0|1|2|3|4|5|6|7|P|S| \_/
|
24 |
|
|
-- Start Data Parity Stop |--- More data --->
|
25 |
|
|
--
|
26 |
|
|
-- Start bits are always low, stop bits high. The most common format is
|
27 |
|
|
-- 8 data bits, no parity bit, and 1 stop bit at either 9600 or 115200 baud.
|
28 |
|
|
--
|
29 |
|
|
-- For the receiver a clock that is a multiple of the baud is used so the
|
30 |
|
|
-- bits can be sampled with a higher frequency than the bit rate.
|
31 |
|
|
--
|
32 |
|
|
-- Some notes:
|
33 |
|
|
-- * We can transmit from an 8-bit UART to a less than 8-bit UART fine, so
|
34 |
|
|
-- long as parity is not used, as
|
35 |
|
|
-- * Certain UARTs have the ability to transmit a BREAK signal by holding
|
36 |
|
|
-- the line low for a period greater than the packet length. We can transmit
|
37 |
|
|
-- that by lowering the baud rate and transmitting all zeroes. Receiving a
|
38 |
|
|
-- break (correctly) would require changing the receiver.
|
39 |
|
|
--
|
40 |
|
|
--
|
41 |
|
|
-- See:
|
42 |
|
|
-- * <https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter>
|
43 |
|
|
--
|
44 |
|
|
-- NOTE: We could replace this entire package with an entirely software driven
|
45 |
|
|
-- solution. The only hardware we would need two timers driven at the sample
|
46 |
|
|
-- rate (one for RX, one for TX) and a deglitched RX signal. An interrupt
|
47 |
|
|
-- would be generated on the timers expiry.
|
48 |
|
|
--
|
49 |
|
|
library ieee, work;
|
50 |
|
|
use ieee.std_logic_1164.all;
|
51 |
|
|
use ieee.numeric_std.all;
|
52 |
|
|
|
53 |
|
|
package uart_pkg is
|
54 |
|
|
constant uart_8N1: std_ulogic_vector(7 downto 0) := "10000100";
|
55 |
|
|
|
56 |
|
|
type uart_generics is record
|
57 |
|
|
clock_frequency: positive; -- clock frequency of module clock
|
58 |
|
|
delay: time; -- gate delay for simulation purposes
|
59 |
|
|
asynchronous_reset: boolean; -- use asynchronous reset if true
|
60 |
|
|
end record;
|
61 |
|
|
|
62 |
|
|
component uart_tx is
|
63 |
|
|
generic (
|
64 |
|
|
g: uart_generics;
|
65 |
|
|
N: positive;
|
66 |
|
|
format: std_ulogic_vector(7 downto 0) := uart_8N1;
|
67 |
|
|
use_cfg: boolean);
|
68 |
|
|
port (
|
69 |
|
|
clk: in std_ulogic;
|
70 |
|
|
rst: in std_ulogic;
|
71 |
|
|
cr: out std_ulogic;
|
72 |
|
|
baud: in std_ulogic; -- Pulse at baud
|
73 |
|
|
tx: out std_ulogic;
|
74 |
|
|
ok: out std_ulogic;
|
75 |
|
|
ctr: in std_ulogic_vector(format'range);
|
76 |
|
|
ctr_we: in std_ulogic;
|
77 |
|
|
we: in std_ulogic; -- di write enable
|
78 |
|
|
di: in std_ulogic_vector(N - 1 downto 0));
|
79 |
|
|
end component;
|
80 |
|
|
|
81 |
|
|
component uart_rx is
|
82 |
|
|
generic (
|
83 |
|
|
g: uart_generics;
|
84 |
|
|
N: positive;
|
85 |
|
|
D: positive;
|
86 |
|
|
format: std_ulogic_vector(7 downto 0) := uart_8N1;
|
87 |
|
|
use_cfg: boolean);
|
88 |
|
|
port (
|
89 |
|
|
clk: in std_ulogic;
|
90 |
|
|
rst: in std_ulogic;
|
91 |
|
|
cr: out std_ulogic;
|
92 |
|
|
baud: in std_ulogic;
|
93 |
|
|
sample: in std_ulogic;
|
94 |
|
|
failed: out std_ulogic_vector(1 downto 0);
|
95 |
|
|
ctr: in std_ulogic_vector(7 downto 0);
|
96 |
|
|
ctr_we: in std_ulogic;
|
97 |
|
|
rx: in std_ulogic;
|
98 |
|
|
we: out std_ulogic;
|
99 |
|
|
do: out std_ulogic_vector(N - 1 downto 0));
|
100 |
|
|
end component;
|
101 |
|
|
|
102 |
|
|
component uart_fifo is
|
103 |
|
|
generic (
|
104 |
|
|
g: uart_generics;
|
105 |
|
|
data_width: positive;
|
106 |
|
|
fifo_depth: positive;
|
107 |
|
|
read_first: boolean := true);
|
108 |
|
|
port (
|
109 |
|
|
clk: in std_ulogic;
|
110 |
|
|
rst: in std_ulogic;
|
111 |
|
|
di: in std_ulogic_vector(data_width - 1 downto 0);
|
112 |
|
|
we: in std_ulogic;
|
113 |
|
|
re: in std_ulogic;
|
114 |
|
|
do: out std_ulogic_vector(data_width - 1 downto 0);
|
115 |
|
|
|
116 |
|
|
-- optional
|
117 |
|
|
full: out std_ulogic := '0';
|
118 |
|
|
empty: out std_ulogic := '1');
|
119 |
|
|
end component;
|
120 |
|
|
|
121 |
|
|
component uart_baud is -- Generates a pulse at the sample rate and baud
|
122 |
|
|
generic (
|
123 |
|
|
g: uart_generics;
|
124 |
|
|
init: integer;
|
125 |
|
|
N: positive := 16;
|
126 |
|
|
D: positive := 3);
|
127 |
|
|
port (
|
128 |
|
|
clk: in std_ulogic;
|
129 |
|
|
rst: in std_ulogic;
|
130 |
|
|
we: in std_ulogic;
|
131 |
|
|
cnt: in std_ulogic_vector(N - 1 downto 0);
|
132 |
|
|
cr: in std_ulogic := '0';
|
133 |
|
|
sample: out std_ulogic;
|
134 |
|
|
baud: out std_ulogic);
|
135 |
|
|
end component;
|
136 |
|
|
|
137 |
|
|
component uart_top is
|
138 |
|
|
generic (
|
139 |
|
|
clock_frequency: positive; -- clock frequency of module clock
|
140 |
|
|
delay: time; -- gate delay for simulation purposes
|
141 |
|
|
asynchronous_reset: boolean; -- use asynchronous reset if true
|
142 |
|
|
baud: positive := 115200;
|
143 |
|
|
format: std_ulogic_vector(7 downto 0) := uart_8N1;
|
144 |
|
|
fifo_depth: natural := 0;
|
145 |
|
|
use_cfg: boolean := false;
|
146 |
|
|
use_tx: boolean := true;
|
147 |
|
|
use_rx: boolean := true
|
148 |
|
|
); -- Use FIFO to buffer results?
|
149 |
|
|
port (
|
150 |
|
|
clk: in std_ulogic;
|
151 |
|
|
rst: in std_ulogic;
|
152 |
|
|
|
153 |
|
|
tx: out std_ulogic;
|
154 |
|
|
tx_fifo_full: out std_ulogic;
|
155 |
|
|
tx_fifo_empty: out std_ulogic;
|
156 |
|
|
tx_fifo_we: in std_ulogic;
|
157 |
|
|
tx_fifo_data: in std_ulogic_vector(7 downto 0);
|
158 |
|
|
|
159 |
|
|
rx: in std_ulogic;
|
160 |
|
|
rx_fifo_full: out std_ulogic;
|
161 |
|
|
rx_fifo_empty: out std_ulogic;
|
162 |
|
|
rx_fifo_re: in std_ulogic;
|
163 |
|
|
rx_fifo_data: out std_ulogic_vector(7 downto 0);
|
164 |
|
|
|
165 |
|
|
reg: in std_ulogic_vector(15 downto 0);
|
166 |
|
|
clock_reg_tx_we: in std_ulogic;
|
167 |
|
|
clock_reg_rx_we: in std_ulogic;
|
168 |
|
|
control_reg_we: in std_ulogic);
|
169 |
|
|
end component;
|
170 |
|
|
|
171 |
|
|
component uart_tb is
|
172 |
|
|
generic(g: uart_generics);
|
173 |
|
|
end component;
|
174 |
|
|
|
175 |
|
|
function parity(slv:std_ulogic_vector; even: boolean) return std_ulogic;
|
176 |
|
|
function parity(slv:std_ulogic_vector; even: std_ulogic) return std_ulogic;
|
177 |
|
|
constant ctr_use_parity: integer := 0;
|
178 |
|
|
constant ctr_even_parity: integer := 1;
|
179 |
|
|
function ctr_stop_bits(ctr: std_ulogic_vector(7 downto 0)) return integer;
|
180 |
|
|
function ctr_data_bits(ctr: std_ulogic_vector(7 downto 0)) return integer;
|
181 |
|
|
end package;
|
182 |
|
|
|
183 |
|
|
package body uart_pkg is
|
184 |
|
|
function parity(slv: std_ulogic_vector; even: boolean) return std_ulogic is
|
185 |
|
|
variable z: std_ulogic := '0';
|
186 |
|
|
begin
|
187 |
|
|
if not even then
|
188 |
|
|
z := '1';
|
189 |
|
|
end if;
|
190 |
|
|
for i in slv'range loop
|
191 |
|
|
z := z xor slv(i);
|
192 |
|
|
end loop;
|
193 |
|
|
return z;
|
194 |
|
|
end;
|
195 |
|
|
|
196 |
|
|
function parity(slv:std_ulogic_vector; even: std_ulogic) return std_ulogic is
|
197 |
|
|
variable z: boolean := false;
|
198 |
|
|
begin
|
199 |
|
|
if even = '1' then
|
200 |
|
|
z := true;
|
201 |
|
|
end if;
|
202 |
|
|
return parity(slv, z);
|
203 |
|
|
end;
|
204 |
|
|
|
205 |
|
|
function ctr_stop_bits(ctr: std_ulogic_vector(7 downto 0)) return integer is
|
206 |
|
|
variable ii: std_ulogic_vector(1 downto 0);
|
207 |
|
|
begin
|
208 |
|
|
ii := ctr(3 downto 2);
|
209 |
|
|
return to_integer(unsigned(ii));
|
210 |
|
|
end function;
|
211 |
|
|
|
212 |
|
|
function ctr_data_bits(ctr: std_ulogic_vector(7 downto 0)) return integer is
|
213 |
|
|
variable ii: std_ulogic_vector(3 downto 0);
|
214 |
|
|
begin
|
215 |
|
|
ii := ctr(7 downto 4);
|
216 |
|
|
return to_integer(unsigned(ii));
|
217 |
|
|
end function;
|
218 |
|
|
end;
|
219 |
|
|
|
220 |
|
|
library ieee, work;
|
221 |
|
|
use ieee.std_logic_1164.all;
|
222 |
|
|
use ieee.numeric_std.all;
|
223 |
|
|
use work.uart_pkg.all;
|
224 |
|
|
|
225 |
|
|
entity uart_top is
|
226 |
|
|
generic (
|
227 |
|
|
clock_frequency: positive; -- clock frequency of module clock
|
228 |
|
|
delay: time; -- gate delay for simulation purposes
|
229 |
|
|
asynchronous_reset: boolean; -- use asynchronous reset if true
|
230 |
|
|
baud: positive := 115200;
|
231 |
|
|
format: std_ulogic_vector(7 downto 0) := uart_8N1;
|
232 |
|
|
fifo_depth: natural := 0; -- FIFO depth, 0,1 = no FIFO
|
233 |
|
|
use_cfg: boolean := false; -- allow run time configuration of baud rate and format?
|
234 |
|
|
use_tx: boolean := true; -- instantiate TX functionality?
|
235 |
|
|
use_rx: boolean := true -- instantiate RX functionality?
|
236 |
|
|
);
|
237 |
|
|
port (
|
238 |
|
|
clk: in std_ulogic;
|
239 |
|
|
rst: in std_ulogic;
|
240 |
|
|
|
241 |
|
|
tx: out std_ulogic;
|
242 |
|
|
tx_fifo_full: out std_ulogic;
|
243 |
|
|
tx_fifo_empty: out std_ulogic;
|
244 |
|
|
tx_fifo_we: in std_ulogic;
|
245 |
|
|
tx_fifo_data: in std_ulogic_vector(7 downto 0);
|
246 |
|
|
|
247 |
|
|
rx: in std_ulogic;
|
248 |
|
|
rx_fifo_full: out std_ulogic;
|
249 |
|
|
rx_fifo_empty: out std_ulogic;
|
250 |
|
|
rx_fifo_re: in std_ulogic;
|
251 |
|
|
rx_fifo_data: out std_ulogic_vector(7 downto 0);
|
252 |
|
|
|
253 |
|
|
reg: in std_ulogic_vector(15 downto 0);
|
254 |
|
|
clock_reg_tx_we: in std_ulogic;
|
255 |
|
|
clock_reg_rx_we: in std_ulogic;
|
256 |
|
|
control_reg_we: in std_ulogic);
|
257 |
|
|
end entity;
|
258 |
|
|
|
259 |
|
|
architecture structural of uart_top is
|
260 |
|
|
constant g: uart_generics := (
|
261 |
|
|
clock_frequency => clock_frequency,
|
262 |
|
|
delay => delay,
|
263 |
|
|
asynchronous_reset => asynchronous_reset
|
264 |
|
|
);
|
265 |
|
|
constant tx_init: integer := g.clock_frequency / (baud * 16); -- 54 = 115200 @ 100 MHz
|
266 |
|
|
constant rx_init: positive := tx_init - 1; -- 50 = 115200 @ 100 MHz + Fudge Factor
|
267 |
|
|
constant N: positive := 8;
|
268 |
|
|
|
269 |
|
|
signal rx_ok, rx_nd, rx_push, rx_re: std_ulogic := '0';
|
270 |
|
|
signal rx_pushed: std_ulogic_vector(rx_fifo_data'range) := (others => '0');
|
271 |
|
|
signal tx_pop, tx_ok: std_ulogic := '0';
|
272 |
|
|
signal tx_popped: std_ulogic_vector(tx_fifo_data'range) := (others => '0');
|
273 |
|
|
signal tx_fifo_empty_b, rx_fifo_full_b: std_ulogic := '0';
|
274 |
|
|
|
275 |
|
|
signal tx_sample, tx_baud, tx_cr: std_ulogic := '0';
|
276 |
|
|
signal rx_sample, rx_baud, rx_cr, rx_we: std_ulogic := '0';
|
277 |
|
|
signal rx_fail: std_ulogic_vector(1 downto 0) := (others => '0');
|
278 |
|
|
signal rx_ok_buf: std_ulogic := '0';
|
279 |
|
|
signal do, do_c, do_n: std_ulogic_vector(rx_fifo_data'range) := (others => '0');
|
280 |
|
|
signal fail_c, fail_n: std_ulogic_vector(1 downto 0) := (others => '0');
|
281 |
|
|
signal nd_c, nd_n: std_ulogic := '0'; -- new data
|
282 |
|
|
|
283 |
|
|
begin
|
284 |
|
|
rx_ok_buf <= not (fail_c(0) or fail_c(1)) after g.delay;
|
285 |
|
|
rx_ok <= rx_ok_buf;
|
286 |
|
|
rx_pushed <= do after g.delay;
|
287 |
|
|
rx_nd <= nd_c and rx_ok_buf after g.delay; -- no new data if there are errors
|
288 |
|
|
rx_re <= rx_push;
|
289 |
|
|
|
290 |
|
|
process (clk, rst)
|
291 |
|
|
begin
|
292 |
|
|
if use_rx then
|
293 |
|
|
if rst = '1' and g.asynchronous_reset then
|
294 |
|
|
do_c <= (others => '0') after g.delay;
|
295 |
|
|
fail_c <= (others => '0') after g.delay;
|
296 |
|
|
nd_c <= '0' after g.delay;
|
297 |
|
|
elsif rising_edge(clk) then
|
298 |
|
|
if rst = '1' and not g.asynchronous_reset then
|
299 |
|
|
do_c <= (others => '0') after g.delay;
|
300 |
|
|
fail_c <= (others => '0') after g.delay;
|
301 |
|
|
nd_c <= '0' after g.delay;
|
302 |
|
|
else
|
303 |
|
|
do_c <= do_n after g.delay;
|
304 |
|
|
nd_c <= nd_n after g.delay;
|
305 |
|
|
fail_c <= fail_n after g.delay;
|
306 |
|
|
end if;
|
307 |
|
|
end if;
|
308 |
|
|
end if;
|
309 |
|
|
end process;
|
310 |
|
|
|
311 |
|
|
process (do_c, do, nd_c, rx_we, rx_re, fail_c, rx_fail)
|
312 |
|
|
begin
|
313 |
|
|
if use_tx then
|
314 |
|
|
do_n <= do_c after g.delay;
|
315 |
|
|
nd_n <= nd_c after g.delay;
|
316 |
|
|
fail_n <= fail_c after g.delay;
|
317 |
|
|
if rx_we = '1' then
|
318 |
|
|
nd_n <= '1' after g.delay;
|
319 |
|
|
do_n <= do after g.delay;
|
320 |
|
|
fail_n <= rx_fail after g.delay;
|
321 |
|
|
elsif rx_re = '1' then
|
322 |
|
|
nd_n <= '0' after g.delay;
|
323 |
|
|
end if;
|
324 |
|
|
end if;
|
325 |
|
|
end process;
|
326 |
|
|
|
327 |
|
|
ugen0: if fifo_depth <= 1 generate
|
328 |
|
|
tx_pop <= tx_fifo_we;
|
329 |
|
|
tx_popped <= tx_fifo_data;
|
330 |
|
|
tx_fifo_full <= not tx_ok;
|
331 |
|
|
tx_fifo_empty <= tx_ok;
|
332 |
|
|
|
333 |
|
|
rx_push <= rx_fifo_re;
|
334 |
|
|
rx_fifo_data <= rx_pushed;
|
335 |
|
|
rx_fifo_full <= rx_nd;
|
336 |
|
|
rx_fifo_empty <= not rx_nd;
|
337 |
|
|
end generate;
|
338 |
|
|
|
339 |
|
|
ugen1: if fifo_depth > 1 generate
|
340 |
|
|
tx_fifo_empty <= tx_fifo_empty_b;
|
341 |
|
|
tx_pop <= tx_ok and not tx_fifo_empty_b;
|
342 |
|
|
|
343 |
|
|
ugen1_fifo_tx: if use_tx generate
|
344 |
|
|
uart_fifo_tx_0: work.uart_pkg.uart_fifo
|
345 |
|
|
generic map(g => g,
|
346 |
|
|
data_width => tx_fifo_data'length,
|
347 |
|
|
fifo_depth => fifo_depth)
|
348 |
|
|
port map (clk => clk, rst => rst,
|
349 |
|
|
di => tx_fifo_data,
|
350 |
|
|
we => tx_fifo_we,
|
351 |
|
|
re => tx_pop,
|
352 |
|
|
do => tx_popped,
|
353 |
|
|
full => tx_fifo_full,
|
354 |
|
|
empty => tx_fifo_empty_b);
|
355 |
|
|
end generate;
|
356 |
|
|
|
357 |
|
|
rx_fifo_full <= rx_fifo_full_b;
|
358 |
|
|
rx_push <= rx_nd and rx_ok and not rx_fifo_full_b;
|
359 |
|
|
ugen1_fifo_rx: if use_rx generate
|
360 |
|
|
uart_fifo_rx_0: work.uart_pkg.uart_fifo
|
361 |
|
|
generic map(g => g,
|
362 |
|
|
data_width => rx_fifo_data'length,
|
363 |
|
|
fifo_depth => fifo_depth,
|
364 |
|
|
read_first => false)
|
365 |
|
|
port map (clk => clk, rst => rst,
|
366 |
|
|
di => rx_pushed,
|
367 |
|
|
we => rx_push,
|
368 |
|
|
re => rx_fifo_re,
|
369 |
|
|
do => rx_fifo_data,
|
370 |
|
|
full => rx_fifo_full_b, empty => rx_fifo_empty);
|
371 |
|
|
end generate;
|
372 |
|
|
end generate;
|
373 |
|
|
|
374 |
|
|
uart_tx_gen: if use_tx generate
|
375 |
|
|
baud_tx: work.uart_pkg.uart_baud
|
376 |
|
|
generic map(g => g, init => tx_init, N => reg'length, D => 3)
|
377 |
|
|
port map(
|
378 |
|
|
clk => clk,
|
379 |
|
|
rst => rst,
|
380 |
|
|
we => clock_reg_tx_we,
|
381 |
|
|
cnt => reg, -- 0x32/50 is 1152000 @ 100MHz clk
|
382 |
|
|
cr => tx_cr,
|
383 |
|
|
sample => tx_sample,
|
384 |
|
|
baud => tx_baud);
|
385 |
|
|
|
386 |
|
|
tx_0: work.uart_pkg.uart_tx
|
387 |
|
|
generic map(g => g, N => N, format => format, use_cfg => use_cfg)
|
388 |
|
|
port map(
|
389 |
|
|
clk => clk,
|
390 |
|
|
rst => rst,
|
391 |
|
|
|
392 |
|
|
cr => tx_cr,
|
393 |
|
|
baud => tx_baud,
|
394 |
|
|
ok => tx_ok,
|
395 |
|
|
we => tx_pop,
|
396 |
|
|
ctr => reg(reg'high downto reg'high - 7),
|
397 |
|
|
ctr_we => control_reg_we,
|
398 |
|
|
di => tx_popped,
|
399 |
|
|
tx => tx);
|
400 |
|
|
end generate;
|
401 |
|
|
|
402 |
|
|
uart_rx_gen: if use_rx generate
|
403 |
|
|
baud_rx: work.uart_pkg.uart_baud
|
404 |
|
|
generic map(g => g, init => rx_init, N => reg'length, D => 3)
|
405 |
|
|
port map(
|
406 |
|
|
clk => clk,
|
407 |
|
|
rst => rst,
|
408 |
|
|
we => clock_reg_rx_we,
|
409 |
|
|
cnt => reg,
|
410 |
|
|
cr => rx_cr,
|
411 |
|
|
sample => rx_sample,
|
412 |
|
|
baud => rx_baud);
|
413 |
|
|
|
414 |
|
|
rx_0: work.uart_pkg.uart_rx
|
415 |
|
|
generic map(g => g, N => N, D => 3, format => format, use_cfg => use_cfg)
|
416 |
|
|
port map(
|
417 |
|
|
clk => clk,
|
418 |
|
|
rst => rst,
|
419 |
|
|
|
420 |
|
|
baud => rx_baud,
|
421 |
|
|
sample => rx_sample,
|
422 |
|
|
cr => rx_cr,
|
423 |
|
|
failed => rx_fail,
|
424 |
|
|
ctr => reg(reg'low + 7 downto reg'low),
|
425 |
|
|
ctr_we => control_reg_we,
|
426 |
|
|
we => rx_we,
|
427 |
|
|
do => do,
|
428 |
|
|
rx => rx);
|
429 |
|
|
end generate;
|
430 |
|
|
end architecture;
|
431 |
|
|
|
432 |
|
|
library ieee, work;
|
433 |
|
|
use ieee.std_logic_1164.all;
|
434 |
|
|
use ieee.numeric_std.all;
|
435 |
|
|
use work.uart_pkg.all;
|
436 |
|
|
|
437 |
|
|
entity uart_fifo is
|
438 |
|
|
generic (g: uart_generics;
|
439 |
|
|
data_width: positive;
|
440 |
|
|
fifo_depth: positive;
|
441 |
|
|
read_first: boolean := true);
|
442 |
|
|
port (
|
443 |
|
|
clk: in std_ulogic;
|
444 |
|
|
rst: in std_ulogic;
|
445 |
|
|
di: in std_ulogic_vector(data_width - 1 downto 0);
|
446 |
|
|
we: in std_ulogic;
|
447 |
|
|
re: in std_ulogic;
|
448 |
|
|
do: out std_ulogic_vector(data_width - 1 downto 0);
|
449 |
|
|
|
450 |
|
|
-- optional
|
451 |
|
|
full: out std_ulogic := '0';
|
452 |
|
|
empty: out std_ulogic := '1');
|
453 |
|
|
end uart_fifo;
|
454 |
|
|
|
455 |
|
|
architecture behavior of uart_fifo is
|
456 |
|
|
type fifo_data_t is array (0 to fifo_depth - 1) of std_ulogic_vector(di'range);
|
457 |
|
|
signal data: fifo_data_t := (others => (others => '0'));
|
458 |
|
|
function rindex_init return integer is
|
459 |
|
|
begin
|
460 |
|
|
if read_first then
|
461 |
|
|
return 0;
|
462 |
|
|
end if;
|
463 |
|
|
return fifo_depth - 1;
|
464 |
|
|
end function;
|
465 |
|
|
|
466 |
|
|
signal count: integer range 0 to fifo_depth := 0;
|
467 |
|
|
signal windex: integer range 0 to fifo_depth - 1 := 0;
|
468 |
|
|
signal rindex: integer range 0 to fifo_depth - 1 := rindex_init;
|
469 |
|
|
|
470 |
|
|
signal is_full: std_ulogic := '0';
|
471 |
|
|
signal is_empty: std_ulogic := '1';
|
472 |
|
|
begin
|
473 |
|
|
do <= data(rindex) after g.delay;
|
474 |
|
|
full <= is_full after g.delay; -- buffer these bad boys
|
475 |
|
|
empty <= is_empty after g.delay;
|
476 |
|
|
is_full <= '1' when count = fifo_depth else '0' after g.delay;
|
477 |
|
|
is_empty <= '1' when count = 0 else '0' after g.delay;
|
478 |
|
|
|
479 |
|
|
process (rst, clk) is
|
480 |
|
|
begin
|
481 |
|
|
if rst = '1' and g.asynchronous_reset then
|
482 |
|
|
windex <= 0 after g.delay;
|
483 |
|
|
count <= 0 after g.delay;
|
484 |
|
|
rindex <= rindex_init after g.delay;
|
485 |
|
|
elsif rising_edge(clk) then
|
486 |
|
|
if rst = '1' and not g.asynchronous_reset then
|
487 |
|
|
windex <= 0 after g.delay;
|
488 |
|
|
count <= 0 after g.delay;
|
489 |
|
|
rindex <= rindex_init after g.delay;
|
490 |
|
|
else
|
491 |
|
|
if we = '1' and re = '0' then
|
492 |
|
|
if is_full = '0' then
|
493 |
|
|
count <= count + 1 after g.delay;
|
494 |
|
|
end if;
|
495 |
|
|
elsif we = '0' and re = '1' then
|
496 |
|
|
if is_empty = '0' then
|
497 |
|
|
count <= count - 1 after g.delay;
|
498 |
|
|
end if;
|
499 |
|
|
end if;
|
500 |
|
|
|
501 |
|
|
if re = '1' and is_empty = '0' then
|
502 |
|
|
if rindex = (fifo_depth - 1) then
|
503 |
|
|
rindex <= 0 after g.delay;
|
504 |
|
|
else
|
505 |
|
|
rindex <= rindex + 1 after g.delay;
|
506 |
|
|
end if;
|
507 |
|
|
end if;
|
508 |
|
|
|
509 |
|
|
if we = '1' and is_full = '0' then
|
510 |
|
|
if windex = (fifo_depth - 1) then
|
511 |
|
|
windex <= 0 after g.delay;
|
512 |
|
|
else
|
513 |
|
|
windex <= windex + 1 after g.delay;
|
514 |
|
|
end if;
|
515 |
|
|
data(windex) <= di after g.delay;
|
516 |
|
|
end if;
|
517 |
|
|
end if;
|
518 |
|
|
end if;
|
519 |
|
|
end process;
|
520 |
|
|
end behavior;
|
521 |
|
|
|
522 |
|
|
-- This module generates a sample pulse and a baud pulse. The sample rate
|
523 |
|
|
-- can be controlled by setting 'cnt'. This sample rate is then divided by
|
524 |
|
|
-- 2^(D+1) to get the baud.
|
525 |
|
|
library ieee, work;
|
526 |
|
|
use ieee.std_logic_1164.all;
|
527 |
|
|
use ieee.numeric_std.all;
|
528 |
|
|
use work.uart_pkg.all;
|
529 |
|
|
|
530 |
|
|
entity uart_baud is
|
531 |
|
|
generic (g: uart_generics; init: integer; N: positive := 16; D: positive := 3);
|
532 |
|
|
port (
|
533 |
|
|
clk: in std_ulogic;
|
534 |
|
|
rst: in std_ulogic;
|
535 |
|
|
|
536 |
|
|
we: in std_ulogic;
|
537 |
|
|
cnt: in std_ulogic_vector(N - 1 downto 0);
|
538 |
|
|
cr: in std_ulogic := '0';
|
539 |
|
|
|
540 |
|
|
sample: out std_ulogic; -- sample pulse
|
541 |
|
|
baud: out std_ulogic); -- baud (sample rate / 2^(D+1))
|
542 |
|
|
end entity;
|
543 |
|
|
|
544 |
|
|
architecture behaviour of uart_baud is
|
545 |
|
|
constant cmp_init: std_ulogic_vector := std_ulogic_vector(to_unsigned(init, cnt'length));
|
546 |
|
|
signal cmp_c, cmp_n: std_ulogic_vector(cnt'range) := cmp_init;
|
547 |
|
|
signal cnt_c, cnt_n: std_ulogic_vector(cnt'range) := (others => '0');
|
548 |
|
|
signal div_c, div_n: std_ulogic_vector(D downto 0) := (others => '0');
|
549 |
|
|
signal pul_c, pul_n: std_ulogic := '0';
|
550 |
|
|
signal pulse: std_ulogic := '0';
|
551 |
|
|
begin
|
552 |
|
|
pulse <= (not cr) and pul_n and (pul_c xor pul_n) after g.delay; -- rising edge detector
|
553 |
|
|
baud <= (not cr) and div_n(div_n'high) and (div_c(div_c'high) xor div_n(div_n'high)) after g.delay;
|
554 |
|
|
sample <= pulse;
|
555 |
|
|
|
556 |
|
|
process (clk, rst)
|
557 |
|
|
begin
|
558 |
|
|
if rst = '1' and g.asynchronous_reset then
|
559 |
|
|
cmp_c <= cmp_init after g.delay;
|
560 |
|
|
cnt_c <= (others => '0') after g.delay;
|
561 |
|
|
div_c <= (others => '0') after g.delay;
|
562 |
|
|
pul_c <= '0' after g.delay;
|
563 |
|
|
elsif rising_edge(clk) then
|
564 |
|
|
if rst = '1' and not g.asynchronous_reset then
|
565 |
|
|
cmp_c <= cmp_init after g.delay;
|
566 |
|
|
cnt_c <= (others => '0') after g.delay;
|
567 |
|
|
div_c <= (others => '0') after g.delay;
|
568 |
|
|
pul_c <= '0' after g.delay;
|
569 |
|
|
else
|
570 |
|
|
cmp_c <= cmp_n after g.delay;
|
571 |
|
|
cnt_c <= cnt_n after g.delay;
|
572 |
|
|
div_c <= div_n after g.delay;
|
573 |
|
|
pul_c <= pul_n after g.delay;
|
574 |
|
|
end if;
|
575 |
|
|
end if;
|
576 |
|
|
end process;
|
577 |
|
|
|
578 |
|
|
process (pulse, div_c, cr, we)
|
579 |
|
|
begin
|
580 |
|
|
div_n <= div_c after g.delay;
|
581 |
|
|
if cr = '1' or we = '1' then
|
582 |
|
|
div_n <= (others => '0') after g.delay;
|
583 |
|
|
div_n(div_n'high) <= '1' after g.delay;
|
584 |
|
|
elsif pulse = '1' then
|
585 |
|
|
div_n <= std_ulogic_vector(unsigned(div_c) + 1) after g.delay;
|
586 |
|
|
end if;
|
587 |
|
|
end process;
|
588 |
|
|
|
589 |
|
|
process (cmp_c, cnt_c, we, cnt, cr)
|
590 |
|
|
begin
|
591 |
|
|
cmp_n <= cmp_c after g.delay;
|
592 |
|
|
cnt_n <= cnt_c after g.delay;
|
593 |
|
|
|
594 |
|
|
if we = '1' then
|
595 |
|
|
cmp_n <= cnt after g.delay;
|
596 |
|
|
cnt_n <= (others => '0') after g.delay;
|
597 |
|
|
pul_n <= '0' after g.delay;
|
598 |
|
|
elsif cr = '1' then
|
599 |
|
|
cnt_n <= (others => '0') after g.delay;
|
600 |
|
|
pul_n <= '0' after g.delay;
|
601 |
|
|
elsif cnt_c = cmp_c then
|
602 |
|
|
cnt_n <= (others => '0') after g.delay;
|
603 |
|
|
pul_n <= '1' after g.delay;
|
604 |
|
|
else
|
605 |
|
|
cnt_n <= std_ulogic_vector(unsigned(cnt_c) + 1) after g.delay;
|
606 |
|
|
pul_n <= '0' after g.delay;
|
607 |
|
|
end if;
|
608 |
|
|
end process;
|
609 |
|
|
end architecture;
|
610 |
|
|
|
611 |
|
|
library ieee, work;
|
612 |
|
|
use ieee.std_logic_1164.all;
|
613 |
|
|
use work.uart_pkg.all;
|
614 |
|
|
|
615 |
|
|
entity uart_rx is
|
616 |
|
|
generic (
|
617 |
|
|
g: uart_generics;
|
618 |
|
|
N: positive;
|
619 |
|
|
D: positive;
|
620 |
|
|
format: std_ulogic_vector(7 downto 0) := uart_8N1;
|
621 |
|
|
use_cfg: boolean);
|
622 |
|
|
port (
|
623 |
|
|
clk: in std_ulogic;
|
624 |
|
|
rst: in std_ulogic;
|
625 |
|
|
cr: out std_ulogic; -- reset sample/baud clock when start bit detected
|
626 |
|
|
baud: in std_ulogic;
|
627 |
|
|
sample: in std_ulogic; -- pulses at baud and sample rate
|
628 |
|
|
failed: out std_ulogic_vector(1 downto 0);
|
629 |
|
|
ctr: in std_ulogic_vector(7 downto 0);
|
630 |
|
|
ctr_we: in std_ulogic;
|
631 |
|
|
rx: in std_ulogic; -- physical RX signal
|
632 |
|
|
we: out std_ulogic; -- write 'do' to output register
|
633 |
|
|
do: out std_ulogic_vector(N - 1 downto 0));
|
634 |
|
|
end entity;
|
635 |
|
|
|
636 |
|
|
architecture behaviour of uart_rx is
|
637 |
|
|
type state is (reset, idle, start, data, parity, stop, done);
|
638 |
|
|
signal state_c, state_n: state;
|
639 |
|
|
signal ctr_c, ctr_n: std_ulogic_vector(ctr'range);
|
640 |
|
|
signal rx_c, rx_n: std_ulogic_vector(do'range);
|
641 |
|
|
signal sr_c, sr_n: std_ulogic_vector(D - 1 downto 0);
|
642 |
|
|
signal rx_sync: std_ulogic;
|
643 |
|
|
signal count_c, count_n: integer range 0 to N - 1;
|
644 |
|
|
signal majority: std_ulogic;
|
645 |
|
|
signal fail_c, fail_n: std_ulogic_vector(1 downto 0);
|
646 |
|
|
begin
|
647 |
|
|
do <= rx_c after g.delay;
|
648 |
|
|
failed <= fail_c after g.delay;
|
649 |
|
|
|
650 |
|
|
assert D < 4 severity failure;
|
651 |
|
|
|
652 |
|
|
majority_1: if D = 1 generate
|
653 |
|
|
majority <= sr_c(0) after g.delay;
|
654 |
|
|
end generate;
|
655 |
|
|
|
656 |
|
|
majority_2: if D = 2 generate
|
657 |
|
|
majority <= sr_c(0) and sr_c(1) after g.delay; -- even wins is 'sr_c(0) or sr_c(1)'
|
658 |
|
|
end generate;
|
659 |
|
|
|
660 |
|
|
majority_3: if D = 3 generate
|
661 |
|
|
majority <= (sr_c(0) and sr_c(1)) or (sr_c(1) and sr_c(2)) or (sr_c(0) and sr_c(2)) after g.delay;
|
662 |
|
|
end generate;
|
663 |
|
|
|
664 |
|
|
process (clk, rst)
|
665 |
|
|
procedure reset is
|
666 |
|
|
begin
|
667 |
|
|
rx_c <= (others => '0') after g.delay;
|
668 |
|
|
sr_c <= (others => '0') after g.delay;
|
669 |
|
|
fail_c <= (others => '0') after g.delay;
|
670 |
|
|
state_c <= reset after g.delay;
|
671 |
|
|
count_c <= 0 after g.delay;
|
672 |
|
|
rx_sync <= '0' after g.delay;
|
673 |
|
|
if use_cfg then ctr_c <= (others => '0') after g.delay; end if;
|
674 |
|
|
end procedure;
|
675 |
|
|
begin
|
676 |
|
|
if rst = '1' and g.asynchronous_reset then
|
677 |
|
|
reset;
|
678 |
|
|
elsif rising_edge(clk) then
|
679 |
|
|
if rst = '1' and not g.asynchronous_reset then
|
680 |
|
|
reset;
|
681 |
|
|
else
|
682 |
|
|
rx_c <= rx_n after g.delay;
|
683 |
|
|
sr_c <= sr_n after g.delay;
|
684 |
|
|
state_c <= state_n after g.delay;
|
685 |
|
|
count_c <= count_n after g.delay;
|
686 |
|
|
fail_c <= fail_n after g.delay;
|
687 |
|
|
rx_sync <= rx after g.delay;
|
688 |
|
|
if use_cfg then ctr_c <= ctr_n after g.delay; end if;
|
689 |
|
|
end if;
|
690 |
|
|
end if;
|
691 |
|
|
if not use_cfg then ctr_c <= format after g.delay; end if;
|
692 |
|
|
end process;
|
693 |
|
|
|
694 |
|
|
process (rx_c, sr_c, ctr_c, ctr_we, ctr, state_c, rx_sync, baud, sample, count_c, fail_c, majority)
|
695 |
|
|
begin
|
696 |
|
|
fail_n <= fail_c after g.delay;
|
697 |
|
|
rx_n <= rx_c after g.delay;
|
698 |
|
|
sr_n <= sr_c after g.delay;
|
699 |
|
|
state_n <= state_c after g.delay;
|
700 |
|
|
we <= '0' after g.delay;
|
701 |
|
|
cr <= '0' after g.delay;
|
702 |
|
|
count_n <= count_c after g.delay;
|
703 |
|
|
if use_cfg then ctr_n <= ctr_c after g.delay; end if;
|
704 |
|
|
|
705 |
|
|
if sample = '1' then
|
706 |
|
|
sr_n <= sr_c(sr_c'high - 1 downto sr_c'low) & rx_sync after g.delay;
|
707 |
|
|
end if;
|
708 |
|
|
|
709 |
|
|
case state_c is
|
710 |
|
|
when reset =>
|
711 |
|
|
rx_n <= (others => '0') after g.delay;
|
712 |
|
|
sr_n <= (others => '0') after g.delay;
|
713 |
|
|
fail_n <= (others => '0') after g.delay;
|
714 |
|
|
if use_cfg then
|
715 |
|
|
ctr_n <= format after g.delay; -- 8 bits, 1 stop bit, parity off
|
716 |
|
|
end if;
|
717 |
|
|
state_n <= idle after g.delay;
|
718 |
|
|
when idle =>
|
719 |
|
|
count_n <= 0 after g.delay;
|
720 |
|
|
if rx_sync = '0' then -- and majority = '1' then
|
721 |
|
|
state_n <= start after g.delay;
|
722 |
|
|
cr <= '1' after g.delay;
|
723 |
|
|
sr_n <= (others => '0') after g.delay;
|
724 |
|
|
fail_n <= (others => '0') after g.delay;
|
725 |
|
|
end if;
|
726 |
|
|
when start =>
|
727 |
|
|
if baud = '1' then
|
728 |
|
|
if majority /= '0' then
|
729 |
|
|
state_n <= done after g.delay; -- frame error
|
730 |
|
|
fail_n(0) <= '1' after g.delay;
|
731 |
|
|
else
|
732 |
|
|
state_n <= data after g.delay;
|
733 |
|
|
end if;
|
734 |
|
|
sr_n <= (others => '0') after g.delay;
|
735 |
|
|
end if;
|
736 |
|
|
when data =>
|
737 |
|
|
rx_n(count_c) <= majority after g.delay;
|
738 |
|
|
if baud = '1' then
|
739 |
|
|
if count_c = (ctr_data_bits(ctr_c) - 1) then
|
740 |
|
|
count_n <= 0 after g.delay;
|
741 |
|
|
if ctr_c(ctr_use_parity) = '1' then
|
742 |
|
|
state_n <= parity after g.delay;
|
743 |
|
|
else
|
744 |
|
|
state_n <= stop after g.delay;
|
745 |
|
|
end if;
|
746 |
|
|
else
|
747 |
|
|
count_n <= count_c + 1 after g.delay;
|
748 |
|
|
end if;
|
749 |
|
|
sr_n <= (others => '0') after g.delay;
|
750 |
|
|
end if;
|
751 |
|
|
when parity =>
|
752 |
|
|
if baud = '1' then
|
753 |
|
|
if (ctr_c(ctr_use_parity) = '1') and (majority /= parity(rx_c, ctr_c(ctr_even_parity))) then
|
754 |
|
|
fail_n(1) <= '1' after g.delay; -- parity error, still process stop bits
|
755 |
|
|
end if;
|
756 |
|
|
state_n <= stop after g.delay;
|
757 |
|
|
sr_n <= (others => '0') after g.delay;
|
758 |
|
|
end if;
|
759 |
|
|
when stop =>
|
760 |
|
|
if baud = '1' then
|
761 |
|
|
if majority /= '1' then
|
762 |
|
|
state_n <= done after g.delay; -- frame error
|
763 |
|
|
fail_n(0) <= '1' after g.delay;
|
764 |
|
|
elsif count_c = ctr_stop_bits(ctr_c) then
|
765 |
|
|
state_n <= done after g.delay;
|
766 |
|
|
else
|
767 |
|
|
count_n <= count_c + 1 after g.delay;
|
768 |
|
|
end if;
|
769 |
|
|
end if;
|
770 |
|
|
when done => -- The consuming module needs to store rx_c/fail_c immediately
|
771 |
|
|
we <= '1' after g.delay;
|
772 |
|
|
state_n <= idle after g.delay;
|
773 |
|
|
end case;
|
774 |
|
|
|
775 |
|
|
if ctr_we = '1' then
|
776 |
|
|
if not (state_c = idle or state_c = done or state_c = reset) then
|
777 |
|
|
rx_n <= (others => '0') after g.delay;
|
778 |
|
|
state_n <= idle after g.delay;
|
779 |
|
|
we <= '1' after g.delay;
|
780 |
|
|
fail_n(0) <= '1' after g.delay; -- frame error!
|
781 |
|
|
end if;
|
782 |
|
|
ctr_n <= ctr after g.delay;
|
783 |
|
|
end if;
|
784 |
|
|
end process;
|
785 |
|
|
end architecture;
|
786 |
|
|
|
787 |
|
|
library ieee, work;
|
788 |
|
|
use ieee.std_logic_1164.all;
|
789 |
|
|
use work.uart_pkg.all;
|
790 |
|
|
|
791 |
|
|
entity uart_tx is
|
792 |
|
|
generic (
|
793 |
|
|
g: uart_generics;
|
794 |
|
|
N: positive;
|
795 |
|
|
format: std_ulogic_vector(7 downto 0) := uart_8N1;
|
796 |
|
|
use_cfg: boolean);
|
797 |
|
|
port (
|
798 |
|
|
clk: in std_ulogic;
|
799 |
|
|
rst: in std_ulogic;
|
800 |
|
|
cr: out std_ulogic;
|
801 |
|
|
baud: in std_ulogic; -- Pulse at baud
|
802 |
|
|
tx: out std_ulogic;
|
803 |
|
|
ok: out std_ulogic;
|
804 |
|
|
ctr: in std_ulogic_vector(format'range);
|
805 |
|
|
ctr_we: in std_ulogic;
|
806 |
|
|
we: in std_ulogic; -- di write enable
|
807 |
|
|
di: in std_ulogic_vector(N - 1 downto 0));
|
808 |
|
|
end entity;
|
809 |
|
|
|
810 |
|
|
architecture behaviour of uart_tx is
|
811 |
|
|
type state is (reset, idle, start, data, parity, stop);
|
812 |
|
|
signal state_c, state_n: state;
|
813 |
|
|
signal di_c, di_n: std_ulogic_vector(di'range);
|
814 |
|
|
signal ctr_c, ctr_n: std_ulogic_vector(ctr'range);
|
815 |
|
|
signal busy: std_ulogic;
|
816 |
|
|
signal parity_c, parity_n: std_ulogic;
|
817 |
|
|
signal count_c, count_n: integer range 0 to 15;
|
818 |
|
|
begin
|
819 |
|
|
busy <= '0' when state_c = idle else '1' after g.delay;
|
820 |
|
|
ok <= not busy after g.delay;
|
821 |
|
|
|
822 |
|
|
process (clk, rst)
|
823 |
|
|
procedure reset is
|
824 |
|
|
begin
|
825 |
|
|
di_c <= (others => '0') after g.delay;
|
826 |
|
|
state_c <= reset after g.delay;
|
827 |
|
|
parity_c <= '0' after g.delay;
|
828 |
|
|
count_c <= 0 after g.delay;
|
829 |
|
|
if use_cfg then ctr_c <= (others => '0') after g.delay; end if;
|
830 |
|
|
end procedure;
|
831 |
|
|
begin
|
832 |
|
|
if rst = '1' and g.asynchronous_reset then
|
833 |
|
|
reset;
|
834 |
|
|
elsif rising_edge(clk) then
|
835 |
|
|
if rst = '1' and not g.asynchronous_reset then
|
836 |
|
|
reset;
|
837 |
|
|
else
|
838 |
|
|
di_c <= di_n after g.delay;
|
839 |
|
|
state_c <= state_n after g.delay;
|
840 |
|
|
parity_c <= parity_n after g.delay;
|
841 |
|
|
count_c <= count_n after g.delay;
|
842 |
|
|
if use_cfg then ctr_c <= ctr_n after g.delay; end if;
|
843 |
|
|
end if;
|
844 |
|
|
end if;
|
845 |
|
|
if not use_cfg then ctr_c <= format after g.delay; end if;
|
846 |
|
|
end process;
|
847 |
|
|
|
848 |
|
|
process (di_c, di, ctr_c, ctr_we, ctr, state_c, we, baud, parity_c, count_c)
|
849 |
|
|
begin
|
850 |
|
|
count_n <= count_c after g.delay;
|
851 |
|
|
state_n <= state_c after g.delay;
|
852 |
|
|
di_n <= di_c after g.delay;
|
853 |
|
|
if use_cfg then ctr_n <= ctr_c after g.delay; end if;
|
854 |
|
|
tx <= '1' after g.delay;
|
855 |
|
|
cr <= '0';
|
856 |
|
|
|
857 |
|
|
if ctr_c(ctr_use_parity) = '1' then
|
858 |
|
|
parity_n <= parity(di_c, ctr_c(ctr_even_parity)) after g.delay;
|
859 |
|
|
else
|
860 |
|
|
parity_n <= '0' after g.delay;
|
861 |
|
|
end if;
|
862 |
|
|
|
863 |
|
|
case state_c is
|
864 |
|
|
when reset =>
|
865 |
|
|
state_n <= idle after g.delay;
|
866 |
|
|
ctr_n <= format after g.delay; -- 8 bits, 1 stop bit, parity off
|
867 |
|
|
count_n <= 0 after g.delay;
|
868 |
|
|
parity_n <= '0' after g.delay;
|
869 |
|
|
di_n <= (others => '0') after g.delay;
|
870 |
|
|
when idle =>
|
871 |
|
|
count_n <= 0 after g.delay;
|
872 |
|
|
if use_cfg and ctr_we = '1' then -- NB. We can either lose data, or control writes
|
873 |
|
|
ctr_n <= ctr after g.delay;
|
874 |
|
|
elsif we = '1' then
|
875 |
|
|
di_n <= di after g.delay;
|
876 |
|
|
cr <= '1';
|
877 |
|
|
state_n <= start after g.delay;
|
878 |
|
|
end if;
|
879 |
|
|
when start =>
|
880 |
|
|
tx <= '0' after g.delay;
|
881 |
|
|
if baud = '1' then
|
882 |
|
|
state_n <= data after g.delay;
|
883 |
|
|
end if;
|
884 |
|
|
when data =>
|
885 |
|
|
tx <= di_c(count_c) after g.delay;
|
886 |
|
|
if baud = '1' then
|
887 |
|
|
if count_c = (ctr_data_bits(ctr_c) - 1) then
|
888 |
|
|
count_n <= 0 after g.delay;
|
889 |
|
|
if ctr_c(ctr_use_parity) = '1' then
|
890 |
|
|
state_n <= parity after g.delay;
|
891 |
|
|
else
|
892 |
|
|
state_n <= stop after g.delay;
|
893 |
|
|
end if;
|
894 |
|
|
else
|
895 |
|
|
count_n <= count_c + 1 after g.delay;
|
896 |
|
|
end if;
|
897 |
|
|
end if;
|
898 |
|
|
when parity =>
|
899 |
|
|
tx <= parity_c after g.delay;
|
900 |
|
|
if baud = '1' then
|
901 |
|
|
state_n <= stop after g.delay;
|
902 |
|
|
end if;
|
903 |
|
|
when stop =>
|
904 |
|
|
tx <= '1' after g.delay;
|
905 |
|
|
if baud = '1' then
|
906 |
|
|
if count_c = ctr_stop_bits(ctr_c) then
|
907 |
|
|
count_n <= 0 after g.delay;
|
908 |
|
|
state_n <= idle after g.delay;
|
909 |
|
|
else
|
910 |
|
|
count_n <= count_c + 1 after g.delay;
|
911 |
|
|
end if;
|
912 |
|
|
end if;
|
913 |
|
|
end case;
|
914 |
|
|
end process;
|
915 |
|
|
end architecture;
|
916 |
|
|
|
917 |
|
|
library ieee, work;
|
918 |
|
|
use ieee.std_logic_1164.all;
|
919 |
|
|
use ieee.numeric_std.all;
|
920 |
|
|
use work.uart_pkg.all;
|
921 |
|
|
|
922 |
|
|
entity uart_tb is
|
923 |
|
|
generic(g: uart_generics);
|
924 |
|
|
end entity;
|
925 |
|
|
|
926 |
|
|
architecture testing of uart_tb is
|
927 |
|
|
constant clock_period: time := 1000 ms / g.clock_frequency;
|
928 |
|
|
constant fifo_depth: natural := 8;
|
929 |
|
|
signal rst, clk: std_ulogic := '1';
|
930 |
|
|
signal stop: boolean := false;
|
931 |
|
|
signal loopback: boolean := true;
|
932 |
|
|
signal tx, rx: std_ulogic;
|
933 |
|
|
signal di, do: std_ulogic_vector(7 downto 0);
|
934 |
|
|
signal reg: std_ulogic_vector(15 downto 0);
|
935 |
|
|
signal clock_reg_tx_we: std_ulogic;
|
936 |
|
|
signal clock_reg_rx_we: std_ulogic;
|
937 |
|
|
signal control_reg_we: std_ulogic;
|
938 |
|
|
|
939 |
|
|
signal tx_fifo_full: std_ulogic;
|
940 |
|
|
signal tx_fifo_empty: std_ulogic;
|
941 |
|
|
signal tx_fifo_we: std_ulogic := '0';
|
942 |
|
|
signal rx_fifo_full: std_ulogic;
|
943 |
|
|
signal rx_fifo_empty: std_ulogic;
|
944 |
|
|
signal rx_fifo_re: std_ulogic := '0';
|
945 |
|
|
begin
|
946 |
|
|
-- duration: process begin wait for 20000 us; stop <= true; wait; end process;
|
947 |
|
|
clk_process: process
|
948 |
|
|
begin
|
949 |
|
|
rst <= '1';
|
950 |
|
|
wait for clock_period * 5;
|
951 |
|
|
rst <= '0';
|
952 |
|
|
while not stop loop
|
953 |
|
|
clk <= '1';
|
954 |
|
|
wait for clock_period / 2;
|
955 |
|
|
clk <= '0';
|
956 |
|
|
wait for clock_period / 2;
|
957 |
|
|
end loop;
|
958 |
|
|
wait;
|
959 |
|
|
end process;
|
960 |
|
|
|
961 |
|
|
stimulus: process
|
962 |
|
|
procedure write(data: std_ulogic_vector(di'range)) is
|
963 |
|
|
begin
|
964 |
|
|
wait for clock_period * 1;
|
965 |
|
|
while tx_fifo_full = '1' loop
|
966 |
|
|
wait for clock_period;
|
967 |
|
|
end loop;
|
968 |
|
|
di <= data;
|
969 |
|
|
tx_fifo_we <= '1';
|
970 |
|
|
wait for clock_period;
|
971 |
|
|
tx_fifo_we <= '0';
|
972 |
|
|
end procedure;
|
973 |
|
|
begin
|
974 |
|
|
di <= x"00";
|
975 |
|
|
wait until rst = '0';
|
976 |
|
|
wait for clock_period;
|
977 |
|
|
reg <= x"8080";
|
978 |
|
|
control_reg_we <= '1';
|
979 |
|
|
wait for clock_period;
|
980 |
|
|
control_reg_we <= '0';
|
981 |
|
|
reg <= x"0036";
|
982 |
|
|
clock_reg_tx_we <= '1';
|
983 |
|
|
wait for clock_period;
|
984 |
|
|
clock_reg_tx_we <= '0';
|
985 |
|
|
clock_reg_rx_we <= '1';
|
986 |
|
|
reg <= x"0035";
|
987 |
|
|
wait for clock_period;
|
988 |
|
|
clock_reg_rx_we <= '0';
|
989 |
|
|
wait for clock_period;
|
990 |
|
|
|
991 |
|
|
write(x"AA");
|
992 |
|
|
write(x"BB");
|
993 |
|
|
write(x"CC");
|
994 |
|
|
write(x"DD");
|
995 |
|
|
write(x"EE");
|
996 |
|
|
write(x"FF");
|
997 |
|
|
wait for clock_period;
|
998 |
|
|
while tx_fifo_empty = '0' loop
|
999 |
|
|
wait for clock_period;
|
1000 |
|
|
end loop;
|
1001 |
|
|
loopback <= false;
|
1002 |
|
|
wait for clock_period * 50000;
|
1003 |
|
|
stop <= true;
|
1004 |
|
|
wait;
|
1005 |
|
|
end process;
|
1006 |
|
|
|
1007 |
|
|
ack: process
|
1008 |
|
|
begin
|
1009 |
|
|
while not stop loop
|
1010 |
|
|
if rx_fifo_empty = '0' then
|
1011 |
|
|
rx_fifo_re <= '1';
|
1012 |
|
|
else
|
1013 |
|
|
rx_fifo_re <= '0';
|
1014 |
|
|
end if;
|
1015 |
|
|
wait for clock_period;
|
1016 |
|
|
end loop;
|
1017 |
|
|
wait;
|
1018 |
|
|
end process;
|
1019 |
|
|
rx <= tx when loopback else '0'; -- loop back test
|
1020 |
|
|
uut: work.uart_pkg.uart_top
|
1021 |
|
|
generic map (
|
1022 |
|
|
clock_frequency => g.clock_frequency,
|
1023 |
|
|
delay => g.delay,
|
1024 |
|
|
asynchronous_reset => g.asynchronous_reset,
|
1025 |
|
|
baud => 115200,
|
1026 |
|
|
format => uart_8N1,
|
1027 |
|
|
fifo_depth => fifo_depth)
|
1028 |
|
|
port map (
|
1029 |
|
|
clk => clk,
|
1030 |
|
|
rst => rst,
|
1031 |
|
|
|
1032 |
|
|
tx => tx,
|
1033 |
|
|
tx_fifo_full => tx_fifo_full,
|
1034 |
|
|
tx_fifo_empty => tx_fifo_empty,
|
1035 |
|
|
tx_fifo_we => tx_fifo_we,
|
1036 |
|
|
tx_fifo_data => di,
|
1037 |
|
|
|
1038 |
|
|
rx => rx,
|
1039 |
|
|
rx_fifo_full => rx_fifo_full,
|
1040 |
|
|
rx_fifo_empty => rx_fifo_empty,
|
1041 |
|
|
rx_fifo_re => rx_fifo_re,
|
1042 |
|
|
rx_fifo_data => do,
|
1043 |
|
|
|
1044 |
|
|
reg => reg,
|
1045 |
|
|
clock_reg_tx_we => clock_reg_tx_we,
|
1046 |
|
|
clock_reg_rx_we => clock_reg_rx_we,
|
1047 |
|
|
control_reg_we => control_reg_we);
|
1048 |
|
|
|
1049 |
|
|
end architecture;
|
1050 |
|
|
|