OpenCores
URL https://opencores.org/ocsvn/c0or1k/c0or1k/trunk

Subversion Repositories c0or1k

[/] [c0or1k/] [trunk/] [src/] [generic/] [scheduler.c] - Blame information for rev 5

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 2 drasko
/*
2
 * A basic priority-based scheduler.
3
 *
4
 * Copyright (C) 2007, 2008 Bahadir Balban
5
 */
6
#include <l4/lib/list.h>
7
#include <l4/lib/printk.h>
8
#include <l4/lib/string.h>
9
#include <l4/lib/mutex.h>
10
#include <l4/lib/math.h>
11
#include <l4/lib/bit.h>
12
#include <l4/lib/spinlock.h>
13
#include <l4/generic/scheduler.h>
14
#include <l4/generic/resource.h>
15
#include <l4/generic/container.h>
16
#include <l4/generic/preempt.h>
17
#include <l4/generic/thread.h>
18
#include <l4/generic/debug.h>
19
#include <l4/generic/irq.h>
20
#include <l4/generic/tcb.h>
21
#include <l4/api/errno.h>
22
#include <l4/api/kip.h>
23
#include INC_SUBARCH(mm.h)
24
#include INC_GLUE(mapping.h)
25
#include INC_GLUE(init.h)
26
#include INC_PLAT(platform.h)
27
#include INC_ARCH(exception.h)
28
#include INC_SUBARCH(irq.h)
29
 
30
DECLARE_PERCPU(struct scheduler, scheduler);
31
 
32
/* This is incremented on each irq or voluntarily by preempt_disable() */
33
DECLARE_PERCPU(extern unsigned int, current_irq_nest_count);
34
 
35
/* This ensures no scheduling occurs after voluntary preempt_disable() */
36
DECLARE_PERCPU(static int, voluntary_preempt);
37
 
38
void sched_lock_runqueues(struct scheduler *sched, unsigned long *irqflags)
39
{
40
        spin_lock_irq(&sched->sched_rq[0].lock, irqflags);
41
        spin_lock(&sched->sched_rq[1].lock);
42
        BUG_ON(irqs_enabled());
43
}
44
 
45
void sched_unlock_runqueues(struct scheduler *sched, unsigned long irqflags)
46
{
47
        spin_unlock(&sched->sched_rq[1].lock);
48
        spin_unlock_irq(&sched->sched_rq[0].lock, irqflags);
49
}
50
 
51
int preemptive()
52
{
53
        return per_cpu(current_irq_nest_count) == 0;
54
}
55
 
56
int preempt_count()
57
{
58
        return per_cpu(current_irq_nest_count);
59
}
60
 
61
#if !defined(CONFIG_PREEMPT_DISABLE)
62
 
63
void preempt_enable(void)
64
{
65
        per_cpu(voluntary_preempt)--;
66
        per_cpu(current_irq_nest_count)--;
67
}
68
 
69
/* A positive irq nest count implies current context cannot be preempted. */
70
void preempt_disable(void)
71
{
72
        per_cpu(current_irq_nest_count)++;
73
        per_cpu(voluntary_preempt)++;
74
}
75
 
76
#else /* End of !CONFIG_PREEMPT_DISABLE */
77
 
78
void preempt_enable(void) { }
79
void preempt_disable(void) { }
80
 
81
#endif /* CONFIG_PREEMPT_DISABLE */
82
 
83
int in_irq_context(void)
84
{
85
        /*
86
         * If there was a real irq, irq nest count must be
87
         * one more than all preempt_disable()'s which are
88
         * counted by voluntary_preempt.
89
         */
90
        return (per_cpu(current_irq_nest_count) ==
91
                (per_cpu(voluntary_preempt) + 1));
92
}
93
 
94
int in_nested_irq_context(void)
95
{
96
        /* Deducing voluntary preemptions we get real irq nesting */
97
        return (per_cpu(current_irq_nest_count) -
98
                per_cpu(voluntary_preempt)) > 1;
99
}
100
 
101
int in_process_context(void)
102
{
103
        return !in_irq_context();
104
}
105
 
106
void sched_init_runqueue(struct scheduler *sched, struct runqueue *rq)
107
{
108
        link_init(&rq->task_list);
109
        spin_lock_init(&rq->lock);
110
        rq->sched = sched;
111
}
112
 
113
void sched_init()
114
{
115
        struct scheduler *sched = &per_cpu(scheduler);
116
 
117
        for (int i = 0; i < SCHED_RQ_TOTAL; i++)
118
                sched_init_runqueue(sched, &sched->sched_rq[i]);
119
 
120
        sched->rq_runnable = &sched->sched_rq[0];
121
        sched->rq_expired = &sched->sched_rq[1];
122
        sched->rq_rt_runnable = &sched->sched_rq[2];
123
        sched->rq_rt_expired = &sched->sched_rq[3];
124
        sched->prio_total = TASK_PRIO_TOTAL;
125
        sched->idle_task = current;
126
}
127
 
128
/* Swap runnable and expired runqueues. */
129
static void sched_rq_swap_queues(void)
130
{
131
        struct runqueue *temp;
132
 
133
        BUG_ON(list_empty(&per_cpu(scheduler).rq_expired->task_list));
134
 
135
        /* Queues are swapped and expired list becomes runnable */
136
        temp = per_cpu(scheduler).rq_runnable;
137
        per_cpu(scheduler).rq_runnable = per_cpu(scheduler).rq_expired;
138
        per_cpu(scheduler).rq_expired = temp;
139
}
140
 
141
static void sched_rq_swap_rtqueues(void)
142
{
143
        struct runqueue *temp;
144
 
145
        BUG_ON(list_empty(&per_cpu(scheduler).rq_rt_expired->task_list));
146
 
147
        /* Queues are swapped and expired list becomes runnable */
148
        temp = per_cpu(scheduler).rq_rt_runnable;
149
        per_cpu(scheduler).rq_rt_runnable = per_cpu(scheduler).rq_rt_expired;
150
        per_cpu(scheduler).rq_rt_expired = temp;
151
}
152
 
153
/* Set policy on where to add tasks in the runqueue */
154
#define RQ_ADD_BEHIND           0
155
#define RQ_ADD_FRONT            1
156
 
157
/* Helper for adding a new task to a runqueue */
158
static void sched_rq_add_task(struct ktcb *task, struct runqueue *rq, int front)
159
{
160
        unsigned long irqflags;
161
        struct scheduler *sched =
162
                &per_cpu_byid(scheduler, task->affinity);
163
 
164
        BUG_ON(!list_empty(&task->rq_list));
165
 
166
        /* Lock that particular cpu's runqueue set */
167
        sched_lock_runqueues(sched, &irqflags);
168
        if (front)
169
                list_insert(&task->rq_list, &rq->task_list);
170
        else
171
                list_insert_tail(&task->rq_list, &rq->task_list);
172
        rq->total++;
173
        task->rq = rq;
174
 
175
        /* Unlock that particular cpu's runqueue set */
176
        sched_unlock_runqueues(sched, irqflags);
177
}
178
 
179
/* Helper for removing a task from its runqueue. */
180
static inline void sched_rq_remove_task(struct ktcb *task)
181
{
182
        unsigned long irqflags;
183
        struct scheduler *sched =
184
                &per_cpu_byid(scheduler, task->affinity);
185
 
186
        sched_lock_runqueues(sched, &irqflags);
187
 
188
        /*
189
         * We must lock both, otherwise rqs may swap and
190
         * we may get the wrong rq.
191
         */
192
        BUG_ON(list_empty(&task->rq_list));
193
        list_remove_init(&task->rq_list);
194
 
195
        task->rq->total--;
196
        BUG_ON(task->rq->total < 0);
197
        task->rq = 0;
198
 
199
        sched_unlock_runqueues(sched, irqflags);
200
}
201
 
202
static inline void
203
sched_run_task(struct ktcb *task, struct scheduler *sched)
204
{
205
        if (task->flags & TASK_REALTIME)
206
                sched_rq_add_task(task, sched->rq_rt_runnable,
207
                                  RQ_ADD_BEHIND);
208
        else
209
                sched_rq_add_task(task, sched->rq_runnable,
210
                                  RQ_ADD_BEHIND);
211
}
212
 
213
static inline void
214
sched_expire_task(struct ktcb *task, struct scheduler *sched)
215
{
216
 
217
        if (task->flags & TASK_REALTIME)
218
                sched_rq_add_task(current, sched->rq_rt_expired,
219
                                  RQ_ADD_BEHIND);
220
        else
221
                sched_rq_add_task(current, sched->rq_expired,
222
                                  RQ_ADD_BEHIND);
223
}
224
 
225
void sched_init_task(struct ktcb *task, int prio)
226
{
227
        link_init(&task->rq_list);
228
        task->priority = prio;
229
        task->ticks_left = 0;
230
        task->state = TASK_INACTIVE;
231
        task->ts_need_resched = 0;
232
        task->flags |= TASK_RESUMING;
233
}
234
 
235
/* Synchronously resumes a task */
236
void sched_resume_sync(struct ktcb *task)
237
{
238
        BUG_ON(task == current);
239
        task->state = TASK_RUNNABLE;
240
        sched_run_task(task, &per_cpu_byid(scheduler, task->affinity));
241
        schedule();
242
}
243
 
244
/*
245
 * Asynchronously resumes a task.
246
 * The task will run in the future, but at
247
 * the scheduler's discretion. It is possible that current
248
 * task wakes itself up via this function in the scheduler().
249
 */
250
void sched_resume_async(struct ktcb *task)
251
{
252
        task->state = TASK_RUNNABLE;
253
        sched_run_task(task, &per_cpu_byid(scheduler, task->affinity));
254
}
255
 
256
/*
257
 * Takes all the action that will make a task sleep
258
 * in the scheduler. If the task is woken up before
259
 * it schedules, then operations here are simply
260
 * undone and task remains as runnable.
261
 */
262
void sched_prepare_sleep()
263
{
264
        preempt_disable();
265
        sched_rq_remove_task(current);
266
        current->state = TASK_SLEEPING;
267
        preempt_enable();
268
}
269
 
270
/*
271
 * preempt_enable/disable()'s are for avoiding the
272
 * entry to scheduler during this period - but this
273
 * is only true for current cpu.
274
 */
275
void sched_suspend_sync(void)
276
{
277
        preempt_disable();
278
        sched_rq_remove_task(current);
279
        current->state = TASK_INACTIVE;
280
        current->flags &= ~TASK_SUSPENDING;
281
 
282
        if (current->pagerid != current->tid)
283
                wake_up(&current->wqh_pager, 0);
284
        preempt_enable();
285
 
286
        schedule();
287
}
288
 
289
void sched_suspend_async(void)
290
{
291
        preempt_disable();
292
        sched_rq_remove_task(current);
293
        current->state = TASK_INACTIVE;
294
        current->flags &= ~TASK_SUSPENDING;
295
 
296
        if (current->pagerid != current->tid)
297
                wake_up(&current->wqh_pager, 0);
298
        preempt_enable();
299
 
300
        need_resched = 1;
301
}
302
 
303
 
304
extern void arch_context_switch(struct ktcb *cur, struct ktcb *next);
305
 
306
static inline void context_switch(struct ktcb *next)
307
{
308
        struct ktcb *cur = current;
309
 
310
//      printk("Core:%d (%d) to (%d)\n", smp_get_cpuid(), cur->tid, next->tid);
311
 
312
        system_account_context_switch();
313
 
314
        /* Flush caches and everything */
315
        BUG_ON(!current);
316
        BUG_ON(!current->space);
317
        BUG_ON(!next);
318
        BUG_ON(!next->space);
319
        BUG_ON(!next->space);
320
        if (current->space->spid != next->space->spid)
321
                arch_space_switch(next);
322
 
323
        /* Update utcb region for next task */
324
        task_update_utcb(next);
325
 
326
        /* Switch context */
327
        arch_context_switch(cur, next);
328
 
329
        // printk("Returning from yield. Tid: (%d)\n", cur->tid);
330
}
331
 
332
/*
333
 * Priority calculation is so simple it is inlined. The task gets
334
 * the ratio of its priority to total priority of all runnable tasks.
335
 */
336
static inline int sched_recalc_ticks(struct ktcb *task, int prio_total)
337
{
338
        BUG_ON(prio_total < task->priority);
339
        BUG_ON(prio_total == 0);
340
        return task->ticks_assigned =
341
                CONFIG_SCHED_TICKS * task->priority / prio_total;
342
}
343
 
344
/*
345
 * Select a real-time task 1/8th of any one selection
346
 */
347
static inline int sched_select_rt(struct scheduler *sched)
348
{
349
        int ctr = sched->task_select_ctr++ & 0xF;
350
 
351
        if (ctr == 0 || ctr == 8 || ctr == 15)
352
                return 0;
353
        else
354
                return 1;
355
}
356
 
357
/*
358
 * Selection happens as follows:
359
 *
360
 * A real-time task is chosen %87.5 of the time. This is evenly
361
 * distributed to a given interval.
362
 *
363
 * Idle task is run once when it is explicitly suggested (e.g.
364
 * for cleanup after a task exited) but only when no real-time
365
 * tasks are in the queues.
366
 *
367
 * And idle task is otherwise run only when no other tasks are
368
 * runnable.
369
 */
370
struct ktcb *sched_select_next(void)
371
{
372
        struct scheduler *sched = &per_cpu(scheduler);
373
        int realtime = sched_select_rt(sched);
374
        struct ktcb *next = 0;
375
 
376
        for (;;) {
377
 
378
                /* Decision to run an RT task? */
379
                if (realtime && sched->rq_rt_runnable->total > 0) {
380
                        /* Get a real-time task, if available */
381
                        next = link_to_struct(sched->rq_rt_runnable->task_list.next,
382
                                              struct ktcb, rq_list);
383
                        break;
384
                } else if (realtime && sched->rq_rt_expired->total > 0) {
385
                        /* Swap real-time queues */
386
                        sched_rq_swap_rtqueues();
387
                        /* Get a real-time task */
388
                        next = link_to_struct(sched->rq_rt_runnable->task_list.next,
389
                                              struct ktcb, rq_list);
390
                        break;
391
                /* Idle flagged for run? */
392
                } else if (sched->flags & SCHED_RUN_IDLE) {
393
                        /* Clear idle flag */
394
                        sched->flags &= ~SCHED_RUN_IDLE;
395
                        next = sched->idle_task;
396
                        break;
397
                } else if (sched->rq_runnable->total > 0) {
398
                        /* Get a regular runnable task, if available */
399
                        next = link_to_struct(sched->rq_runnable->task_list.next,
400
                                              struct ktcb, rq_list);
401
                        break;
402
                } else if (sched->rq_expired->total > 0) {
403
                        /* Swap queues and retry if not */
404
                        sched_rq_swap_queues();
405
                        next = link_to_struct(sched->rq_runnable->task_list.next,
406
                                              struct ktcb, rq_list);
407
                        break;
408
                } else if (in_process_context()) {
409
                        /* No runnable task. Do idle if in process context */
410
                        next = sched->idle_task;
411
                        break;
412
                } else {
413
                        /*
414
                         * Nobody is runnable. Irq calls must return
415
                         * to interrupted current process to run idle task
416
                         */
417
                        next = current;
418
                        break;
419
                }
420
        }
421
        return next;
422
}
423
 
424
/* Prepare next runnable task right before switching to it */
425
void sched_prepare_next(struct ktcb *next)
426
{
427
        /* New tasks affect runqueue total priority. */
428
        if (next->flags & TASK_RESUMING)
429
                next->flags &= ~TASK_RESUMING;
430
 
431
        /* Zero ticks indicates task hasn't ran since last rq swap */
432
        if (next->ticks_left == 0) {
433
                /*
434
                 * Redistribute timeslice. We do this as each task
435
                 * becomes runnable rather than all at once. It is done
436
                 * every runqueue swap
437
                 */
438
                sched_recalc_ticks(next, per_cpu(scheduler).prio_total);
439
                next->ticks_left = next->ticks_assigned;
440
        }
441
 
442
        /* Reinitialise task's schedule granularity boundary */
443
        next->sched_granule = SCHED_GRANULARITY;
444
}
445
 
446
/*
447
 * Tasks come here, either by setting need_resched (via next irq),
448
 * or by directly calling it (in process context).
449
 *
450
 * The scheduler is similar to Linux's so called O(1) scheduler,
451
 * although a lot simpler. Task priorities determine task timeslices.
452
 * Each task gets a ratio of its priority to the total priority of
453
 * all runnable tasks. When this total changes, (e.g. threads die or
454
 * are created, or a thread's priority is changed) the timeslices are
455
 * recalculated on a per-task basis as each thread becomes runnable.
456
 * Once all runnable tasks expire, runqueues are swapped. Sleeping
457
 * tasks are removed from the runnable queue, and added back later
458
 * without affecting the timeslices. Suspended tasks however,
459
 * necessitate a timeslice recalculation as they are considered to go
460
 * inactive indefinitely or for a very long time. They are put back
461
 * to the expired queue if they want to run again.
462
 *
463
 * A task is rescheduled either when it hits a SCHED_GRANULARITY
464
 * boundary, or when its timeslice has expired. SCHED_GRANULARITY
465
 * ensures context switches do occur at a maximum boundary even if a
466
 * task's timeslice is very long. In the future, real-time tasks will
467
 * be added, and they will be able to ignore SCHED_GRANULARITY.
468
 *
469
 * In the future, the tasks will be sorted by priority in their
470
 * runqueue, as well as having an adjusted timeslice.
471
 *
472
 * Runqueues are swapped at a single second's interval. This implies
473
 * the timeslice recalculations would also occur at this interval.
474
 */
475
void schedule()
476
{
477
        struct ktcb *next;
478
 
479
        /* Should not schedule with preemption
480
         * disabled or in nested irq */
481
        BUG_ON(per_cpu(voluntary_preempt));
482
        BUG_ON(in_nested_irq_context());
483
 
484
        /* Should not have more ticks than SCHED_TICKS */
485
        BUG_ON(current->ticks_left > CONFIG_SCHED_TICKS);
486
 
487
        /* If coming from process path, cannot have
488
         * any irqs that schedule after this */
489
        preempt_disable();
490
 
491
        /* Reset schedule flag */
492
        need_resched = 0;
493
 
494
        /* Remove from runnable and put into appropriate runqueue */
495
        if (current->state == TASK_RUNNABLE) {
496
                sched_rq_remove_task(current);
497
                if (current->ticks_left)
498
                        sched_run_task(current, &per_cpu(scheduler));
499
                else
500
                        sched_expire_task(current, &per_cpu(scheduler));
501
        }
502
 
503
        /*
504
         * FIXME: Are these smp-safe? BB: On first glance they
505
         * should be because runqueues are per-cpu right now.
506
         *
507
         * If task is about to sleep and
508
         * it has pending events, wake it up.
509
         */
510
        if ((current->flags & TASK_PENDING_SIGNAL) &&
511
            current->state == TASK_SLEEPING)
512
                wake_up_task(current, WAKEUP_INTERRUPT);
513
 
514
        /*
515
         * If task has pending events, and is in userspace
516
         * (guaranteed to have no unfinished jobs in kernel)
517
         * handle those events
518
         */
519
        if ((current->flags & TASK_PENDING_SIGNAL) &&
520
            current->state == TASK_RUNNABLE &&
521
            TASK_IN_USER(current)) {
522
                if (current->flags & TASK_SUSPENDING)
523
                        sched_suspend_async();
524
        }
525
 
526
        /* Hint scheduler to run idle asap to free task */
527
        if (current->flags & TASK_EXITED) {
528
                current->flags &= ~TASK_EXITED;
529
                per_cpu(scheduler).flags |= SCHED_RUN_IDLE;
530
        }
531
 
532
        /* Decide on next runnable task */
533
        next = sched_select_next();
534
 
535
        /* Prepare next task for running */
536
        sched_prepare_next(next);
537
 
538
        /* Finish */
539
        disable_irqs();
540
        preempt_enable();
541
        context_switch(next);
542
}
543
 
544
/*
545
 * Start the timer and switch to current task
546
 * for first-ever scheduling.
547
 */
548
void scheduler_start()
549
{
550
        platform_timer_start();
551
        switch_to_user(current);
552
}
553
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.