1 |
30 |
samiam9512 |
////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
// Company: //
|
3 |
|
|
// Engineer: Scott Moore //
|
4 |
|
|
// //
|
5 |
|
|
// Create Date: 11:45:32 09/04/2006 //
|
6 |
|
|
// Design Name: //
|
7 |
|
|
// Module Name: cpu8080 //
|
8 |
|
|
// Project Name: cpu8080 //
|
9 |
|
|
// Target Devices: xc3c200, xc3s1000 //
|
10 |
|
|
// Tool versions: //
|
11 |
|
|
// Description: //
|
12 |
|
|
// //
|
13 |
|
|
// Executes the 8080 instruction set. It is designed to be an internal //
|
14 |
|
|
// cell. Each of the I/Os are positive logic, and all signals are //
|
15 |
|
|
// constant with the exception of the data bus. The control signals are //
|
16 |
|
|
// fully decoded (unlike the orignal 8080), and features read and write //
|
17 |
|
|
// signals for both memory and I/O space. The I/O space is an 8 bit //
|
18 |
|
|
// address as in the original 8080. It does NOT echo the lower 8 bits to //
|
19 |
|
|
// the higher 8 bits, as was the practice in some systems. //
|
20 |
|
|
// //
|
21 |
|
|
// Like the original 8080, the interrupt vectoring is fully external. The //
|
22 |
|
|
// the external controller forces a full instruction onto the data bus. //
|
23 |
|
|
// The sequence begins with the assertion of interrupt request. The CPU //
|
24 |
|
|
// will then assert interrupt acknowledge, then it will run a special //
|
25 |
|
|
// read cycle with inta asserted for each cycle of a possibly //
|
26 |
|
|
// multibyte instruction. This matches the original 8080, which typically //
|
27 |
|
|
// used single byte restart instructions to form a simple interrupt //
|
28 |
|
|
// controller, but was capable of full vectoring via insertion of a jump, //
|
29 |
|
|
// call or similar instruction. //
|
30 |
|
|
// //
|
31 |
|
|
// Note that the interrupt vector instruction should branch. This is //
|
32 |
|
|
// because the PC gets changed by the vector instruction, so if it does //
|
33 |
|
|
// not branch, it will have skipped a number of bytes after the interrupt //
|
34 |
|
|
// equivalent to the vector instruction. The only instructions that //
|
35 |
|
|
// should really be used to vector are jmp, rst and call instructions. //
|
36 |
|
|
// Specifically, rst and call instruction compensate for the pc movement //
|
37 |
|
|
// by putting the pc unmodified on the stack. //
|
38 |
|
|
// //
|
39 |
|
|
// The memory, I/O and interrupt fetches all obey a simple clocking //
|
40 |
|
|
// sequence as follows. The CPU uses the positive clock edge to assert //
|
41 |
|
|
// and sample signals and data. The external logic theoretically uses the //
|
42 |
|
|
// negative edge to check signal assertions and sample data, but it can //
|
43 |
|
|
// either use the negative edge, or actually be asynronous logic. //
|
44 |
|
|
// //
|
45 |
|
|
// A standard read sequence is as follows: //
|
46 |
|
|
// //
|
47 |
|
|
// 1. At the positive clock edge, readmem, readio or readint is asserted. //
|
48 |
|
|
// 2. At the negative clock edge (or immediately), the external memory //
|
49 |
|
|
// places data onto the data bus. //
|
50 |
|
|
// 3. We hold automatically for one cycle. //
|
51 |
|
|
// 4. At the next positive clock edge, the data is sampled, and the read //
|
52 |
|
|
// Signal is deasserted. //
|
53 |
|
|
// //
|
54 |
|
|
// A standard write sequence is as follows: //
|
55 |
|
|
// //
|
56 |
|
|
// 1. At the positive edge, data is asserted on the data bus. //
|
57 |
|
|
// 2. At the next postive clock edge, writemem or writeio is asserted. //
|
58 |
|
|
// 3. At the next positive clock edge, writemem or writeio is deasserted. //
|
59 |
|
|
// 4. At the next positive edge, the data is deasserted. //
|
60 |
|
|
// //
|
61 |
|
|
// Dependencies: //
|
62 |
|
|
// //
|
63 |
|
|
// Revision: //
|
64 |
|
|
// Revision 0.01 - File Created //
|
65 |
|
|
// Additional Comments: //
|
66 |
|
|
// //
|
67 |
|
|
// Modifications, commented by 'CNS' below, NOV-12-2006 Chris N. Strahm //
|
68 |
|
|
// (1) Fixed warnings due to bit width truncations, assignment sizes. //
|
69 |
|
|
// (2) Changed tristate data bus to din,dout. Better for internal FPGA use. //
|
70 |
|
|
// (3) Removed waitr line, hard assigned to 0. Not much use in FPGA's. //
|
71 |
|
|
// (4) Implemented INTR hardware vectoring. Orig 8080 external INT vector //
|
72 |
|
|
// scheme not useful for FPGAs with other soft core perfs. Added inputs: //
|
73 |
|
|
// INTR[1] - Vector/Reset to 0008H //
|
74 |
|
|
// INTR[2] - Vector/Reset to 0010H //
|
75 |
|
|
// INTR[3] - Vector/Reset to 0018H //
|
76 |
|
|
// INTR[4] - Vector/Reset to 0020H //
|
77 |
|
|
// INTR[5] - Vector/Reset to 0028H //
|
78 |
|
|
// INTR[6] - Vector/Reset to 0030H //
|
79 |
|
|
// INTR[7] - Vector/Reset to 0038H //
|
80 |
|
|
// Note: Unused intr lines can just be assigned/wired to 0. //
|
81 |
|
|
// Note: inta is still provided as a common ack to any intr. //
|
82 |
|
|
// Note: Program execution origin at 0H should now jump to >= 0040H to begin //
|
83 |
|
|
// main code to skip over the interrupt vector locations. //
|
84 |
|
|
// //
|
85 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
86 |
|
|
|
87 |
|
|
`timescale 1ns / 1ps
|
88 |
|
|
|
89 |
|
|
//
|
90 |
|
|
// CPU states
|
91 |
|
|
//
|
92 |
|
|
|
93 |
|
|
`define cpus_idle 6'h00 // Idle
|
94 |
|
|
`define cpus_fetchi 6'h01 // Instruction fetch
|
95 |
|
|
`define cpus_fetchi2 6'h02 // Instruction fetch 2
|
96 |
|
|
`define cpus_fetchi3 6'h03 // Instruction fetch 3
|
97 |
|
|
`define cpus_fetchi4 6'h04 // Instruction fetch 4
|
98 |
|
|
`define cpus_halt 6'h05 // Halt (wait for interrupt)
|
99 |
|
|
`define cpus_alucb 6'h06 // alu cycleback
|
100 |
|
|
`define cpus_indcb 6'h07 // inr/dcr cycleback
|
101 |
|
|
`define cpus_movmtbc 6'h08 // Move memory to bc
|
102 |
|
|
`define cpus_movmtde 6'h09 // Move memory to de
|
103 |
|
|
`define cpus_movmthl 6'h0a // Move memory to hl
|
104 |
|
|
`define cpus_movmtsp 6'h0b // Move memory to sp
|
105 |
|
|
`define cpus_lhld 6'h0c // LHLD
|
106 |
|
|
`define cpus_jmp 6'h0d // JMP
|
107 |
|
|
`define cpus_write 6'h0e // write byte
|
108 |
|
|
`define cpus_write2 6'h0f // write byte #2
|
109 |
|
|
`define cpus_write3 6'h10 // write byte #3
|
110 |
|
|
`define cpus_write4 6'h11 // write byte #4
|
111 |
|
|
`define cpus_read 6'h12 // read byte
|
112 |
|
|
`define cpus_read2 6'h13 // read byte #2
|
113 |
|
|
`define cpus_read3 6'h14 // read byte #3
|
114 |
|
|
`define cpus_pop 6'h15 // POP completion
|
115 |
|
|
`define cpus_in 6'h16 // IN
|
116 |
|
|
`define cpus_in2 6'h17 // IN #2
|
117 |
|
|
`define cpus_in3 6'h18 // IN #3
|
118 |
|
|
`define cpus_out 6'h19 // OUT
|
119 |
|
|
`define cpus_out2 6'h1a // OUT #2
|
120 |
|
|
`define cpus_out3 6'h1b // OUT #3
|
121 |
|
|
`define cpus_out4 6'h1c // OUT #4
|
122 |
|
|
`define cpus_movtr 6'h1d // move to register
|
123 |
|
|
`define cpus_movrtw 6'h1e // move read to write
|
124 |
|
|
`define cpus_movrtwa 6'h1f // move read to write address
|
125 |
|
|
`define cpus_movrtra 6'h20 // move read to read address
|
126 |
|
|
`define cpus_accimm 6'h21 // accumulator immediate operations
|
127 |
|
|
`define cpus_daa 6'h22 // DAA completion
|
128 |
|
|
|
129 |
|
|
//
|
130 |
|
|
// Register numbers
|
131 |
|
|
//
|
132 |
|
|
|
133 |
|
|
`define reg_b 3'b000 // B
|
134 |
|
|
`define reg_c 3'b001 // C
|
135 |
|
|
`define reg_d 3'b010 // D
|
136 |
|
|
`define reg_e 3'b011 // E
|
137 |
|
|
`define reg_h 3'b100 // H
|
138 |
|
|
`define reg_l 3'b101 // L
|
139 |
|
|
`define reg_m 3'b110 // M
|
140 |
|
|
`define reg_a 3'b111 // A
|
141 |
|
|
|
142 |
|
|
//
|
143 |
|
|
// ALU operations
|
144 |
|
|
//
|
145 |
|
|
|
146 |
|
|
`define aluop_add 3'b000 // add
|
147 |
|
|
`define aluop_adc 3'b001 // add with carry in
|
148 |
|
|
`define aluop_sub 3'b010 // subtract
|
149 |
|
|
`define aluop_sbb 3'b011 // subtract with borrow in
|
150 |
|
|
`define aluop_and 3'b100 // and
|
151 |
|
|
`define aluop_xor 3'b101 // xor
|
152 |
|
|
`define aluop_or 3'b110 // or
|
153 |
|
|
`define aluop_cmp 3'b111 // compare
|
154 |
|
|
|
155 |
|
|
//
|
156 |
|
|
// State macros
|
157 |
|
|
//
|
158 |
|
|
`define mac_writebyte 1 // write a byte
|
159 |
|
|
`define mac_readbtoreg 2 // read a byte, place in register
|
160 |
|
|
`define mac_readdtobc 4 // read double byte to BC
|
161 |
|
|
`define mac_readdtode 6 // read double byte to DE
|
162 |
|
|
`define mac_readdtohl 8 // read double byte to HL
|
163 |
|
|
`define mac_readdtosp 10 // read double byte to SP
|
164 |
|
|
`define mac_readbmtw 12 // read byte and move to write
|
165 |
|
|
`define mac_readbmtr 14 // read byte and move to register
|
166 |
|
|
`define mac_sta 16 // STA
|
167 |
|
|
`define mac_lda 20 // LDA
|
168 |
|
|
`define mac_shld 25 // SHLD
|
169 |
|
|
`define mac_lhld 30 // LHLD
|
170 |
|
|
`define mac_writedbyte 36 // write double byte
|
171 |
|
|
`define mac_pop 38 // POP
|
172 |
|
|
`define mac_xthl 40 // XTHL
|
173 |
|
|
`define mac_accimm 44 // accumulator immediate
|
174 |
|
|
`define mac_jmp 45 // JMP
|
175 |
|
|
`define mac_call 47 // CALL
|
176 |
|
|
`define mac_in 51 // IN
|
177 |
|
|
`define mac_out 52 // OUT
|
178 |
|
|
`define mac_rst 53 // RST
|
179 |
|
|
|
180 |
|
|
//
|
181 |
|
|
// Reset/Int Opcodes (CNS)
|
182 |
|
|
//
|
183 |
|
|
`define opcode_reset_0 8'b11000111 // reset int vector to 0000H
|
184 |
|
|
`define opcode_reset_1 8'b11001111 // reset int vector to 0008H
|
185 |
|
|
`define opcode_reset_2 8'b11010111 // reset int vector to 0010H
|
186 |
|
|
`define opcode_reset_3 8'b11011111 // reset int vector to 0018H
|
187 |
|
|
`define opcode_reset_4 8'b11100111 // reset int vector to 0020H
|
188 |
|
|
`define opcode_reset_5 8'b11101111 // reset int vector to 0028H
|
189 |
|
|
`define opcode_reset_6 8'b11110111 // reset int vector to 0030H
|
190 |
|
|
`define opcode_reset_7 8'b11111111 // reset int vector to 0038H
|
191 |
|
|
|
192 |
|
|
|
193 |
|
|
module M8080 (addr, // Address out
|
194 |
|
|
dout, // Data Output bus
|
195 |
|
|
din, // Data Input bus
|
196 |
|
|
readmem, // Memory read
|
197 |
|
|
writemem, // Memory write
|
198 |
|
|
readio, // Read I/O space
|
199 |
|
|
writeio, // Write I/O space
|
200 |
|
|
intr, // Interrupt request bus, hard wire vector select [7:1] CNS
|
201 |
|
|
inta, // Interrupt acknowledge, common to any intr
|
202 |
|
|
reset, // Reset
|
203 |
|
|
// waitr, // Wait request CNS
|
204 |
|
|
clock // Clock
|
205 |
|
|
); // System clock
|
206 |
|
|
|
207 |
|
|
output [15:0] addr;
|
208 |
|
|
input [7:0] din;
|
209 |
|
|
output [7:0] dout;
|
210 |
|
|
output readmem;
|
211 |
|
|
output writemem;
|
212 |
|
|
output readio;
|
213 |
|
|
output writeio;
|
214 |
|
|
input [7:1] intr; // CNS
|
215 |
|
|
output inta;
|
216 |
|
|
// input waitr; CNS
|
217 |
|
|
input reset;
|
218 |
|
|
input clock; // synthesis clock
|
219 |
|
|
|
220 |
|
|
wire waitr = 1'b0; // no extra wait states, lock low, CNS
|
221 |
|
|
|
222 |
|
|
// Output or input lines that need to be registered
|
223 |
|
|
|
224 |
|
|
reg readmem;
|
225 |
|
|
reg writemem;
|
226 |
|
|
reg [15:0] pc;
|
227 |
|
|
reg [15:0] addr;
|
228 |
|
|
reg readio;
|
229 |
|
|
reg writeio;
|
230 |
|
|
reg inta;
|
231 |
|
|
reg [15:0] sp;
|
232 |
|
|
|
233 |
|
|
// Local registers
|
234 |
|
|
|
235 |
|
|
reg [5:0] state; // CPU state machine
|
236 |
|
|
reg [2:0] regd; // Destination register
|
237 |
|
|
reg [7:0] datao; // Data output register
|
238 |
|
|
// reg dataeno; // Enable output data CNS
|
239 |
|
|
reg [15:0] waddrhold; // address holding for write
|
240 |
|
|
reg [15:0] raddrhold; // address holding for read
|
241 |
|
|
reg [7:0] wdatahold; // single byte write data holding
|
242 |
|
|
reg [7:0] wdatahold2; // single byte write data holding
|
243 |
|
|
reg [7:0] rdatahold; // single byte read data holding
|
244 |
|
|
reg [7:0] rdatahold2; // single byte read data holding
|
245 |
|
|
reg [1:0] popdes; // POP destination code
|
246 |
|
|
reg [5:0] statesel; // state map selector
|
247 |
|
|
reg [5:0] nextstate; // next state output
|
248 |
|
|
reg eienb; // interrupt enable delay shift reg
|
249 |
|
|
reg [7:0] opcode; // opcode holding
|
250 |
|
|
|
251 |
|
|
// Register file. Note that 3'b110 (6) is not used, and is the code for a
|
252 |
|
|
// memory reference.
|
253 |
|
|
|
254 |
|
|
reg [7:0] regfil[0:7];
|
255 |
|
|
|
256 |
|
|
// The flags are represented individually
|
257 |
|
|
|
258 |
|
|
reg carry; // carry bit
|
259 |
|
|
reg auxcar; // auxiliary carry bit
|
260 |
|
|
reg sign; // sign bit
|
261 |
|
|
reg zero; // zero bit
|
262 |
|
|
reg parity; // parity bit
|
263 |
|
|
reg ei; // interrupt enable
|
264 |
|
|
reg intcyc; // in interrupt cycle
|
265 |
|
|
|
266 |
|
|
// ALU communication
|
267 |
|
|
|
268 |
|
|
wire [7:0] alures; // result
|
269 |
|
|
reg [7:0] aluopra; // left side operand
|
270 |
|
|
reg [7:0] aluoprb; // right side operand
|
271 |
|
|
reg alucin; // carry in
|
272 |
|
|
wire alucout; // carry out
|
273 |
|
|
wire alupar; // parity out
|
274 |
|
|
wire aluaxc; // auxiliary carry
|
275 |
|
|
reg [2:0] alusel; // alu operational select
|
276 |
|
|
wire aluzout; // CNS
|
277 |
|
|
wire alusout; // CNS
|
278 |
|
|
|
279 |
|
|
// Instantiate the ALU
|
280 |
|
|
|
281 |
|
|
alu alu(alures, aluopra, aluoprb, alucin, alucout, aluzout, alusout, alupar, aluaxc, alusel);
|
282 |
|
|
|
283 |
|
|
always @(posedge clock)
|
284 |
|
|
if (reset) begin // syncronous reset actions
|
285 |
|
|
|
286 |
|
|
state <= `cpus_fetchi; // Clear CPU state to initial fetch
|
287 |
|
|
pc <= 0; // reset program counter to 1st location
|
288 |
|
|
// dataeno <= 0; // get off the data bus CNS
|
289 |
|
|
readmem <= 0; // all signals out false
|
290 |
|
|
writemem<= 0;
|
291 |
|
|
readio <= 0;
|
292 |
|
|
writeio <= 0;
|
293 |
|
|
inta <= 0;
|
294 |
|
|
intcyc <= 0;
|
295 |
|
|
ei <= 1;
|
296 |
|
|
eienb <= 0;
|
297 |
|
|
|
298 |
|
|
end else case (state)
|
299 |
|
|
|
300 |
|
|
`cpus_fetchi: begin // start of instruction fetch
|
301 |
|
|
|
302 |
|
|
// if any interrupt request is on, enter interrupt cycle, else exit it now
|
303 |
|
|
if (ei&&(intr[1]||intr[2]||intr[3]||intr[4]||intr[5]||intr[6]||intr[7])) begin // CNS
|
304 |
|
|
// if (intr&&ei) begin
|
305 |
|
|
|
306 |
|
|
intcyc <= 1; // enter interrupt cycle
|
307 |
|
|
inta <= 1; // activate interrupt acknowledge
|
308 |
|
|
ei <= 0; // disable interrupts
|
309 |
|
|
|
310 |
|
|
end else begin
|
311 |
|
|
|
312 |
|
|
intcyc <= 0; // leave interrupt cycle
|
313 |
|
|
readmem <= 1; // activate instruction memory read
|
314 |
|
|
|
315 |
|
|
end
|
316 |
|
|
|
317 |
|
|
addr <= pc; // place current program count on output
|
318 |
|
|
if (eienb) ei <=1; // process delayed interrupt enable
|
319 |
|
|
eienb <=0; // reset interrupt enabler
|
320 |
|
|
state <= `cpus_fetchi2; // next state
|
321 |
|
|
|
322 |
|
|
end
|
323 |
|
|
|
324 |
|
|
`cpus_fetchi2: begin // wait
|
325 |
|
|
|
326 |
|
|
state <= `cpus_fetchi3; // next state
|
327 |
|
|
|
328 |
|
|
end
|
329 |
|
|
|
330 |
|
|
`cpus_fetchi3: begin // complete instruction memory read
|
331 |
|
|
|
332 |
|
|
if (!waitr) begin // no wait selected, otherwise cycle
|
333 |
|
|
|
334 |
|
|
// CNS: If we have an intr, then force the opcode to rst#
|
335 |
|
|
// else read the op code from the data input as usual.
|
336 |
|
|
if (intcyc) begin // for an int cycle
|
337 |
|
|
if (intr[1]) opcode <= `opcode_reset_1; // int vector to 0008H
|
338 |
|
|
if (intr[2]) opcode <= `opcode_reset_2; // int vector to 0010H
|
339 |
|
|
if (intr[3]) opcode <= `opcode_reset_3; // int vector to 0018H
|
340 |
|
|
if (intr[4]) opcode <= `opcode_reset_4; // int vector to 0020H
|
341 |
|
|
if (intr[5]) opcode <= `opcode_reset_5; // int vector to 0028H
|
342 |
|
|
if (intr[6]) opcode <= `opcode_reset_6; // int vector to 0030H
|
343 |
|
|
if (intr[7]) opcode <= `opcode_reset_7; // int vector to 0038H
|
344 |
|
|
intcyc <= 0; // we will kill the intcyc here, don't need it further
|
345 |
|
|
end else opcode <= din; // latch/read opcode CNS
|
346 |
|
|
|
347 |
|
|
readmem <= 0; // Deactivate instruction memory read
|
348 |
|
|
inta <= 0; // Deactivate interrupt acknowledge
|
349 |
|
|
state <= `cpus_fetchi4; // next state
|
350 |
|
|
|
351 |
|
|
end
|
352 |
|
|
|
353 |
|
|
end
|
354 |
|
|
|
355 |
|
|
`cpus_fetchi4: begin // complete instruction memory read
|
356 |
|
|
|
357 |
|
|
// We split off the instructions into 4 groups. Most of the 8080
|
358 |
|
|
// instructions are in the MOV and ACC operations class.
|
359 |
|
|
|
360 |
|
|
case (opcode[7:6]) // Decode top level
|
361 |
|
|
|
362 |
|
|
2'b00: begin // 00: Data transfers and others
|
363 |
|
|
|
364 |
|
|
case (opcode[5:0]) // decode these instructions
|
365 |
|
|
|
366 |
|
|
6'b000000: begin // NOP
|
367 |
|
|
|
368 |
|
|
// yes, do nothing
|
369 |
|
|
|
370 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
371 |
|
|
pc <= pc+1'b1; // Next instruction byte CNS
|
372 |
|
|
|
373 |
|
|
end
|
374 |
|
|
|
375 |
|
|
6'b110111: begin // STC
|
376 |
|
|
|
377 |
|
|
carry <= 1; // set carry flag
|
378 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
379 |
|
|
pc <= pc+1'b1; // Next instruction byte CNS
|
380 |
|
|
|
381 |
|
|
end
|
382 |
|
|
|
383 |
|
|
6'b111111: begin // CMC
|
384 |
|
|
|
385 |
|
|
carry <= ~carry; // complement carry flag
|
386 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
387 |
|
|
pc <= pc+1'b1; // Next instruction byte CNS
|
388 |
|
|
|
389 |
|
|
end
|
390 |
|
|
|
391 |
|
|
6'b101111: begin // CMA
|
392 |
|
|
|
393 |
|
|
regfil[`reg_a] <= ~regfil[`reg_a]; // complement accumulator
|
394 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
395 |
|
|
pc <= pc+1'b1; // Next instruction byte CNS
|
396 |
|
|
|
397 |
|
|
end
|
398 |
|
|
|
399 |
|
|
6'b100111: begin // DAA
|
400 |
|
|
|
401 |
|
|
// decimal adjust accumulator, or remove by carry any
|
402 |
|
|
// results in nybbles greater than 9
|
403 |
|
|
|
404 |
|
|
if (regfil[`reg_a][3:0] > 9 || auxcar) begin
|
405 |
|
|
|
406 |
|
|
{ carry, regfil[`reg_a] } <= regfil[`reg_a]+ 3'b110; // CNS 6
|
407 |
|
|
auxcar <= ((regfil[`reg_a][3:0]+6 >> 4) & 1'b1) ? 1'b1:1'b0; // cns
|
408 |
|
|
|
409 |
|
|
end
|
410 |
|
|
state <= `cpus_daa; // finish DAA
|
411 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
412 |
|
|
|
413 |
|
|
end
|
414 |
|
|
|
415 |
|
|
6'b000100, 6'b001100, 6'b010100, 6'b011100, 6'b100100,
|
416 |
|
|
6'b101100, 6'b110100, 6'b111100, 6'b000101, 6'b001101,
|
417 |
|
|
6'b010101, 6'b011101, 6'b100101, 6'b101101, 6'b110101,
|
418 |
|
|
6'b111101: begin // INR/DCR
|
419 |
|
|
|
420 |
|
|
regd <= opcode[5:3]; // get source/destination reg
|
421 |
|
|
aluopra <= regfil[opcode[5:3]]; // load as alu a
|
422 |
|
|
aluoprb <= 1; // load 1 as alu b
|
423 |
|
|
if (opcode[0]) alusel <= `aluop_sub; // set subtract
|
424 |
|
|
else alusel <= `aluop_add; // set add
|
425 |
|
|
state <= `cpus_indcb; // go inr/dcr cycleback
|
426 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
427 |
|
|
|
428 |
|
|
end
|
429 |
|
|
|
430 |
|
|
6'b000010, 6'b010010: begin // STAX
|
431 |
|
|
|
432 |
|
|
wdatahold <= regfil[`reg_a]; // place A as source
|
433 |
|
|
if (opcode[4]) // use DE pair
|
434 |
|
|
waddrhold <= regfil[`reg_d]<<8|regfil[`reg_d];
|
435 |
|
|
else // use BC pair
|
436 |
|
|
waddrhold <= regfil[`reg_b] << 8|regfil[`reg_c];
|
437 |
|
|
statesel <= `mac_writebyte; // write byte
|
438 |
|
|
state <= `cpus_write;
|
439 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
440 |
|
|
|
441 |
|
|
end
|
442 |
|
|
|
443 |
|
|
6'b001010, 6'b011010: begin // LDAX
|
444 |
|
|
|
445 |
|
|
regd <= `reg_a; // set A as destination
|
446 |
|
|
if (opcode[4]) // use DE pair
|
447 |
|
|
raddrhold <= regfil[`reg_d]<<8|regfil[`reg_d];
|
448 |
|
|
else // use BC pair
|
449 |
|
|
raddrhold <= regfil[`reg_b]<<8|regfil[`reg_c];
|
450 |
|
|
statesel <= `mac_readbtoreg; // read byte to register
|
451 |
|
|
state <= `cpus_read;
|
452 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
453 |
|
|
|
454 |
|
|
end
|
455 |
|
|
|
456 |
|
|
6'b000111: begin // RLC
|
457 |
|
|
|
458 |
|
|
// rotate left circular
|
459 |
|
|
{ carry, regfil[`reg_a] } <=
|
460 |
|
|
(regfil[`reg_a] << 1)+regfil[`reg_a][7];
|
461 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
462 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
463 |
|
|
|
464 |
|
|
end
|
465 |
|
|
|
466 |
|
|
6'b010111: begin // RAL
|
467 |
|
|
|
468 |
|
|
// rotate left through carry
|
469 |
|
|
{ carry, regfil[`reg_a] } <= (regfil[`reg_a] << 1)+carry;
|
470 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
471 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
472 |
|
|
|
473 |
|
|
end
|
474 |
|
|
|
475 |
|
|
6'b001111: begin // RRC
|
476 |
|
|
|
477 |
|
|
// rotate right circular
|
478 |
|
|
regfil[`reg_a] <=
|
479 |
|
|
(regfil[`reg_a] >> 1)+(regfil[`reg_a][0] << 7);
|
480 |
|
|
carry <= regfil[`reg_a][0];
|
481 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
482 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
483 |
|
|
|
484 |
|
|
end
|
485 |
|
|
|
486 |
|
|
6'b011111: begin // RAR
|
487 |
|
|
|
488 |
|
|
// rotate right through carry
|
489 |
|
|
regfil[`reg_a] <= (regfil[`reg_a] >> 1)+(carry << 7);
|
490 |
|
|
carry <= regfil[`reg_a][0];
|
491 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
492 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
493 |
|
|
|
494 |
|
|
end
|
495 |
|
|
|
496 |
|
|
6'b001001: begin // DAD B
|
497 |
|
|
|
498 |
|
|
// add BC to HL
|
499 |
|
|
{ carry, regfil[`reg_h], regfil[`reg_l] } <=
|
500 |
|
|
(regfil[`reg_h] << 8)+regfil[`reg_l]+
|
501 |
|
|
(regfil[`reg_b] << 8)+regfil[`reg_c];
|
502 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
503 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
504 |
|
|
|
505 |
|
|
end
|
506 |
|
|
|
507 |
|
|
6'b011001: begin // DAD D
|
508 |
|
|
|
509 |
|
|
// add DE to HL
|
510 |
|
|
{ carry, regfil[`reg_h], regfil[`reg_l] } <=
|
511 |
|
|
(regfil[`reg_h] << 8)+regfil[`reg_l]+
|
512 |
|
|
(regfil[`reg_d] << 8)+regfil[`reg_e];
|
513 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
514 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
515 |
|
|
|
516 |
|
|
end
|
517 |
|
|
|
518 |
|
|
6'b101001: begin // DAD H
|
519 |
|
|
|
520 |
|
|
// add HL to HL
|
521 |
|
|
{ carry, regfil[`reg_h], regfil[`reg_l] } <=
|
522 |
|
|
(regfil[`reg_h] << 8)+regfil[`reg_l]+
|
523 |
|
|
(regfil[`reg_h] << 8)+regfil[`reg_l];
|
524 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
525 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
526 |
|
|
|
527 |
|
|
end
|
528 |
|
|
|
529 |
|
|
6'b111001: begin // DAD SP
|
530 |
|
|
|
531 |
|
|
// add SP to HL
|
532 |
|
|
{ carry, regfil[`reg_h], regfil[`reg_l] } <=
|
533 |
|
|
(regfil[`reg_h] << 8)+regfil[`reg_l]+sp;
|
534 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
535 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
536 |
|
|
|
537 |
|
|
end
|
538 |
|
|
|
539 |
|
|
6'b000011: begin // INX B
|
540 |
|
|
|
541 |
|
|
// increment BC, no flags set
|
542 |
|
|
regfil[`reg_b] <=
|
543 |
|
|
(((regfil[`reg_b] << 8)+regfil[`reg_c])+1'b1)>>8;
|
544 |
|
|
regfil[`reg_c] <=
|
545 |
|
|
((regfil[`reg_b] << 8)+regfil[`reg_c])+1'b1;
|
546 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
547 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
548 |
|
|
|
549 |
|
|
end
|
550 |
|
|
|
551 |
|
|
6'b010011: begin // INX D
|
552 |
|
|
|
553 |
|
|
// increment DE, no flags set
|
554 |
|
|
regfil[`reg_d] <=
|
555 |
|
|
(((regfil[`reg_d] << 8)+regfil[`reg_e])+1'b1)>>8;
|
556 |
|
|
regfil[`reg_e] <=
|
557 |
|
|
((regfil[`reg_d] << 8)+regfil[`reg_e])+1'b1;
|
558 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
559 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
560 |
|
|
|
561 |
|
|
end
|
562 |
|
|
|
563 |
|
|
6'b100011: begin // INX H
|
564 |
|
|
|
565 |
|
|
// increment HL, no flags set
|
566 |
|
|
regfil[`reg_h] <=
|
567 |
|
|
(((regfil[`reg_h] << 8)+regfil[`reg_l])+1'b1)>>8;
|
568 |
|
|
regfil[`reg_l] <=
|
569 |
|
|
((regfil[`reg_h] << 8)+regfil[`reg_l])+1'b1;
|
570 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
571 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
572 |
|
|
|
573 |
|
|
end
|
574 |
|
|
|
575 |
|
|
6'b110011: begin // INX SP
|
576 |
|
|
|
577 |
|
|
// increment SP, no flags set
|
578 |
|
|
sp <= sp + 16'b1;
|
579 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
580 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
581 |
|
|
|
582 |
|
|
end
|
583 |
|
|
|
584 |
|
|
6'b001011: begin // DCX B
|
585 |
|
|
|
586 |
|
|
// decrement BC, no flags set
|
587 |
|
|
regfil[`reg_b] <=
|
588 |
|
|
(((regfil[`reg_b] << 8)+regfil[`reg_c]) - 8'b1)>>8;
|
589 |
|
|
regfil[`reg_c] <=
|
590 |
|
|
((regfil[`reg_b] << 8)+regfil[`reg_c])- 8'b1;
|
591 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
592 |
|
|
pc <= pc + 1'b1; // Next instruction byte
|
593 |
|
|
|
594 |
|
|
end
|
595 |
|
|
|
596 |
|
|
6'b011011: begin // DCX D
|
597 |
|
|
|
598 |
|
|
// decrement DE, no flags set
|
599 |
|
|
regfil[`reg_d] <=
|
600 |
|
|
(((regfil[`reg_d] << 8)+regfil[`reg_e]) - 8'b1)>>8;
|
601 |
|
|
regfil[`reg_e] <=
|
602 |
|
|
((regfil[`reg_d] << 8)+regfil[`reg_e])- 8'd11; // cns 11
|
603 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
604 |
|
|
pc <= pc + 1'b1; // Next instruction byte
|
605 |
|
|
|
606 |
|
|
end
|
607 |
|
|
|
608 |
|
|
6'b101011: begin // DCX H
|
609 |
|
|
|
610 |
|
|
// decrement HL, no flags set
|
611 |
|
|
regfil[`reg_h] <=
|
612 |
|
|
(((regfil[`reg_h] << 8)+regfil[`reg_l])- 8'b1)>>8;
|
613 |
|
|
regfil[`reg_l] <=
|
614 |
|
|
((regfil[`reg_h] << 8)+regfil[`reg_l]) - 8'b1;
|
615 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
616 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
617 |
|
|
|
618 |
|
|
end
|
619 |
|
|
|
620 |
|
|
6'b111011: begin // DCX SP
|
621 |
|
|
|
622 |
|
|
// decrement SP, no flags set
|
623 |
|
|
sp <= sp - 16'b1;
|
624 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
625 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
626 |
|
|
|
627 |
|
|
end
|
628 |
|
|
|
629 |
|
|
6'b000001: begin // LXI B
|
630 |
|
|
|
631 |
|
|
raddrhold <= pc+1'b1; // pick up after instruction
|
632 |
|
|
statesel <= `mac_readdtobc; // read double to BC
|
633 |
|
|
state <= `cpus_read;
|
634 |
|
|
pc <= pc + 16'h3; // skip
|
635 |
|
|
|
636 |
|
|
end
|
637 |
|
|
|
638 |
|
|
6'b010001: begin // LXI D
|
639 |
|
|
|
640 |
|
|
raddrhold <= pc+1'b1; // pick up after instruction
|
641 |
|
|
statesel <= `mac_readdtode; // read double to DE
|
642 |
|
|
state <= `cpus_read;
|
643 |
|
|
pc <= pc + 16'h3; // skip
|
644 |
|
|
|
645 |
|
|
end
|
646 |
|
|
|
647 |
|
|
6'b100001: begin // LXI H
|
648 |
|
|
|
649 |
|
|
raddrhold <= pc+1'b1; // pick up after instruction
|
650 |
|
|
statesel <= `mac_readdtohl; // read double to HL
|
651 |
|
|
state <= `cpus_read;
|
652 |
|
|
pc <= pc + 16'h3; // skip
|
653 |
|
|
|
654 |
|
|
end
|
655 |
|
|
|
656 |
|
|
6'b110001: begin // LXI SP
|
657 |
|
|
|
658 |
|
|
raddrhold <= pc+1'b1; // pick up after instruction
|
659 |
|
|
pc <= pc + 16'h3; // skip
|
660 |
|
|
statesel <= `mac_readdtosp; // read double to SP
|
661 |
|
|
state <= `cpus_read;
|
662 |
|
|
pc <= pc + 16'h3; // skip
|
663 |
|
|
|
664 |
|
|
end
|
665 |
|
|
|
666 |
|
|
6'b000110, 6'b001110, 6'b010110, 6'b011110, 6'b100110,
|
667 |
|
|
6'b101110, 6'b110110, 6'b111110: begin // MVI
|
668 |
|
|
|
669 |
|
|
// move immediate to register
|
670 |
|
|
regd <= opcode[5:3]; // set destination register
|
671 |
|
|
raddrhold <= pc+1'b1; // set pickup address
|
672 |
|
|
if (opcode[5:3] == `reg_m) begin // it's mvi m,imm
|
673 |
|
|
|
674 |
|
|
regd <= opcode[5:3]; // set destination register
|
675 |
|
|
// set destination address
|
676 |
|
|
waddrhold <= { regfil[`reg_h], regfil[`reg_l] };
|
677 |
|
|
statesel <= `mac_readbmtw; // read byte and move to write
|
678 |
|
|
|
679 |
|
|
end else
|
680 |
|
|
statesel <= `mac_readbmtr; // read byte and move to register
|
681 |
|
|
state <= `cpus_read;
|
682 |
|
|
pc <= pc + 16'h2; // advance over byte
|
683 |
|
|
|
684 |
|
|
end
|
685 |
|
|
|
686 |
|
|
6'b110010: begin // STA
|
687 |
|
|
|
688 |
|
|
wdatahold <= regfil[`reg_a]; // set write data
|
689 |
|
|
raddrhold <= pc+1'b1; // set read address
|
690 |
|
|
statesel <= `mac_sta; // perform sta
|
691 |
|
|
state <= `cpus_read;
|
692 |
|
|
pc <= pc + 16'h3; // next
|
693 |
|
|
|
694 |
|
|
end
|
695 |
|
|
|
696 |
|
|
6'b111010: begin // LDA
|
697 |
|
|
|
698 |
|
|
raddrhold <= pc+1'b1; // set read address
|
699 |
|
|
regd <= `reg_a; // set destination
|
700 |
|
|
statesel <= `mac_lda; // perform lda
|
701 |
|
|
state <= `cpus_read;
|
702 |
|
|
pc <= pc + 16'h3; // next
|
703 |
|
|
|
704 |
|
|
end
|
705 |
|
|
|
706 |
|
|
6'b100010: begin // SHLD
|
707 |
|
|
|
708 |
|
|
wdatahold <= regfil[`reg_l]; // set write data
|
709 |
|
|
wdatahold2 <= regfil[`reg_h];
|
710 |
|
|
raddrhold <= pc+1'b1; // set read address
|
711 |
|
|
statesel <= `mac_shld; // perform SHLD
|
712 |
|
|
state <= `cpus_read;
|
713 |
|
|
pc <= pc + 16'h3; // next
|
714 |
|
|
|
715 |
|
|
end
|
716 |
|
|
|
717 |
|
|
6'b101010: begin // LHLD
|
718 |
|
|
|
719 |
|
|
raddrhold <= pc+1'b1; // set read address
|
720 |
|
|
statesel <= `mac_lhld; // perform LHLD
|
721 |
|
|
state <= `cpus_read;
|
722 |
|
|
pc <= pc + 16'h3; // next
|
723 |
|
|
|
724 |
|
|
end
|
725 |
|
|
|
726 |
|
|
// the illegal opcodes behave as NOPs
|
727 |
|
|
|
728 |
|
|
6'b001000, 6'b010000, 6'b011000, 6'b100000, 6'b101000,
|
729 |
|
|
6'b110000, 6'b110000: begin
|
730 |
|
|
|
731 |
|
|
state <= `cpus_fetchi; // fetch next instruction
|
732 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
733 |
|
|
|
734 |
|
|
end
|
735 |
|
|
|
736 |
|
|
endcase
|
737 |
|
|
|
738 |
|
|
end
|
739 |
|
|
|
740 |
|
|
2'b01: begin // 01: MOV instruction
|
741 |
|
|
|
742 |
|
|
// Check its the halt instruction, which occupies the invalid
|
743 |
|
|
// "MOV M,M" instruction.
|
744 |
|
|
if (opcode == 8'b01110110) state <= `cpus_halt;
|
745 |
|
|
// Otherwise, the 01 prefix is single instruction format.
|
746 |
|
|
else begin
|
747 |
|
|
|
748 |
|
|
// Format 01DDDSSS
|
749 |
|
|
|
750 |
|
|
// Check memory source, use state if so
|
751 |
|
|
if (opcode[2:0] == `reg_m) begin
|
752 |
|
|
|
753 |
|
|
// place hl as address
|
754 |
|
|
raddrhold <= regfil[`reg_h]<<8|regfil[`reg_l];
|
755 |
|
|
regd <= opcode[5:3]; // set destination
|
756 |
|
|
statesel <= `mac_readbtoreg; // read byte to register
|
757 |
|
|
state <= `cpus_read;
|
758 |
|
|
|
759 |
|
|
// Check memory destination, use state if so
|
760 |
|
|
end else if (regd == `reg_m) begin
|
761 |
|
|
|
762 |
|
|
// place hl as address
|
763 |
|
|
waddrhold <= regfil[`reg_h]<<8|regfil[`reg_l];
|
764 |
|
|
wdatahold <= regfil[opcode[2:0]]; // place data to write
|
765 |
|
|
statesel <= `mac_writebyte; // write byte
|
766 |
|
|
state <= `cpus_write;
|
767 |
|
|
|
768 |
|
|
// otherwise simple register to register
|
769 |
|
|
end else begin
|
770 |
|
|
|
771 |
|
|
regfil[opcode[5:3]] <= regfil[opcode[2:0]];
|
772 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
773 |
|
|
|
774 |
|
|
end
|
775 |
|
|
|
776 |
|
|
end
|
777 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
778 |
|
|
|
779 |
|
|
end
|
780 |
|
|
|
781 |
|
|
2'b10: begin // 10: Reg or mem to accumulator ops
|
782 |
|
|
|
783 |
|
|
// 10 prefix is single instruction format
|
784 |
|
|
aluopra <= regfil[`reg_a]; // load as alu a
|
785 |
|
|
aluoprb <= regfil[opcode[2:0]]; // load as alu b
|
786 |
|
|
alusel <= opcode[5:3]; // set alu operation from instruction
|
787 |
|
|
alucin <= carry; // input carry
|
788 |
|
|
if (opcode[2:0] == `reg_m) begin
|
789 |
|
|
|
790 |
|
|
// set read address
|
791 |
|
|
raddrhold <= regfil[`reg_h]<<8|regfil[`reg_l];
|
792 |
|
|
regd <= `reg_a; // set destination always a
|
793 |
|
|
statesel <= `mac_readbtoreg; // read byte to register
|
794 |
|
|
state <= `cpus_read;
|
795 |
|
|
|
796 |
|
|
end else
|
797 |
|
|
state <= `cpus_alucb; // go to alu cycleback
|
798 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
799 |
|
|
|
800 |
|
|
end
|
801 |
|
|
|
802 |
|
|
2'b11: begin // 11: jmp/call and others
|
803 |
|
|
|
804 |
|
|
case (opcode[5:0]) // decode these instructions
|
805 |
|
|
|
806 |
|
|
6'b000101, 6'b010101, 6'b100101, 6'b110101: begin // PUSH
|
807 |
|
|
|
808 |
|
|
waddrhold <= sp - 16'h2; // write to stack
|
809 |
|
|
sp <= sp - 16'h2; // pushdown stack
|
810 |
|
|
case (opcode[5:4]) // register set
|
811 |
|
|
|
812 |
|
|
2'b00: { wdatahold2, wdatahold } <=
|
813 |
|
|
{ regfil[`reg_b], regfil[`reg_c] };
|
814 |
|
|
2'b01: { wdatahold2, wdatahold } <=
|
815 |
|
|
{ regfil[`reg_d], regfil[`reg_e] };
|
816 |
|
|
2'b10: { wdatahold2, wdatahold } <=
|
817 |
|
|
{ regfil[`reg_h], regfil[`reg_l] };
|
818 |
|
|
2'b11: { wdatahold2, wdatahold } <=
|
819 |
|
|
{ regfil[`reg_a], sign, zero, 1'b0, auxcar,
|
820 |
|
|
1'b0, parity, 1'b1, carry };
|
821 |
|
|
|
822 |
|
|
endcase
|
823 |
|
|
statesel <= `mac_writedbyte; // write double byte
|
824 |
|
|
state <= `cpus_write;
|
825 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
826 |
|
|
|
827 |
|
|
end
|
828 |
|
|
|
829 |
|
|
6'b000001, 6'b010001, 6'b100001, 6'b110001: begin // POP
|
830 |
|
|
|
831 |
|
|
popdes <= opcode[5:4]; // set destination
|
832 |
|
|
raddrhold <= sp; // read from stack
|
833 |
|
|
sp <= sp + 16'h2; // pushup stack
|
834 |
|
|
statesel <= `mac_pop; // perform POP
|
835 |
|
|
state <= `cpus_read;
|
836 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
837 |
|
|
|
838 |
|
|
end
|
839 |
|
|
|
840 |
|
|
6'b101011: begin // XCHG
|
841 |
|
|
|
842 |
|
|
regfil[`reg_d] <= regfil[`reg_h];
|
843 |
|
|
regfil[`reg_e] <= regfil[`reg_l];
|
844 |
|
|
regfil[`reg_h] <= regfil[`reg_d];
|
845 |
|
|
regfil[`reg_l] <= regfil[`reg_e];
|
846 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
847 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
848 |
|
|
|
849 |
|
|
end
|
850 |
|
|
|
851 |
|
|
6'b100011: begin // XTHL
|
852 |
|
|
|
853 |
|
|
raddrhold <= sp; // address SP for read
|
854 |
|
|
waddrhold <= sp; // address SP for write
|
855 |
|
|
wdatahold <= regfil[`reg_l]; // set data is HL
|
856 |
|
|
wdatahold2 <= regfil[`reg_h];
|
857 |
|
|
statesel <= `mac_xthl; // perform XTHL
|
858 |
|
|
state <= `cpus_read;
|
859 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
860 |
|
|
|
861 |
|
|
end
|
862 |
|
|
|
863 |
|
|
6'b111001: begin // SPHL
|
864 |
|
|
|
865 |
|
|
sp <= { regfil[`reg_h], regfil[`reg_l] };
|
866 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
867 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
868 |
|
|
|
869 |
|
|
end
|
870 |
|
|
|
871 |
|
|
6'b000110, 6'b001110, 6'b010110, 6'b011110, 6'b100110,
|
872 |
|
|
6'b101110, 6'b110110,
|
873 |
|
|
6'b111110: begin // immediate arithmetic to accumulator
|
874 |
|
|
|
875 |
|
|
aluopra <= regfil[`reg_a]; // load as alu a
|
876 |
|
|
alusel <= opcode[5:3]; // set alu operation from instruction
|
877 |
|
|
alucin <= carry; // input carry
|
878 |
|
|
raddrhold <= pc + 1'b1; // read at PC
|
879 |
|
|
statesel <= `mac_accimm; // finish accumulator immediate
|
880 |
|
|
state <= `cpus_read;
|
881 |
|
|
pc <= pc + 16'h2; // skip immediate byte
|
882 |
|
|
|
883 |
|
|
end
|
884 |
|
|
|
885 |
|
|
6'b101001: begin // PCHL
|
886 |
|
|
|
887 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
888 |
|
|
pc <= { regfil[`reg_h], regfil[`reg_l] };
|
889 |
|
|
|
890 |
|
|
end
|
891 |
|
|
|
892 |
|
|
6'b000011: begin // JMP
|
893 |
|
|
|
894 |
|
|
raddrhold <= pc+1'b1; // pick up jump address
|
895 |
|
|
statesel <= `mac_jmp; // finish JMP
|
896 |
|
|
state <= `cpus_read;
|
897 |
|
|
|
898 |
|
|
end
|
899 |
|
|
|
900 |
|
|
6'b000010, 6'b001010, 6'b010010, 6'b011010, 6'b100010,
|
901 |
|
|
6'b101010, 6'b110010, 6'b111010: begin // Jcc
|
902 |
|
|
|
903 |
|
|
raddrhold <= pc+1'b1; // pick up jump address
|
904 |
|
|
statesel <= `mac_jmp; // finish JMP
|
905 |
|
|
// choose continue or read according to condition
|
906 |
|
|
case (opcode[5:3]) // decode flag cases
|
907 |
|
|
|
908 |
|
|
3'b000: if (zero) state <= `cpus_fetchi;
|
909 |
|
|
else state <= `cpus_read;
|
910 |
|
|
3'b001: if (!zero) state <= `cpus_fetchi;
|
911 |
|
|
else state <= `cpus_read;
|
912 |
|
|
3'b010: if (carry) state <= `cpus_fetchi;
|
913 |
|
|
else state <= `cpus_read;
|
914 |
|
|
3'b011: if (!carry) state <= `cpus_fetchi;
|
915 |
|
|
else state <= `cpus_read;
|
916 |
|
|
3'b100: if (parity) state <= `cpus_fetchi;
|
917 |
|
|
else state <= `cpus_read;
|
918 |
|
|
3'b101: if (!parity) state <= `cpus_fetchi;
|
919 |
|
|
else state <= `cpus_read;
|
920 |
|
|
3'b110: if (sign) state <= `cpus_fetchi;
|
921 |
|
|
else state <= `cpus_read;
|
922 |
|
|
3'b111: if (!sign) state <= `cpus_fetchi;
|
923 |
|
|
else state <= `cpus_read;
|
924 |
|
|
|
925 |
|
|
endcase
|
926 |
|
|
pc <= pc + 16'h3; // advance after jump for false
|
927 |
|
|
|
928 |
|
|
end
|
929 |
|
|
|
930 |
|
|
6'b001101: begin // CALL
|
931 |
|
|
|
932 |
|
|
raddrhold <= pc+1'b1; // pick up call address
|
933 |
|
|
waddrhold <= sp - 16'h2; // place address on stack
|
934 |
|
|
// if interrupt cycle, use current pc, else use address
|
935 |
|
|
// after call
|
936 |
|
|
if (intcyc) { wdatahold2, wdatahold } <= pc;
|
937 |
|
|
else { wdatahold2, wdatahold } <= pc + 16'h3;
|
938 |
|
|
sp <= sp - 16'h2; // pushdown stack
|
939 |
|
|
statesel <= `mac_call; // finish CALL
|
940 |
|
|
state <= `cpus_read;
|
941 |
|
|
|
942 |
|
|
end
|
943 |
|
|
|
944 |
|
|
6'b000100, 6'b001100, 6'b010100, 6'b011100, 6'b100100,
|
945 |
|
|
6'b101100, 6'b110100, 6'b111100: begin // Ccc
|
946 |
|
|
|
947 |
|
|
raddrhold <= pc + 1'b1; // pick up call address
|
948 |
|
|
waddrhold <= sp - 16'h2; // place address on stack
|
949 |
|
|
{ wdatahold2, wdatahold } <= pc + 16'h3; // of address after call
|
950 |
|
|
sp <= sp - 16'h2; // pushdown stack
|
951 |
|
|
statesel <= `mac_call; // finish CALL
|
952 |
|
|
// choose continue or read according to condition
|
953 |
|
|
case (opcode[5:3]) // decode flag cases
|
954 |
|
|
|
955 |
|
|
3'b000: if (zero) state <= `cpus_fetchi;
|
956 |
|
|
else state <= `cpus_read;
|
957 |
|
|
3'b001: if (!zero) state <= `cpus_fetchi;
|
958 |
|
|
else state <= `cpus_read;
|
959 |
|
|
3'b010: if (carry) state <= `cpus_fetchi;
|
960 |
|
|
else state <= `cpus_read;
|
961 |
|
|
3'b011: if (!carry) state <= `cpus_fetchi;
|
962 |
|
|
else state <= `cpus_read;
|
963 |
|
|
3'b100: if (parity) state <= `cpus_fetchi;
|
964 |
|
|
else state <= `cpus_read;
|
965 |
|
|
3'b101: if (!parity) state <= `cpus_fetchi;
|
966 |
|
|
else state <= `cpus_read;
|
967 |
|
|
3'b110: if (sign) state <= `cpus_fetchi;
|
968 |
|
|
else state <= `cpus_read;
|
969 |
|
|
3'b111: if (!sign) state <= `cpus_fetchi;
|
970 |
|
|
else state <= `cpus_read;
|
971 |
|
|
|
972 |
|
|
endcase
|
973 |
|
|
pc <= pc + 16'h3; // advance after jump for false
|
974 |
|
|
|
975 |
|
|
end
|
976 |
|
|
|
977 |
|
|
6'b001001: begin // RET
|
978 |
|
|
|
979 |
|
|
raddrhold <= sp; // read from stack
|
980 |
|
|
sp <= sp + 16'h2; // pushup stack
|
981 |
|
|
statesel <= `mac_jmp; // finish JMP
|
982 |
|
|
state <= `cpus_read;
|
983 |
|
|
|
984 |
|
|
end
|
985 |
|
|
|
986 |
|
|
6'b000000, 6'b001000, 6'b010000, 6'b011000, 6'b100000,
|
987 |
|
|
6'b101000, 6'b110000, 6'b111000: begin // Rcc
|
988 |
|
|
|
989 |
|
|
raddrhold <= sp; // read from stack
|
990 |
|
|
sp <= sp + 16'h2; // pushup stack
|
991 |
|
|
statesel <= `mac_jmp; // finish JMP
|
992 |
|
|
// choose read or continue according to condition
|
993 |
|
|
case (opcode[5:3]) // decode flag cases
|
994 |
|
|
|
995 |
|
|
3'b000: if (zero) state <= `cpus_fetchi;
|
996 |
|
|
else state <= `cpus_read;
|
997 |
|
|
3'b001: if (!zero) state <= `cpus_fetchi;
|
998 |
|
|
else state <= `cpus_read;
|
999 |
|
|
3'b010: if (carry) state <= `cpus_fetchi;
|
1000 |
|
|
else state <= `cpus_read;
|
1001 |
|
|
3'b011: if (!carry) state <= `cpus_fetchi;
|
1002 |
|
|
else state <= `cpus_read;
|
1003 |
|
|
3'b100: if (parity) state <= `cpus_fetchi;
|
1004 |
|
|
else state <= `cpus_read;
|
1005 |
|
|
3'b101: if (!parity) state <= `cpus_fetchi;
|
1006 |
|
|
else state <= `cpus_read;
|
1007 |
|
|
3'b110: if (sign) state <= `cpus_fetchi;
|
1008 |
|
|
else state <= `cpus_read;
|
1009 |
|
|
3'b111: if (!sign) state <= `cpus_fetchi;
|
1010 |
|
|
else state <= `cpus_read;
|
1011 |
|
|
|
1012 |
|
|
endcase
|
1013 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
1014 |
|
|
|
1015 |
|
|
end
|
1016 |
|
|
|
1017 |
|
|
6'b000111, 6'b001111, 6'b010111, 6'b011111, 6'b100111,
|
1018 |
|
|
6'b101111, 6'b110111, 6'b111111: begin // RST
|
1019 |
|
|
|
1020 |
|
|
pc <= opcode & 8'b00111000; // place restart value in PC
|
1021 |
|
|
waddrhold <= sp - 16'h2; // place address on stack
|
1022 |
|
|
// if interrupt cycle, use current pc, else use address
|
1023 |
|
|
// after call
|
1024 |
|
|
if (intcyc) { wdatahold2, wdatahold } <= pc;
|
1025 |
|
|
else { wdatahold2, wdatahold } <= pc + 16'h3; // cns
|
1026 |
|
|
{ wdatahold2, wdatahold } <= pc + 1'b1; // of address after call CNS
|
1027 |
|
|
sp <= sp - 16'h2; // pushdown stack CNS
|
1028 |
|
|
statesel <= `mac_writedbyte; // finish RST
|
1029 |
|
|
state <= `cpus_write; // write to stack
|
1030 |
|
|
|
1031 |
|
|
end
|
1032 |
|
|
|
1033 |
|
|
6'b111011: begin // EI
|
1034 |
|
|
|
1035 |
|
|
eienb <= 1'b1; // set delayed interrupt enable
|
1036 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
1037 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
1038 |
|
|
|
1039 |
|
|
end
|
1040 |
|
|
|
1041 |
|
|
6'b110011: begin // DI
|
1042 |
|
|
|
1043 |
|
|
ei <= 1'b0;
|
1044 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
1045 |
|
|
pc <= pc+1'b1; // Next instruction byte
|
1046 |
|
|
|
1047 |
|
|
end
|
1048 |
|
|
|
1049 |
|
|
6'b011011: begin // IN p
|
1050 |
|
|
|
1051 |
|
|
raddrhold <= pc+1'b1; // pick up byte I/O address
|
1052 |
|
|
pc <= pc + 2'b10; // next
|
1053 |
|
|
statesel <= `mac_in; // finish IN
|
1054 |
|
|
state <= `cpus_read;
|
1055 |
|
|
pc <= pc + 2'b10; // Next instruction byte
|
1056 |
|
|
|
1057 |
|
|
end
|
1058 |
|
|
|
1059 |
|
|
6'b010011: begin // OUT p
|
1060 |
|
|
|
1061 |
|
|
raddrhold <= pc+1'b1; // pick up byte I/O address
|
1062 |
|
|
pc <= pc + 2'b10; // next
|
1063 |
|
|
statesel <= `mac_out; // finish OUT
|
1064 |
|
|
state <= `cpus_read;
|
1065 |
|
|
pc <= pc + 2'b10; // Next instruction byte
|
1066 |
|
|
|
1067 |
|
|
end
|
1068 |
|
|
|
1069 |
|
|
// the illegal opcodes behave as NOPs
|
1070 |
|
|
|
1071 |
|
|
6'b001011, 6'b011001, 6'b011101, 6'b101101,
|
1072 |
|
|
6'b111101: begin
|
1073 |
|
|
|
1074 |
|
|
state <= `cpus_fetchi; // fetch next instruction
|
1075 |
|
|
pc <= pc + 2'b10; // Next instruction byte, cns 2
|
1076 |
|
|
|
1077 |
|
|
end
|
1078 |
|
|
|
1079 |
|
|
endcase
|
1080 |
|
|
|
1081 |
|
|
end
|
1082 |
|
|
|
1083 |
|
|
endcase
|
1084 |
|
|
|
1085 |
|
|
end
|
1086 |
|
|
|
1087 |
|
|
// Follow states. These state handlers implement the following cycles past
|
1088 |
|
|
// M1, or primary fetch state.
|
1089 |
|
|
|
1090 |
|
|
//
|
1091 |
|
|
// single byte write, writes wdatahold to the waddrhold address
|
1092 |
|
|
//
|
1093 |
|
|
|
1094 |
|
|
`cpus_write: begin
|
1095 |
|
|
|
1096 |
|
|
addr <= waddrhold; // place address on output
|
1097 |
|
|
waddrhold <= waddrhold + 1'b1; // next address
|
1098 |
|
|
datao <= wdatahold; // set data to output
|
1099 |
|
|
wdatahold <= wdatahold2; // next data
|
1100 |
|
|
// dataeno <= 1; // enable output data CNS
|
1101 |
|
|
state <= `cpus_write2; // next state
|
1102 |
|
|
|
1103 |
|
|
end
|
1104 |
|
|
|
1105 |
|
|
`cpus_write2: begin // continue write #2
|
1106 |
|
|
|
1107 |
|
|
writemem <= 1; // enable write memory data
|
1108 |
|
|
state <= `cpus_write3; // idle one cycle for write
|
1109 |
|
|
|
1110 |
|
|
end
|
1111 |
|
|
|
1112 |
|
|
`cpus_write3: begin // continue write #3
|
1113 |
|
|
|
1114 |
|
|
if (!waitr) begin // no wait selected, otherwise cycle
|
1115 |
|
|
|
1116 |
|
|
writemem <= 0; // disable write memory data
|
1117 |
|
|
state <= `cpus_write4; // idle hold time
|
1118 |
|
|
|
1119 |
|
|
end
|
1120 |
|
|
|
1121 |
|
|
end
|
1122 |
|
|
|
1123 |
|
|
`cpus_write4: begin // continue write #4
|
1124 |
|
|
|
1125 |
|
|
// dataeno <= 0; // disable output data CNS
|
1126 |
|
|
state <= nextstate; // get next macro state
|
1127 |
|
|
statesel <= statesel+1'b1; // and index next in macro
|
1128 |
|
|
|
1129 |
|
|
end
|
1130 |
|
|
|
1131 |
|
|
//
|
1132 |
|
|
// single byte read, reads rdatahold from the raddrhold address
|
1133 |
|
|
//
|
1134 |
|
|
|
1135 |
|
|
`cpus_read: begin
|
1136 |
|
|
|
1137 |
|
|
addr <= raddrhold; // place address on output
|
1138 |
|
|
raddrhold <= raddrhold + 1'b1; // next address
|
1139 |
|
|
if (intcyc) inta <= 1; // activate interrupt acknowledge
|
1140 |
|
|
else readmem <= 1; // activate memory read
|
1141 |
|
|
state <= `cpus_read2; // next state
|
1142 |
|
|
|
1143 |
|
|
end
|
1144 |
|
|
|
1145 |
|
|
`cpus_read2: begin // continue read #2
|
1146 |
|
|
|
1147 |
|
|
// wait one cycle
|
1148 |
|
|
state <= `cpus_read3; // next state
|
1149 |
|
|
|
1150 |
|
|
end
|
1151 |
|
|
|
1152 |
|
|
`cpus_read3: begin // continue read #3
|
1153 |
|
|
|
1154 |
|
|
if (!waitr) begin // no wait selected, otherwise cycle
|
1155 |
|
|
|
1156 |
|
|
rdatahold2 <= rdatahold; // shift data
|
1157 |
|
|
rdatahold <= din; // read new data CNS
|
1158 |
|
|
readmem <= 0; // deactivate instruction memory read
|
1159 |
|
|
inta <= 0; // deactivate interrupt acknowledge
|
1160 |
|
|
state <= nextstate; // get next macro state
|
1161 |
|
|
statesel <= statesel+1'b1; // and index next in macro
|
1162 |
|
|
|
1163 |
|
|
end
|
1164 |
|
|
|
1165 |
|
|
end
|
1166 |
|
|
|
1167 |
|
|
`cpus_pop: begin // finish POP instruction
|
1168 |
|
|
|
1169 |
|
|
case (popdes) // register set
|
1170 |
|
|
|
1171 |
|
|
2'b00: { regfil[`reg_b], regfil[`reg_c] } <=
|
1172 |
|
|
{ rdatahold, rdatahold2 };
|
1173 |
|
|
2'b01: { regfil[`reg_d], regfil[`reg_e] } <=
|
1174 |
|
|
{ rdatahold, rdatahold2 };
|
1175 |
|
|
2'b10: { regfil[`reg_h], regfil[`reg_l] } <=
|
1176 |
|
|
{ rdatahold, rdatahold2 };
|
1177 |
|
|
2'b11: begin
|
1178 |
|
|
|
1179 |
|
|
regfil[`reg_a] <= rdatahold;
|
1180 |
|
|
sign <= ((rdatahold2 >> 7)& 1'b1) ? 1'b1:1'b0;
|
1181 |
|
|
zero <= ((rdatahold2 >> 6)& 1'b1) ? 1'b1:1'b0;
|
1182 |
|
|
auxcar <= ((rdatahold2 >> 4)& 1'b1) ? 1'b1:1'b0;
|
1183 |
|
|
parity <= ((rdatahold2 >> 2)& 1'b1) ? 1'b1:1'b0;
|
1184 |
|
|
carry <= ((rdatahold2 >> 0)& 1'b1) ? 1'b1:1'b0;
|
1185 |
|
|
|
1186 |
|
|
end
|
1187 |
|
|
|
1188 |
|
|
endcase
|
1189 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
1190 |
|
|
|
1191 |
|
|
end
|
1192 |
|
|
|
1193 |
|
|
`cpus_jmp: begin // jump address
|
1194 |
|
|
|
1195 |
|
|
state <= `cpus_fetchi; // and return to instruction fetch
|
1196 |
|
|
pc <= { rdatahold, rdatahold2 };
|
1197 |
|
|
|
1198 |
|
|
end
|
1199 |
|
|
|
1200 |
|
|
`cpus_in: begin // input single byte to A
|
1201 |
|
|
|
1202 |
|
|
addr <= rdatahold; // place I/O address on address lines
|
1203 |
|
|
readio <= 1; // set read I/O
|
1204 |
|
|
state <= `cpus_in2; // continue
|
1205 |
|
|
|
1206 |
|
|
end
|
1207 |
|
|
|
1208 |
|
|
`cpus_in2: begin // input single byte to A #2
|
1209 |
|
|
|
1210 |
|
|
// wait one cycle
|
1211 |
|
|
state <= `cpus_in3; // continue
|
1212 |
|
|
|
1213 |
|
|
end
|
1214 |
|
|
|
1215 |
|
|
`cpus_in3: begin // input single byte to A #3
|
1216 |
|
|
|
1217 |
|
|
if (!waitr) begin // no wait selected, otherwise cycle
|
1218 |
|
|
|
1219 |
|
|
regfil[`reg_a] <= din; // place input data CNS
|
1220 |
|
|
readio <= 0; // clear read I/O
|
1221 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
1222 |
|
|
|
1223 |
|
|
end
|
1224 |
|
|
|
1225 |
|
|
end
|
1226 |
|
|
|
1227 |
|
|
`cpus_out: begin // output single byte from A
|
1228 |
|
|
|
1229 |
|
|
addr <= rdatahold; // place address on output
|
1230 |
|
|
datao <= regfil[`reg_a]; // set data to output
|
1231 |
|
|
// dataeno <= 1; // enable output data CNS
|
1232 |
|
|
state <= `cpus_out2; // next state
|
1233 |
|
|
|
1234 |
|
|
end
|
1235 |
|
|
|
1236 |
|
|
`cpus_out2: begin // continue out #2
|
1237 |
|
|
|
1238 |
|
|
writeio <= 1; // enable write I/O data
|
1239 |
|
|
state <= `cpus_out3; // idle one cycle for write
|
1240 |
|
|
|
1241 |
|
|
end
|
1242 |
|
|
|
1243 |
|
|
`cpus_out3: begin // continue out #3
|
1244 |
|
|
|
1245 |
|
|
if (!waitr) begin // no wait selected, otherwise cycle
|
1246 |
|
|
|
1247 |
|
|
writeio <= 0; // disable write I/O data
|
1248 |
|
|
state <= `cpus_out4; // idle hold time
|
1249 |
|
|
|
1250 |
|
|
end
|
1251 |
|
|
|
1252 |
|
|
end
|
1253 |
|
|
|
1254 |
|
|
`cpus_out4: begin // continue write #4
|
1255 |
|
|
|
1256 |
|
|
// dataeno <= 0; // disable output data CNS
|
1257 |
|
|
state <= `cpus_fetchi; // Fetch next instruction
|
1258 |
|
|
|
1259 |
|
|
end
|
1260 |
|
|
|
1261 |
|
|
`cpus_halt: begin // Halt waiting for interrupt
|
1262 |
|
|
|
1263 |
|
|
// If there is an interrupt request and interrupts are enabled, then we
|
1264 |
|
|
// can leave halt. Otherwise we stay here.
|
1265 |
|
|
if (ei&&(intr[1]||intr[2]||intr[3]||intr[4]||intr[5]||intr[6]||intr[7])) state <= `cpus_fetchi; // Fetch next instruction // CNS
|
1266 |
|
|
// if (intr&&ei) state <= `cpus_fetchi; // Fetch next instruction
|
1267 |
|
|
else state <= `cpus_halt;
|
1268 |
|
|
|
1269 |
|
|
|
1270 |
|
|
end
|
1271 |
|
|
|
1272 |
|
|
`cpus_movtr: begin // move to register
|
1273 |
|
|
|
1274 |
|
|
regfil[regd] <= rdatahold; // place data
|
1275 |
|
|
state <= nextstate; // get next macro state
|
1276 |
|
|
statesel <= statesel+1'b1; // and index next in macro
|
1277 |
|
|
|
1278 |
|
|
end
|
1279 |
|
|
|
1280 |
|
|
`cpus_alucb: begin // alu cycleback
|
1281 |
|
|
|
1282 |
|
|
regfil[`reg_a] <= alures; // place alu result back to A
|
1283 |
|
|
carry <= alucout; // place carry
|
1284 |
|
|
sign <= alusout; // place sign
|
1285 |
|
|
zero <= aluzout; // place zero
|
1286 |
|
|
parity <= alupar; // place parity
|
1287 |
|
|
auxcar <= aluaxc; // place auxiliary carry
|
1288 |
|
|
state <= `cpus_fetchi; // and return to instruction fetch
|
1289 |
|
|
|
1290 |
|
|
end
|
1291 |
|
|
|
1292 |
|
|
`cpus_indcb: begin // inr/dcr cycleback
|
1293 |
|
|
|
1294 |
|
|
regfil[regd] <= alures; // place alu result back to source/dest
|
1295 |
|
|
sign <= alures[7]; // place sign
|
1296 |
|
|
zero <= aluzout; // place zero
|
1297 |
|
|
parity <= alupar; // place parity
|
1298 |
|
|
auxcar <= aluaxc; // place auxiliary carry
|
1299 |
|
|
state <= `cpus_fetchi; // and return to instruction fetch
|
1300 |
|
|
|
1301 |
|
|
end
|
1302 |
|
|
|
1303 |
|
|
`cpus_movmtbc: begin // finish LXI B
|
1304 |
|
|
|
1305 |
|
|
regfil[`reg_b] <= rdatahold; // place upper
|
1306 |
|
|
regfil[`reg_c] <= rdatahold2; // place lower
|
1307 |
|
|
state <= `cpus_fetchi; // and return to instruction fetch
|
1308 |
|
|
|
1309 |
|
|
end
|
1310 |
|
|
|
1311 |
|
|
`cpus_movmtde: begin // finish LXI D
|
1312 |
|
|
|
1313 |
|
|
regfil[`reg_d] <= rdatahold; // place upper
|
1314 |
|
|
regfil[`reg_e] <= rdatahold2; // place lower
|
1315 |
|
|
state <= `cpus_fetchi; // and return to instruction fetch
|
1316 |
|
|
|
1317 |
|
|
end
|
1318 |
|
|
|
1319 |
|
|
`cpus_movmthl: begin // finish LXI H
|
1320 |
|
|
|
1321 |
|
|
regfil[`reg_h] <= rdatahold; // place upper
|
1322 |
|
|
regfil[`reg_l] <= rdatahold2; // place lower
|
1323 |
|
|
state <= `cpus_fetchi; // and return to instruction fetch
|
1324 |
|
|
|
1325 |
|
|
end
|
1326 |
|
|
|
1327 |
|
|
`cpus_movmtsp: begin // finish LXI SP
|
1328 |
|
|
|
1329 |
|
|
sp <= { rdatahold, rdatahold2 }; // place
|
1330 |
|
|
state <= `cpus_fetchi; // and return to instruction fetch
|
1331 |
|
|
|
1332 |
|
|
end
|
1333 |
|
|
|
1334 |
|
|
`cpus_movrtw: begin // move read to write
|
1335 |
|
|
|
1336 |
|
|
wdatahold <= rdatahold; // move read to write data
|
1337 |
|
|
state <= nextstate; // get next macro state
|
1338 |
|
|
statesel <= statesel+1'b1; // and index next in macro cns
|
1339 |
|
|
|
1340 |
|
|
end
|
1341 |
|
|
|
1342 |
|
|
`cpus_movrtwa: begin // move read data to write address
|
1343 |
|
|
|
1344 |
|
|
waddrhold <= { rdatahold, rdatahold2 };
|
1345 |
|
|
state <= nextstate; // get next macro state
|
1346 |
|
|
statesel <= statesel+1'b1; // and index next in macro cns
|
1347 |
|
|
|
1348 |
|
|
end
|
1349 |
|
|
|
1350 |
|
|
`cpus_movrtra: begin // move read data to read address
|
1351 |
|
|
|
1352 |
|
|
raddrhold <= { rdatahold, rdatahold2 };
|
1353 |
|
|
state <= nextstate; // get next macro state
|
1354 |
|
|
statesel <= statesel+1'b1; // and index next in macro cns
|
1355 |
|
|
|
1356 |
|
|
end
|
1357 |
|
|
|
1358 |
|
|
`cpus_lhld: begin // load HL from read data
|
1359 |
|
|
|
1360 |
|
|
regfil[`reg_l] <= rdatahold2; // low
|
1361 |
|
|
regfil[`reg_h] <= rdatahold; // high
|
1362 |
|
|
state <= nextstate; // get next macro state
|
1363 |
|
|
statesel <= statesel+1'b1; // and index next in macro CNS
|
1364 |
|
|
|
1365 |
|
|
end
|
1366 |
|
|
|
1367 |
|
|
`cpus_accimm: begin
|
1368 |
|
|
|
1369 |
|
|
aluoprb <= rdatahold; // load as alu b
|
1370 |
|
|
state <= `cpus_alucb; // go to alu cycleback
|
1371 |
|
|
|
1372 |
|
|
end
|
1373 |
|
|
|
1374 |
|
|
`cpus_daa: begin
|
1375 |
|
|
|
1376 |
|
|
if (regfil[`reg_a][7:4] > 9 || carry) begin
|
1377 |
|
|
|
1378 |
|
|
{ carry, regfil[`reg_a] } <= regfil[`reg_a]+8'h60;
|
1379 |
|
|
|
1380 |
|
|
end
|
1381 |
|
|
state <= `cpus_fetchi; // and return to instruction fetch
|
1382 |
|
|
|
1383 |
|
|
end
|
1384 |
|
|
|
1385 |
|
|
default: state <= 5'bx;
|
1386 |
|
|
|
1387 |
|
|
endcase
|
1388 |
|
|
|
1389 |
|
|
// Enable drive for data output
|
1390 |
|
|
assign dout = datao; // CNS
|
1391 |
|
|
|
1392 |
|
|
//
|
1393 |
|
|
// State macro generator
|
1394 |
|
|
//
|
1395 |
|
|
// This ROM contains series of state execution lists that perform various
|
1396 |
|
|
// tasks, usually involving reads or writes.
|
1397 |
|
|
//
|
1398 |
|
|
|
1399 |
|
|
always @(statesel) case (statesel)
|
1400 |
|
|
|
1401 |
|
|
// mac_writebyte: write a byte
|
1402 |
|
|
|
1403 |
|
|
1: nextstate = `cpus_fetchi; // fetch next instruction
|
1404 |
|
|
|
1405 |
|
|
// mac_readbtoreg: read a byte, place in register
|
1406 |
|
|
|
1407 |
|
|
2: nextstate = `cpus_movtr; // move to register
|
1408 |
|
|
3: nextstate = `cpus_fetchi; // Fetch next instruction
|
1409 |
|
|
|
1410 |
|
|
// mac_readdtobc: read double byte to BC
|
1411 |
|
|
|
1412 |
|
|
4: nextstate = `cpus_read; // get high byte
|
1413 |
|
|
5: nextstate = `cpus_movmtbc; // place in BC
|
1414 |
|
|
|
1415 |
|
|
// mac_readdtode: read double byte to DE
|
1416 |
|
|
|
1417 |
|
|
6: nextstate = `cpus_read; // get high byte
|
1418 |
|
|
7: nextstate = `cpus_movmtde; // place in DE
|
1419 |
|
|
|
1420 |
|
|
// mac_readdtohl: read double byte to HL
|
1421 |
|
|
|
1422 |
|
|
8: nextstate = `cpus_read; // get high byte
|
1423 |
|
|
9: nextstate = `cpus_movmthl; // place in HL
|
1424 |
|
|
|
1425 |
|
|
// mac_readdtosp: read double byte to SP
|
1426 |
|
|
|
1427 |
|
|
10: nextstate = `cpus_read; // get high byte
|
1428 |
|
|
11: nextstate = `cpus_movmtsp; // place in SP
|
1429 |
|
|
|
1430 |
|
|
// mac_readbmtw: read byte and move to write
|
1431 |
|
|
|
1432 |
|
|
12: nextstate = `cpus_movrtw; // move read to write
|
1433 |
|
|
13: nextstate = `cpus_fetchi; // Fetch next instruction
|
1434 |
|
|
|
1435 |
|
|
// mac_readbmtr: read byte and move to register
|
1436 |
|
|
|
1437 |
|
|
14: nextstate = `cpus_movtr; // place in register
|
1438 |
|
|
15: nextstate = `cpus_fetchi; // Fetch next instruction
|
1439 |
|
|
|
1440 |
|
|
// mac_sta: STA
|
1441 |
|
|
|
1442 |
|
|
16: nextstate = `cpus_read; // read high byte
|
1443 |
|
|
17: nextstate = `cpus_movrtwa; // move read to write address
|
1444 |
|
|
18: nextstate = `cpus_write; // write to destination
|
1445 |
|
|
19: nextstate = `cpus_fetchi; // Fetch next instruction
|
1446 |
|
|
|
1447 |
|
|
// mac_lda: LDA
|
1448 |
|
|
|
1449 |
|
|
20: nextstate = `cpus_read; // read high byte
|
1450 |
|
|
21: nextstate = `cpus_movrtra; // move read to write address
|
1451 |
|
|
22: nextstate = `cpus_read; // read byte
|
1452 |
|
|
23: nextstate = `cpus_movtr; // move to register
|
1453 |
|
|
24: nextstate = `cpus_fetchi; // Fetch next instruction
|
1454 |
|
|
|
1455 |
|
|
// mac_shld: SHLD
|
1456 |
|
|
|
1457 |
|
|
25: nextstate = `cpus_read; // read high byte
|
1458 |
|
|
26: nextstate = `cpus_movrtwa; // move read to write address
|
1459 |
|
|
27: nextstate = `cpus_write; // write to destination low
|
1460 |
|
|
28: nextstate = `cpus_write; // write to destination high
|
1461 |
|
|
29: nextstate = `cpus_fetchi; // Fetch next instruction
|
1462 |
|
|
|
1463 |
|
|
// mac_lhld: LHLD
|
1464 |
|
|
|
1465 |
|
|
30: nextstate = `cpus_read; // read high byte
|
1466 |
|
|
31: nextstate = `cpus_movrtra; // move read to write address
|
1467 |
|
|
32: nextstate = `cpus_read; // read byte low
|
1468 |
|
|
33: nextstate = `cpus_read; // read byte high
|
1469 |
|
|
34: nextstate = `cpus_lhld; // move to register
|
1470 |
|
|
35: nextstate = `cpus_fetchi; // Fetch next instruction
|
1471 |
|
|
|
1472 |
|
|
// mac_writedbyte: write double byte
|
1473 |
|
|
|
1474 |
|
|
36: nextstate = `cpus_write; // double write
|
1475 |
|
|
37: nextstate = `cpus_fetchi; // then fetch
|
1476 |
|
|
|
1477 |
|
|
// mac_pop: POP
|
1478 |
|
|
|
1479 |
|
|
38: nextstate = `cpus_read; // double it
|
1480 |
|
|
39: nextstate = `cpus_pop; // then finish
|
1481 |
|
|
|
1482 |
|
|
// mac_xthl: XTHL
|
1483 |
|
|
|
1484 |
|
|
40: nextstate = `cpus_read; // double it
|
1485 |
|
|
41: nextstate = `cpus_write; // then write
|
1486 |
|
|
42: nextstate = `cpus_write; // double it
|
1487 |
|
|
43: nextstate = `cpus_movmthl; // place word in hl
|
1488 |
|
|
|
1489 |
|
|
// mac_accimm: accumulator immediate
|
1490 |
|
|
|
1491 |
|
|
44: nextstate = `cpus_accimm; // finish
|
1492 |
|
|
|
1493 |
|
|
// mac_jmp: JMP
|
1494 |
|
|
|
1495 |
|
|
45: nextstate = `cpus_read; // double read
|
1496 |
|
|
46: nextstate = `cpus_jmp; // then go pc
|
1497 |
|
|
|
1498 |
|
|
// mac_call: CALL
|
1499 |
|
|
|
1500 |
|
|
47: nextstate = `cpus_read; // double read
|
1501 |
|
|
48: nextstate = `cpus_write; // then write
|
1502 |
|
|
49: nextstate = `cpus_write; // double write
|
1503 |
|
|
50: nextstate = `cpus_jmp; // then go to that
|
1504 |
|
|
|
1505 |
|
|
// mac_in: IN
|
1506 |
|
|
|
1507 |
|
|
51: nextstate = `cpus_in; // go to IN after getting that
|
1508 |
|
|
|
1509 |
|
|
// mac_out: OUT
|
1510 |
|
|
|
1511 |
|
|
52: nextstate = `cpus_out; // go to OUT after getting that
|
1512 |
|
|
|
1513 |
|
|
// mac_rst: RST
|
1514 |
|
|
|
1515 |
|
|
53: nextstate = `cpus_write; // double write
|
1516 |
|
|
54: nextstate = `cpus_jmp; // then go to that
|
1517 |
|
|
|
1518 |
|
|
default nextstate = 6'bx; // other states never reached
|
1519 |
|
|
|
1520 |
|
|
endcase
|
1521 |
|
|
|
1522 |
|
|
endmodule
|
1523 |
|
|
|
1524 |
|
|
//
|
1525 |
|
|
// Alu module
|
1526 |
|
|
//
|
1527 |
|
|
// Finds arithmetic operations needed. Latches on the positive edge of the
|
1528 |
|
|
// clock. There are 8 different types of operations, which come from bits
|
1529 |
|
|
// 3-5 of the instruction.
|
1530 |
|
|
//
|
1531 |
|
|
|
1532 |
|
|
module alu(res, opra, oprb, cin, cout, zout, sout, parity, auxcar, sel);
|
1533 |
|
|
|
1534 |
|
|
input [7:0] opra; // Input A
|
1535 |
|
|
input [7:0] oprb; // Input B
|
1536 |
|
|
input cin; // Carry in
|
1537 |
|
|
output cout; // Carry out
|
1538 |
|
|
output zout; // Zero out
|
1539 |
|
|
output sout; // Sign out
|
1540 |
|
|
output parity; // parity
|
1541 |
|
|
output auxcar; // auxiliary carry
|
1542 |
|
|
input [2:0] sel; // Operation select
|
1543 |
|
|
output [7:0] res; // Result of alu operation
|
1544 |
|
|
|
1545 |
|
|
reg cout; // Carry out
|
1546 |
|
|
reg zout; // Zero out
|
1547 |
|
|
reg sout; // sign out
|
1548 |
|
|
reg parity; // parity
|
1549 |
|
|
reg auxcar; // auxiliary carry
|
1550 |
|
|
reg [7:0] resi; // Result of alu operation intermediate
|
1551 |
|
|
reg [7:0] res; // Result of alu operation
|
1552 |
|
|
|
1553 |
|
|
always @(opra, oprb, cin, sel, res, resi) begin
|
1554 |
|
|
|
1555 |
|
|
case (sel)
|
1556 |
|
|
|
1557 |
|
|
`aluop_add: begin // add
|
1558 |
|
|
|
1559 |
|
|
{ cout, resi } = opra+oprb; // find result and carry
|
1560 |
|
|
// auxcar = ((opra[3:0]+oprb[3:0]) >> 4) & 1'b1; // find auxiliary carry
|
1561 |
|
|
// if ((opra[3:0]+oprb[3:0])>>4) auxcar=1'b1; else auxcar=1'b0;
|
1562 |
|
|
auxcar = (((opra[3:0]+oprb[3:0]) >> 4) & 1'b1) ? 1'b1 : 1'b0 ; // find auxiliary carry
|
1563 |
|
|
|
1564 |
|
|
|
1565 |
|
|
end
|
1566 |
|
|
`aluop_adc: begin // adc
|
1567 |
|
|
|
1568 |
|
|
{ cout, resi } = opra+oprb+cin; // find result and carry
|
1569 |
|
|
auxcar = (((opra[3:0]+oprb[3:0]+cin) >> 4) & 1'b1) ? 1'b1 : 1'b0; // find auxiliary carry
|
1570 |
|
|
|
1571 |
|
|
end
|
1572 |
|
|
`aluop_sub, `aluop_cmp: begin // sub/cmp
|
1573 |
|
|
|
1574 |
|
|
{ cout, resi } = opra-oprb; // find result and carry
|
1575 |
|
|
auxcar = (((opra[3:0]-oprb[3:0]) >> 4) & 1'b1) ? 1'b1 : 1'b0; // find auxiliary borrow
|
1576 |
|
|
|
1577 |
|
|
end
|
1578 |
|
|
`aluop_sbb: begin // sbb
|
1579 |
|
|
|
1580 |
|
|
{ cout, resi } = opra-oprb-cin; // find result and carry
|
1581 |
|
|
auxcar = (((opra[3:0]-oprb[3:0]-cin >> 4)) & 1'b1) ? 1'b1 : 1'b0; // find auxiliary borrow
|
1582 |
|
|
|
1583 |
|
|
end
|
1584 |
|
|
`aluop_and: begin // ana
|
1585 |
|
|
|
1586 |
|
|
{ cout, resi } = {1'b0, opra&oprb}; // find result and carry
|
1587 |
|
|
auxcar = 1'b0; // clear auxillary carry
|
1588 |
|
|
|
1589 |
|
|
end
|
1590 |
|
|
`aluop_xor: begin // xra
|
1591 |
|
|
|
1592 |
|
|
{ cout, resi } = {1'b0, opra^oprb}; // find result and carry
|
1593 |
|
|
auxcar = 1'b0; // clear auxillary carry
|
1594 |
|
|
|
1595 |
|
|
end
|
1596 |
|
|
`aluop_or: begin // ora
|
1597 |
|
|
|
1598 |
|
|
{ cout, resi } = {1'b0, opra|oprb}; // find result and carry
|
1599 |
|
|
auxcar = 1'b0; // clear auxillary carry
|
1600 |
|
|
|
1601 |
|
|
end
|
1602 |
|
|
|
1603 |
|
|
endcase
|
1604 |
|
|
|
1605 |
|
|
if (sel != `aluop_cmp) res = resi; else res = opra;
|
1606 |
|
|
zout <= ~|resi; // set zero flag from result
|
1607 |
|
|
sout <= resi[7]; // set sign flag from result
|
1608 |
|
|
parity <= ~^resi; // set parity flag from result
|
1609 |
|
|
|
1610 |
|
|
end
|
1611 |
|
|
|
1612 |
|
|
endmodule
|