1 |
6 |
root |
/*
|
2 |
|
|
|
3 |
|
|
Copyright (c) 2003 Launchbird Design Systems, Inc.
|
4 |
|
|
|
5 |
|
|
C test bench for State Space Processor.
|
6 |
|
|
Demonstrates a first order discrete filter:
|
7 |
|
|
|
8 |
|
|
H(z) = Y(z) / X(z) = 0.2 / (1 - 0.8 * (1/z))
|
9 |
|
|
|
10 |
|
|
y(k) = 0.2 * x(k) + 0.8 * y(k-1)
|
11 |
|
|
|
12 |
|
|
State Space Processor is configured for 16-bit data and
|
13 |
|
|
an 8-bit instruction memory address bus.
|
14 |
|
|
|
15 |
|
|
*/
|
16 |
|
|
|
17 |
|
|
#include <stdio.h>
|
18 |
|
|
#include "cf_ssp_16_8.h"
|
19 |
|
|
|
20 |
|
|
// State Space Processor Inputs
|
21 |
|
|
|
22 |
|
|
static unsigned char reset[1];
|
23 |
|
|
static unsigned char cycle[1];
|
24 |
|
|
static unsigned char instr_data[2];
|
25 |
|
|
static unsigned char const_data[2];
|
26 |
|
|
static unsigned char load_write[1];
|
27 |
|
|
static unsigned char load_addr[1];
|
28 |
|
|
static unsigned char load_data[2];
|
29 |
|
|
|
30 |
|
|
// State Space Processor Outputs
|
31 |
|
|
|
32 |
|
|
static unsigned char done[1];
|
33 |
|
|
static unsigned char instr_addr[1];
|
34 |
|
|
static unsigned char const_addr[1];
|
35 |
|
|
static unsigned char reg_0[2];
|
36 |
|
|
static unsigned char reg_1[2];
|
37 |
|
|
static unsigned char reg_2[2];
|
38 |
|
|
static unsigned char reg_3[2];
|
39 |
|
|
static unsigned char reg_4[2];
|
40 |
|
|
static unsigned char reg_5[2];
|
41 |
|
|
static unsigned char reg_6[2];
|
42 |
|
|
static unsigned char reg_7[2];
|
43 |
|
|
static unsigned char reg_8[2];
|
44 |
|
|
static unsigned char reg_9[2];
|
45 |
|
|
static unsigned char reg_a[2];
|
46 |
|
|
static unsigned char reg_b[2];
|
47 |
|
|
static unsigned char reg_c[2];
|
48 |
|
|
static unsigned char reg_d[2];
|
49 |
|
|
static unsigned char reg_e[2];
|
50 |
|
|
static unsigned char reg_f[2];
|
51 |
|
|
|
52 |
|
|
// External Constant Coefficient Memory
|
53 |
|
|
|
54 |
|
|
static unsigned int mem_const[256];
|
55 |
|
|
|
56 |
|
|
// External Instruction Memory
|
57 |
|
|
|
58 |
|
|
static unsigned int mem_instr[256];
|
59 |
|
|
|
60 |
|
|
// Constant Memory Initialization
|
61 |
|
|
|
62 |
|
|
void init_mem_const() {
|
63 |
|
|
mem_const[0] = 0x00CD; /* 0.8 ~= 0000000011001101 */
|
64 |
|
|
mem_const[1] = 0x0034; /* 0.2 ~= 0000000000110100 */
|
65 |
|
|
}
|
66 |
|
|
|
67 |
|
|
// Instruction Memory Initialization
|
68 |
|
|
|
69 |
|
|
void init_mem_instr() {
|
70 |
|
|
/*
|
71 |
|
|
Register Usage:
|
72 |
|
|
Register 1 : Filter input.
|
73 |
|
|
Register 2 : State and filter output.
|
74 |
|
|
Register 3 : Multiplication constant operand.
|
75 |
|
|
Register 4 : Multiplication accumulator.
|
76 |
|
|
|
77 |
|
|
Algorithm:
|
78 |
|
|
1. Multiply y(k-1) * 0.8
|
79 |
|
|
1. Load 0.0 to Reg4
|
80 |
|
|
2. Load 0.8 to Reg3
|
81 |
|
|
3. Multiply (Repeated ShiftRight, AddCond, and ShiftLeft)
|
82 |
|
|
4. Normalize (Repeated ShiftLeft)
|
83 |
|
|
5. Limit Reg4 to Reg2
|
84 |
|
|
|
85 |
|
|
2. Multiply x(k) * 0.2
|
86 |
|
|
1. Load 0.0 to Reg4
|
87 |
|
|
2. Load 0.2 to Reg3
|
88 |
|
|
3. Multiply (Repeated ShiftRight, AddCond, and ShiftLeft)
|
89 |
|
|
4. Normalize (Repeated ShiftLeft)
|
90 |
|
|
|
91 |
|
|
3. Add (x(k)*0.2) + (y(k-1)*0.8)
|
92 |
|
|
1. Add Reg4 and Reg2 to Reg2
|
93 |
|
|
2. Limit Reg2 to Reg2
|
94 |
|
|
*/
|
95 |
|
|
|
96 |
|
|
int i = 0;
|
97 |
|
|
|
98 |
|
|
mem_instr[i++] = 0x0004; // ShiftLeft r0, r4 -- Load 0.0 to r4.
|
99 |
|
|
mem_instr[i++] = 0x7003; // Constant #0, r3 -- Load 0.8 to r3.
|
100 |
|
|
|
101 |
|
|
mem_instr[i++] = 0x1303; // ShiftRight r3, r3 -- Shift lsb into Flag.
|
102 |
|
|
mem_instr[i++] = 0x4424; // AddCond r4, r2, r4 -- Conditional add basic on Flag.
|
103 |
|
|
mem_instr[i++] = 0x0202; // ShiftLeft r2, r2 -- Shift operand left and repeat...
|
104 |
|
|
mem_instr[i++] = 0x1303; // ShiftRight r3, r3
|
105 |
|
|
mem_instr[i++] = 0x4424; // AddCond r4, r2, r4
|
106 |
|
|
mem_instr[i++] = 0x0202; // ShiftLeft r2, r2
|
107 |
|
|
mem_instr[i++] = 0x1303; // ShiftRight r3, r3
|
108 |
|
|
mem_instr[i++] = 0x4424; // AddCond r4, r2, r4
|
109 |
|
|
mem_instr[i++] = 0x0202; // ShiftLeft r2, r2
|
110 |
|
|
mem_instr[i++] = 0x1303; // ShiftRight r3, r3
|
111 |
|
|
mem_instr[i++] = 0x4424; // AddCond r4, r2, r4
|
112 |
|
|
mem_instr[i++] = 0x0202; // ShiftLeft r2, r2
|
113 |
|
|
mem_instr[i++] = 0x1303; // ShiftRight r3, r3
|
114 |
|
|
mem_instr[i++] = 0x4424; // AddCond r4, r2, r4
|
115 |
|
|
mem_instr[i++] = 0x0202; // ShiftLeft r2, r2
|
116 |
|
|
mem_instr[i++] = 0x1303; // ShiftRight r3, r3
|
117 |
|
|
mem_instr[i++] = 0x4424; // AddCond r4, r2, r4
|
118 |
|
|
mem_instr[i++] = 0x0202; // ShiftLeft r2, r2
|
119 |
|
|
mem_instr[i++] = 0x1303; // ShiftRight r3, r3
|
120 |
|
|
mem_instr[i++] = 0x4424; // AddCond r4, r2, r4
|
121 |
|
|
mem_instr[i++] = 0x0202; // ShiftLeft r2, r2
|
122 |
|
|
mem_instr[i++] = 0x1303; // ShiftRight r3, r3
|
123 |
|
|
mem_instr[i++] = 0x4424; // AddCond r4, r2, r4
|
124 |
|
|
|
125 |
|
|
mem_instr[i++] = 0x1404; // ShiftRight r4, r4 -- Normalize the mulitplication result.
|
126 |
|
|
mem_instr[i++] = 0x1404; // ShiftRight r4, r4
|
127 |
|
|
mem_instr[i++] = 0x1404; // ShiftRight r4, r4
|
128 |
|
|
mem_instr[i++] = 0x1404; // ShiftRight r4, r4
|
129 |
|
|
mem_instr[i++] = 0x1404; // ShiftRight r4, r4
|
130 |
|
|
mem_instr[i++] = 0x1404; // ShiftRight r4, r4
|
131 |
|
|
mem_instr[i++] = 0x1404; // ShiftRight r4, r4
|
132 |
|
|
mem_instr[i++] = 0x1404; // ShiftRight r4, r4
|
133 |
|
|
mem_instr[i++] = 0x2402; // Limit r4, r2 -- Limit and move result to r2.
|
134 |
|
|
|
135 |
|
|
mem_instr[i++] = 0x0004; // ShiftLeft r0, r4 -- Load 0.0 to r4.
|
136 |
|
|
mem_instr[i++] = 0x7013; // Constant #1, r3 -- Load 0.2 to r3.
|
137 |
|
|
|
138 |
|
|
mem_instr[i++] = 0x1303; // ShiftRight r3, r3 -- Shift lsb into Flag.
|
139 |
|
|
mem_instr[i++] = 0x4414; // AddCond r4, r1, r4 -- Conditional add basic on Flag.
|
140 |
|
|
mem_instr[i++] = 0x0101; // ShiftLeft r1, r1 -- Shift operand left and repeat...
|
141 |
|
|
|
142 |
|
|
mem_instr[i++] = 0x1303; // ShiftRight r3, r3
|
143 |
|
|
mem_instr[i++] = 0x4414; // AddCond r4, r1, r4
|
144 |
|
|
mem_instr[i++] = 0x0101; // ShiftLeft r1, r1
|
145 |
|
|
|
146 |
|
|
mem_instr[i++] = 0x1303; // ShiftRight r3, r3
|
147 |
|
|
mem_instr[i++] = 0x4414; // AddCond r4, r1, r4
|
148 |
|
|
mem_instr[i++] = 0x0101; // ShiftLeft r1, r1
|
149 |
|
|
|
150 |
|
|
mem_instr[i++] = 0x1303; // ShiftRight r3, r3
|
151 |
|
|
mem_instr[i++] = 0x4414; // AddCond r4, r1, r4
|
152 |
|
|
mem_instr[i++] = 0x0101; // ShiftLeft r1, r1
|
153 |
|
|
|
154 |
|
|
mem_instr[i++] = 0x1303; // ShiftRight r3, r3
|
155 |
|
|
mem_instr[i++] = 0x4414; // AddCond r4, r1, r4
|
156 |
|
|
mem_instr[i++] = 0x0101; // ShiftLeft r1, r1
|
157 |
|
|
|
158 |
|
|
mem_instr[i++] = 0x1303; // ShiftRight r3, r3
|
159 |
|
|
mem_instr[i++] = 0x4414; // AddCond r4, r1, r4
|
160 |
|
|
mem_instr[i++] = 0x0101; // ShiftLeft r1, r1
|
161 |
|
|
|
162 |
|
|
mem_instr[i++] = 0x1303; // ShiftRight r3, r3
|
163 |
|
|
mem_instr[i++] = 0x4414; // AddCond r4, r1, r4
|
164 |
|
|
mem_instr[i++] = 0x0101; // ShiftLeft r1, r1
|
165 |
|
|
|
166 |
|
|
mem_instr[i++] = 0x1303; // ShiftRight r3, r3
|
167 |
|
|
mem_instr[i++] = 0x4414; // AddCond r4, r1, r4
|
168 |
|
|
|
169 |
|
|
mem_instr[i++] = 0x1404; // ShiftRight r4, r4 -- Normalize the mulitplication result.
|
170 |
|
|
mem_instr[i++] = 0x1404; // ShiftRight r4, r4
|
171 |
|
|
mem_instr[i++] = 0x1404; // ShiftRight r4, r4
|
172 |
|
|
mem_instr[i++] = 0x1404; // ShiftRight r4, r4
|
173 |
|
|
mem_instr[i++] = 0x1404; // ShiftRight r4, r4
|
174 |
|
|
mem_instr[i++] = 0x1404; // ShiftRight r4, r4
|
175 |
|
|
mem_instr[i++] = 0x1404; // ShiftRight r4, r4
|
176 |
|
|
mem_instr[i++] = 0x1404; // ShiftRight r4, r4
|
177 |
|
|
mem_instr[i++] = 0x3422; // Add r4, r2, r2 -- Add the 2 multiplication results.
|
178 |
|
|
mem_instr[i++] = 0x2202; // Limit r2, r2 -- Limit the addition result.
|
179 |
|
|
|
180 |
|
|
mem_instr[i++] = 0x8000; // Halt -- Halt the cycle.
|
181 |
|
|
|
182 |
|
|
}
|
183 |
|
|
|
184 |
|
|
// Initialize simulation.
|
185 |
|
|
|
186 |
|
|
void sim_init() {
|
187 |
|
|
// Init memories.
|
188 |
|
|
init_mem_const();
|
189 |
|
|
init_mem_instr();
|
190 |
|
|
|
191 |
|
|
// Clear input data.
|
192 |
|
|
reset[0] = 0;
|
193 |
|
|
cycle[0] = 0;
|
194 |
|
|
instr_data[1] = 0; instr_data[0] = 0;
|
195 |
|
|
const_data[1] = 0; const_data[0] = 0;
|
196 |
|
|
load_write[0] = 0;
|
197 |
|
|
load_addr[0] = 0;
|
198 |
|
|
load_data[1] = 0; load_data[0] = 0;
|
199 |
|
|
|
200 |
|
|
// Bind ports.
|
201 |
|
|
cf_ssp_16_8_ports(reset, cycle, instr_data, const_data, load_write, load_addr, load_data,
|
202 |
|
|
done, instr_addr, const_addr,
|
203 |
|
|
reg_0, reg_1, reg_2, reg_3, reg_4, reg_5, reg_6, reg_7,
|
204 |
|
|
reg_8, reg_9, reg_a, reg_b, reg_c, reg_d, reg_e, reg_f);
|
205 |
|
|
|
206 |
|
|
// Init model and VCD recording.
|
207 |
|
|
cf_ssp_16_8_sim_init("cf_ssp_16_8.vcd");
|
208 |
|
|
}
|
209 |
|
|
|
210 |
|
|
// End simulation.
|
211 |
|
|
|
212 |
|
|
void sim_end() {
|
213 |
|
|
// End VCD recording.
|
214 |
|
|
cf_ssp_16_8_sim_end();
|
215 |
|
|
}
|
216 |
|
|
|
217 |
|
|
// Cycle simulation.
|
218 |
|
|
|
219 |
|
|
void sim_cycle() {
|
220 |
|
|
cf_ssp_16_8_calc();
|
221 |
|
|
cf_ssp_16_8_sim_sample();
|
222 |
|
|
cf_ssp_16_8_cycle_clock();
|
223 |
|
|
// Fetch instruction from instruction memory.
|
224 |
|
|
instr_data[0] = (unsigned char) (mem_instr[instr_addr[0]] & 0xFF);
|
225 |
|
|
instr_data[1] = (unsigned char) (mem_instr[instr_addr[0]] >> 8 & 0xFF);
|
226 |
|
|
// Fetch constant from constant memory.
|
227 |
|
|
const_data[0] = (unsigned char) (mem_const[const_addr[0]] & 0xFF);
|
228 |
|
|
const_data[1] = (unsigned char) (mem_const[const_addr[0]] >> 8 & 0xFF);
|
229 |
|
|
}
|
230 |
|
|
|
231 |
|
|
// Reset Processor
|
232 |
|
|
|
233 |
|
|
void processor_reset() {
|
234 |
|
|
reset[0] = 1;
|
235 |
|
|
sim_cycle();
|
236 |
|
|
reset[0] = 0;
|
237 |
|
|
}
|
238 |
|
|
|
239 |
|
|
// Cycle Processor
|
240 |
|
|
|
241 |
|
|
void processor_cycle(int input) {
|
242 |
|
|
int output;
|
243 |
|
|
|
244 |
|
|
// Load input into register 1.
|
245 |
|
|
load_write[0] = 1;
|
246 |
|
|
load_addr[0] = 1;
|
247 |
|
|
load_data[1] = input & 128 ? 0xFF : 0x00;
|
248 |
|
|
load_data[0] = (unsigned char) (input & 0xFF);
|
249 |
|
|
sim_cycle();
|
250 |
|
|
|
251 |
|
|
// Signal processor to start cycle.
|
252 |
|
|
load_write[0] = 0;
|
253 |
|
|
cycle[0] = 1;
|
254 |
|
|
sim_cycle();
|
255 |
|
|
cycle[0] = 0;
|
256 |
|
|
sim_cycle();
|
257 |
|
|
|
258 |
|
|
// Cycle processor until done.
|
259 |
|
|
while (!done[0]) sim_cycle();
|
260 |
|
|
|
261 |
|
|
output = (int) reg_2[1] << 8 | (int) reg_2[0];
|
262 |
|
|
|
263 |
|
|
printf("Input: %6d Output: %6d\n", input, output);
|
264 |
|
|
}
|
265 |
|
|
|
266 |
|
|
|
267 |
|
|
int main(int argc, char *argv[]) {
|
268 |
|
|
sim_init();
|
269 |
|
|
processor_reset();
|
270 |
|
|
processor_cycle(0);
|
271 |
|
|
processor_cycle(0);
|
272 |
|
|
processor_cycle(64);
|
273 |
|
|
processor_cycle(64);
|
274 |
|
|
processor_cycle(64);
|
275 |
|
|
processor_cycle(64);
|
276 |
|
|
processor_cycle(64);
|
277 |
|
|
processor_cycle(64);
|
278 |
|
|
processor_cycle(64);
|
279 |
|
|
processor_cycle(64);
|
280 |
|
|
processor_cycle(64);
|
281 |
|
|
processor_cycle(64);
|
282 |
|
|
processor_cycle(64);
|
283 |
|
|
processor_cycle(64);
|
284 |
|
|
sim_end();
|
285 |
|
|
return 0;
|
286 |
|
|
}
|
287 |
|
|
|