1 |
2 |
jsauermann |
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
|
2 |
|
|
"http://www.w3.org/TR/html4/strict.dtd">
|
3 |
|
|
<HTML>
|
4 |
|
|
<HEAD>
|
5 |
|
|
<TITLE>html/IO</TITLE>
|
6 |
|
|
<META NAME="generator" CONTENT="HTML::TextToHTML v2.46">
|
7 |
|
|
<LINK REL="stylesheet" TYPE="text/css" HREF="lecture.css">
|
8 |
|
|
</HEAD>
|
9 |
|
|
<BODY>
|
10 |
|
|
<P><table class="ttop"><th class="tpre"><a href="07_Opcode_Decoder.html">Previous Lesson</a></th><th class="ttop"><a href="toc.html">Table of Content</a></th><th class="tnxt"><a href="09_Toolchain_Setup.html">Next Lesson</a></th></table>
|
11 |
|
|
<hr>
|
12 |
|
|
|
13 |
|
|
<H1><A NAME="section_1">8 INPUT/OUTPUT</A></H1>
|
14 |
|
|
|
15 |
|
|
<P>The last piece in the design is the input/output unit. Strictly speaking
|
16 |
|
|
it does not belong to the CPU as such, but we discuss it briefly to
|
17 |
|
|
see how it connects to the CPU.
|
18 |
|
|
|
19 |
|
|
<H2><A NAME="section_1_1">8.1 Interface to the CPU</A></H2>
|
20 |
|
|
|
21 |
|
|
<P>As we have already seen in the top level design, the I/O unit uses the same
|
22 |
|
|
clock as the CPU (which greatly simplifies its design).
|
23 |
|
|
|
24 |
|
|
<P>The interface towards the CPU consist of the following signals:
|
25 |
|
|
|
26 |
|
|
<TABLE>
|
27 |
|
|
<TR><TD>ADR_IO</TD><TD>The number of an individual I/O register
|
28 |
|
|
</TD></TR><TR><TD>DIN</TD><TD>Data to an I/O register (I/O write)
|
29 |
|
|
</TD></TR><TR><TD>RD_IO</TD><TD>Read Strobe
|
30 |
|
|
</TD></TR><TR><TD>WR_IO</TD><TD>Write Strobe
|
31 |
|
|
</TD></TR><TR><TD>DOUT</TD><TD>Data from an I/O register (I/O read cycle.
|
32 |
|
|
</TD></TR>
|
33 |
|
|
</TABLE>
|
34 |
|
|
<P>These signals are well known from other I/O devices like UARTs,
|
35 |
|
|
Ethernet Controllers, and the like.
|
36 |
|
|
|
37 |
|
|
<P>The CPU supports two kinds of accesses to I/O registers: I/O reads
|
38 |
|
|
(with the IN or LDS instructions, but also for the skip instructions
|
39 |
|
|
SBIC and SBIS), and I/O writes (with the OUT or STS instructions,
|
40 |
|
|
but also with the bit instructions CBI and SBI).
|
41 |
|
|
|
42 |
|
|
<P>The skip instructions SBIC and SBIS execute in 2 cycles; in the first
|
43 |
|
|
cycle an I/O read is performed while the skip (or not) decision is made
|
44 |
|
|
in the second cycle. The reason for this is that the combinational delay
|
45 |
|
|
for a single cycle would have been too long.
|
46 |
|
|
|
47 |
|
|
<P>From the I/O unit's perspective, I/O reads and writes are performed
|
48 |
|
|
in a single cycle (even if the CPU needs another cycle to complete an
|
49 |
|
|
instruction.
|
50 |
|
|
|
51 |
|
|
<P>The I/O unit generates an interrupt vector on its <STRONG>INTVEC</STRONG> output.
|
52 |
|
|
The upper bit of the <STRONG>INTVEC</STRONG> output is set if an interrupt is pending.
|
53 |
|
|
|
54 |
|
|
<H2><A NAME="section_1_2">8.2 CLR Signal</A></H2>
|
55 |
|
|
|
56 |
|
|
<P>Some I/O components need a <STRONG>CLR</STRONG> signal to bring them into a defined state.
|
57 |
|
|
The <STRONG>CLR</STRONG> signal of the CPU is used for this purpose.
|
58 |
|
|
|
59 |
|
|
<H2><A NAME="section_1_3">8.3 Connection the FPGA Pins</A></H2>
|
60 |
|
|
|
61 |
|
|
<P>The remaining signals into and out of the I/O unit are more or less
|
62 |
|
|
directly connected to FPGA pins.
|
63 |
|
|
|
64 |
|
|
<P>The <STRONG>RX</STRONG> input comes from an RS232 receiver/driver chip and is the serial
|
65 |
|
|
input for an UART (active low). The TX output (also active low) is the
|
66 |
|
|
serial output from that UART and goes back to the RS232 receiver/driver chip:
|
67 |
|
|
|
68 |
|
|
<P><br>
|
69 |
|
|
|
70 |
|
|
<pre class="vhdl">
|
71 |
|
|
|
72 |
|
|
89 I_RX => I_RX,
|
73 |
|
|
90
|
74 |
|
|
91 Q_TX => Q_TX,
|
75 |
|
|
<pre class="filename">
|
76 |
|
|
src/io.vhd
|
77 |
|
|
</pre></pre>
|
78 |
|
|
<P>
|
79 |
|
|
|
80 |
|
|
<P>The <STRONG>SWITCH</STRONG> input comes from a DIP switch on the board.
|
81 |
|
|
The values of the switch can be read from I/O register <STRONG>PINB</STRONG> (0x36).
|
82 |
|
|
|
83 |
|
|
<P><br>
|
84 |
|
|
|
85 |
|
|
<pre class="vhdl">
|
86 |
|
|
|
87 |
|
|
132 when X"36" => Q_DOUT <= I_SWITCH; -- PINB
|
88 |
|
|
<pre class="filename">
|
89 |
|
|
src/io.vhd
|
90 |
|
|
</pre></pre>
|
91 |
|
|
<P>
|
92 |
|
|
|
93 |
|
|
<P><br>
|
94 |
|
|
|
95 |
|
|
<P>The 7_<STRONG>SEGMENT</STRONG> output drives the 7 segments of a 7-segment display.
|
96 |
|
|
This output can be set from software by writing to the <STRONG>PORTB</STRONG> (0x38)
|
97 |
|
|
I/O register. The segments can also be driven by a debug function which
|
98 |
|
|
shows the current <STRONG>PC</STRONG> and the current opcode of the CPU.
|
99 |
|
|
|
100 |
|
|
<P><br>
|
101 |
|
|
|
102 |
|
|
<pre class="vhdl">
|
103 |
|
|
|
104 |
|
|
147 when X"38" => Q_7_SEGMENT <= I_DIN(6 downto 0); -- PORTB
|
105 |
|
|
<pre class="filename">
|
106 |
|
|
src/io.vhd
|
107 |
|
|
</pre></pre>
|
108 |
|
|
<P>
|
109 |
|
|
|
110 |
|
|
<P><br>
|
111 |
|
|
|
112 |
|
|
<P>The choice between the debug display and the software controlled
|
113 |
|
|
display function is made by the DIP switch setting:
|
114 |
|
|
|
115 |
|
|
<P><br>
|
116 |
|
|
|
117 |
|
|
<pre class="vhdl">
|
118 |
|
|
|
119 |
|
|
183
|
120 |
|
|
<pre class="filename">
|
121 |
|
|
src/avr_fpga.vhd
|
122 |
|
|
</pre></pre>
|
123 |
|
|
<P>
|
124 |
|
|
|
125 |
|
|
<P><br>
|
126 |
|
|
|
127 |
|
|
<H2><A NAME="section_1_4">8.4 I/O Read</A></H2>
|
128 |
|
|
|
129 |
|
|
<P>I/O read cycles are indicated by the <STRONG>RD_IO</STRONG> signal. If <STRONG>RD_IO</STRONG> is applied,
|
130 |
|
|
then the address of the I/O register to be read is provided on the <STRONG>ADR_IO</STRONG>
|
131 |
|
|
input and the value of that register is expected on <STRONG>DOUT</STRONG> at the next
|
132 |
|
|
<STRONG>CLK</STRONG> edge.
|
133 |
|
|
|
134 |
|
|
<P>This is accomplished by the I/O read process:
|
135 |
|
|
|
136 |
|
|
<P><br>
|
137 |
|
|
|
138 |
|
|
<pre class="vhdl">
|
139 |
|
|
|
140 |
|
|
98 iord: process(I_ADR_IO, I_SWITCH,
|
141 |
|
|
99 U_RX_DATA, U_RX_READY, L_RX_INT_ENABLED,
|
142 |
|
|
100 U_TX_BUSY, L_TX_INT_ENABLED)
|
143 |
|
|
101 begin
|
144 |
|
|
102 -- addresses for mega8 device (use iom8.h or #define __AVR_ATmega8__).
|
145 |
|
|
103 --
|
146 |
|
|
104 case I_ADR_IO is
|
147 |
|
|
105 when X"2A" => Q_DOUT <= -- UCSRB:
|
148 |
|
|
106 L_RX_INT_ENABLED -- Rx complete int enabled.
|
149 |
|
|
107 & L_TX_INT_ENABLED -- Tx complete int enabled.
|
150 |
|
|
108 & L_TX_INT_ENABLED -- Tx empty int enabled.
|
151 |
|
|
109 & '1' -- Rx enabled
|
152 |
|
|
110 & '1' -- Tx enabled
|
153 |
|
|
111 & '0' -- 8 bits/char
|
154 |
|
|
112 & '0' -- Rx bit 8
|
155 |
|
|
113 & '0'; -- Tx bit 8
|
156 |
|
|
114 when X"2B" => Q_DOUT <= -- UCSRA:
|
157 |
|
|
115 U_RX_READY -- Rx complete
|
158 |
|
|
116 & not U_TX_BUSY -- Tx complete
|
159 |
|
|
117 & not U_TX_BUSY -- Tx ready
|
160 |
|
|
118 & '0' -- frame error
|
161 |
|
|
119 & '0' -- data overrun
|
162 |
|
|
120 & '0' -- parity error
|
163 |
|
|
121 & '0' -- double dpeed
|
164 |
|
|
122 & '0'; -- multiproc mode
|
165 |
|
|
123 when X"2C" => Q_DOUT <= U_RX_DATA; -- UDR
|
166 |
|
|
124 when X"40" => Q_DOUT <= -- UCSRC
|
167 |
|
|
125 '1' -- URSEL
|
168 |
|
|
126 & '0' -- asynchronous
|
169 |
|
|
127 & "00" -- no parity
|
170 |
|
|
128 & '1' -- two stop bits
|
171 |
|
|
129 & "11" -- 8 bits/char
|
172 |
|
|
130 & '0'; -- rising clock edge
|
173 |
|
|
131
|
174 |
|
|
132 when X"36" => Q_DOUT <= I_SWITCH; -- PINB
|
175 |
|
|
133 when others => Q_DOUT <= X"AA";
|
176 |
|
|
134 end case;
|
177 |
|
|
135 end process;
|
178 |
|
|
<pre class="filename">
|
179 |
|
|
src/io.vhd
|
180 |
|
|
</pre></pre>
|
181 |
|
|
<P>
|
182 |
|
|
|
183 |
|
|
<P><br>
|
184 |
|
|
|
185 |
|
|
<P>I/O registers that are not implemented (i.e almost all) set <STRONG>DOUT</STRONG>
|
186 |
|
|
to 0xAA as a debugging aid.
|
187 |
|
|
|
188 |
|
|
<P>The outputs of sub-components (like the UART) are selected in the I/O read
|
189 |
|
|
process.
|
190 |
|
|
|
191 |
|
|
<H2><A NAME="section_1_5">8.5 I/O Write</A></H2>
|
192 |
|
|
|
193 |
|
|
<P>I/O write cycles are indicated by the <STRONG>WR_IO</STRONG> signal. If <STRONG>WR_IO</STRONG> is applied,
|
194 |
|
|
then the address of the I/O register to be written is provided on the <STRONG>ADR_IO</STRONG>
|
195 |
|
|
input and the value to be written is supplied on the DIN input:
|
196 |
|
|
|
197 |
|
|
<P><br>
|
198 |
|
|
|
199 |
|
|
<pre class="vhdl">
|
200 |
|
|
|
201 |
|
|
139 iowr: process(I_CLK)
|
202 |
|
|
140 begin
|
203 |
|
|
141 if (rising_edge(I_CLK)) then
|
204 |
|
|
142 if (I_CLR = '1') then
|
205 |
|
|
143 L_RX_INT_ENABLED <= '0';
|
206 |
|
|
144 L_TX_INT_ENABLED <= '0';
|
207 |
|
|
145 elsif (I_WE_IO = '1') then
|
208 |
|
|
146 case I_ADR_IO is
|
209 |
|
|
147 when X"38" => Q_7_SEGMENT <= I_DIN(6 downto 0); -- PORTB
|
210 |
|
|
148 L_LEDS <= not L_LEDS;
|
211 |
|
|
149 when X"40" => -- handled by uart
|
212 |
|
|
150 when X"41" => -- handled by uart
|
213 |
|
|
151 when X"43" => L_RX_INT_ENABLED <= I_DIN(0);
|
214 |
|
|
152 L_TX_INT_ENABLED <= I_DIN(1);
|
215 |
|
|
153 when others =>
|
216 |
|
|
154 end case;
|
217 |
|
|
155 end if;
|
218 |
|
|
156 end if;
|
219 |
|
|
157 end process;
|
220 |
|
|
<pre class="filename">
|
221 |
|
|
src/io.vhd
|
222 |
|
|
</pre></pre>
|
223 |
|
|
<P>
|
224 |
|
|
|
225 |
|
|
<P><br>
|
226 |
|
|
|
227 |
|
|
<P>In the I/O read process the outputs of sub-component were multiplexed
|
228 |
|
|
into the final output <STRONG>DOUT</STRONG> and hence their register numbers (like 0x2C
|
229 |
|
|
for the <STRONG>UDR</STRONG> read register) were visible, In the I/O write process, however,
|
230 |
|
|
the inputs of sub-components (again like 0x2C for the <STRONG>UDR</STRONG> write register)
|
231 |
|
|
are not visible in the write process and decoding of the <STRONG>WR</STRONG> (and <STRONG>RD</STRONG> where
|
232 |
|
|
needed) strobes for sub components is done outside of these processes:
|
233 |
|
|
|
234 |
|
|
<P><br>
|
235 |
|
|
|
236 |
|
|
<pre class="vhdl">
|
237 |
|
|
|
238 |
|
|
182 L_WE_UART <= I_WE_IO when (I_ADR_IO = X"2C") else '0'; -- write UART UDR
|
239 |
|
|
183 L_RD_UART <= I_RD_IO when (I_ADR_IO = X"2C") else '0'; -- read UART UDR
|
240 |
|
|
184
|
241 |
|
|
<pre class="filename">
|
242 |
|
|
src/io.vhd
|
243 |
|
|
</pre></pre>
|
244 |
|
|
<P>
|
245 |
|
|
|
246 |
|
|
<P><br>
|
247 |
|
|
|
248 |
|
|
<H2><A NAME="section_1_6">8.6 Interrupts</A></H2>
|
249 |
|
|
|
250 |
|
|
<P>Some I/O components raise interrupts, which are coordinated in the
|
251 |
|
|
I/O interrupt process:
|
252 |
|
|
|
253 |
|
|
<P><br>
|
254 |
|
|
|
255 |
|
|
<pre class="vhdl">
|
256 |
|
|
|
257 |
|
|
161 ioint: process(I_CLK)
|
258 |
|
|
162 begin
|
259 |
|
|
163 if (rising_edge(I_CLK)) then
|
260 |
|
|
164 if (I_CLR = '1') then
|
261 |
|
|
165 L_INTVEC <= "000000";
|
262 |
|
|
166 else
|
263 |
|
|
167 if (L_RX_INT_ENABLED and U_RX_READY) = '1' then
|
264 |
|
|
168 if (L_INTVEC(5) = '0') then -- no interrupt pending
|
265 |
|
|
169 L_INTVEC <= "101011"; -- _VECTOR(11)
|
266 |
|
|
170 end if;
|
267 |
|
|
171 elsif (L_TX_INT_ENABLED and not U_TX_BUSY) = '1' then
|
268 |
|
|
172 if (L_INTVEC(5) = '0') then -- no interrupt pending
|
269 |
|
|
173 L_INTVEC <= "101100"; -- _VECTOR(12)
|
270 |
|
|
174 end if;
|
271 |
|
|
175 else -- no interrupt
|
272 |
|
|
176 L_INTVEC <= "000000";
|
273 |
|
|
177 end if;
|
274 |
|
|
178 end if;
|
275 |
|
|
179 end if;
|
276 |
|
|
180 end process;
|
277 |
|
|
<pre class="filename">
|
278 |
|
|
src/io.vhd
|
279 |
|
|
</pre></pre>
|
280 |
|
|
<P>
|
281 |
|
|
|
282 |
|
|
<P><br>
|
283 |
|
|
|
284 |
|
|
<H2><A NAME="section_1_7">8.7 The UART</A></H2>
|
285 |
|
|
|
286 |
|
|
<P>The UART is an important facility for debugging programs that are more
|
287 |
|
|
complex than out <STRONG>hello.c</STRONG>. We use a fixed baud rate of 38400 Baud
|
288 |
|
|
and a fixed data format of 8 data bits and 2 stop bits.
|
289 |
|
|
Therefore the corresponding bits in the UART control registers of the
|
290 |
|
|
original AVR CPU are not implemented. The fixed values are properly
|
291 |
|
|
reported, however.
|
292 |
|
|
|
293 |
|
|
<P>The UART consists of 3 independent sub-components: a baud rate generator,
|
294 |
|
|
a receiver, and a transmitter.
|
295 |
|
|
|
296 |
|
|
<H3><A NAME="section_1_7_1">8.7.1 The UART Baud Rate Generator</A></H3>
|
297 |
|
|
|
298 |
|
|
<P>The baud rate generator is clocked with a frequency of <STRONG>clock_freq</STRONG>
|
299 |
|
|
and is supposed to generate a x1 clock of <STRONG>baud_rate</STRONG> for the transmitter
|
300 |
|
|
and a x16 clock of 16*<STRONG>baud_rate</STRONG> for the receiver.
|
301 |
|
|
|
302 |
|
|
<P>The x16 clock is generated like this:
|
303 |
|
|
|
304 |
|
|
<P><br>
|
305 |
|
|
|
306 |
|
|
<pre class="vhdl">
|
307 |
|
|
|
308 |
|
|
54
|
309 |
|
|
55 baud16: process(I_CLK)
|
310 |
|
|
56 begin
|
311 |
|
|
57 if (rising_edge(I_CLK)) then
|
312 |
|
|
58 if (I_CLR = '1') then
|
313 |
|
|
59 L_COUNTER <= X"00000000";
|
314 |
|
|
60 elsif (L_COUNTER >= LIMIT) then
|
315 |
|
|
61 L_COUNTER <= L_COUNTER - LIMIT;
|
316 |
|
|
62 else
|
317 |
|
|
63 L_COUNTER <= L_COUNTER + BAUD_16;
|
318 |
|
|
64 end if;
|
319 |
|
|
65 end if;
|
320 |
|
|
66 end process;
|
321 |
|
|
67
|
322 |
|
|
68 baud1: process(I_CLK)
|
323 |
|
|
<pre class="filename">
|
324 |
|
|
src/baudgen.vhd
|
325 |
|
|
</pre></pre>
|
326 |
|
|
<P>
|
327 |
|
|
|
328 |
|
|
<P><br>
|
329 |
|
|
|
330 |
|
|
<P>We have done a little trick here. Most baud rate generators divide the
|
331 |
|
|
input clock by a fixed integer number (like the one shown below for the
|
332 |
|
|
x1 clock). That is fine if the input clock is a multiple of the output
|
333 |
|
|
clock. More often than not is the CPU clock not a multiple of the the
|
334 |
|
|
baud rate. Therefore, if an integer divider is used (like in the original
|
335 |
|
|
AVR CPU, where the integer divisor was written into the UBRR I/O register)
|
336 |
|
|
then the error in the baud rate cumulates over all bits transmitted. This can
|
337 |
|
|
cause transmission errors when many characters are sent back to back.
|
338 |
|
|
An integer divider would have set <STRONG>L_COUNTER</STRONG> to 0 after reaching <STRONG>LIMIT</STRONG>,
|
339 |
|
|
which would have cause an absolute error of <STRONG>COUNTER</STRONG> - <STRONG>LIMIT</STRONG>. What we
|
340 |
|
|
do instead is to subtract <STRONG>LIMIT</STRONG>, which does no discard the error but
|
341 |
|
|
makes the next cycle a little shorter instead.
|
342 |
|
|
|
343 |
|
|
<P>Instead of using a fixed baud rate interval of N times the clock interval
|
344 |
|
|
(as fixed integer dividers would), we have used a variable baud rate interval;
|
345 |
|
|
the length of the interval varies slightly over time, but the total error
|
346 |
|
|
remains bounded. The error does not cumulate as for fixed integer
|
347 |
|
|
dividers.
|
348 |
|
|
|
349 |
|
|
<P>If you want to make the baud rate programmable, then you can replace the
|
350 |
|
|
generic <STRONG>baud_rate</STRONG> by a signal (and the trick would still work).
|
351 |
|
|
|
352 |
|
|
<P>The x1 clock is generated by dividing the x16 clock by 16:
|
353 |
|
|
|
354 |
|
|
<P><br>
|
355 |
|
|
|
356 |
|
|
<pre class="vhdl">
|
357 |
|
|
|
358 |
|
|
70 if (rising_edge(I_CLK)) then
|
359 |
|
|
71 if (I_CLR = '1') then
|
360 |
|
|
72 L_CNT_16 <= "0000";
|
361 |
|
|
73 elsif (L_CE_16 = '1') then
|
362 |
|
|
74 L_CNT_16 <= L_CNT_16 + "0001";
|
363 |
|
|
75 end if;
|
364 |
|
|
76 end if;
|
365 |
|
|
77 end process;
|
366 |
|
|
78
|
367 |
|
|
79 L_CE_16 <= '1' when (L_COUNTER >= LIMIT) else '0';
|
368 |
|
|
80 Q_CE_16 <= L_CE_16;
|
369 |
|
|
81 Q_CE_1 <= L_CE_16 when L_CNT_16 = "1111" else '0';
|
370 |
|
|
<pre class="filename">
|
371 |
|
|
src/baudgen.vhd
|
372 |
|
|
</pre></pre>
|
373 |
|
|
<P>
|
374 |
|
|
|
375 |
|
|
<P><br>
|
376 |
|
|
|
377 |
|
|
<H3><A NAME="section_1_7_2">8.7.2 The UART Transmitter</A></H3>
|
378 |
|
|
|
379 |
|
|
<P>The UART transmitter is a shift register that is loaded with
|
380 |
|
|
the character to be transmitted (prepended with a start bit):
|
381 |
|
|
|
382 |
|
|
<P><br>
|
383 |
|
|
|
384 |
|
|
<pre class="vhdl">
|
385 |
|
|
|
386 |
|
|
67 elsif (L_FLAG /= I_FLAG) then -- new byte
|
387 |
|
|
68 Q_TX <= '0'; -- start bit
|
388 |
|
|
69 L_BUF <= I_DATA; -- data bits
|
389 |
|
|
70 L_TODO <= "1001";
|
390 |
|
|
71 end if;
|
391 |
|
|
<pre class="filename">
|
392 |
|
|
src/uart_tx.vhd
|
393 |
|
|
</pre></pre>
|
394 |
|
|
<P>
|
395 |
|
|
|
396 |
|
|
<P><br>
|
397 |
|
|
|
398 |
|
|
<P>The <STRONG>TODO</STRONG> signal holds the number of bits that remain to be shifted out.
|
399 |
|
|
The transmitter is clocked with the x1 baud rate:
|
400 |
|
|
|
401 |
|
|
<P><br>
|
402 |
|
|
|
403 |
|
|
<pre class="vhdl">
|
404 |
|
|
|
405 |
|
|
59 elsif (I_CE_1 = '1') then
|
406 |
|
|
60 if (L_TODO /= "0000") then -- transmitting
|
407 |
|
|
61 Q_TX <= L_BUF(0); -- next bit
|
408 |
|
|
62 L_BUF <= '1' & L_BUF(7 downto 1);
|
409 |
|
|
63 if (L_TODO = "0001") then
|
410 |
|
|
64 L_FLAG <= I_FLAG;
|
411 |
|
|
65 end if;
|
412 |
|
|
66 L_TODO <= L_TODO - "0001";
|
413 |
|
|
67 elsif (L_FLAG /= I_FLAG) then -- new byte
|
414 |
|
|
68 Q_TX <= '0'; -- start bit
|
415 |
|
|
69 L_BUF <= I_DATA; -- data bits
|
416 |
|
|
70 L_TODO <= "1001";
|
417 |
|
|
71 end if;
|
418 |
|
|
72 end if;
|
419 |
|
|
<pre class="filename">
|
420 |
|
|
src/uart_tx.vhd
|
421 |
|
|
</pre></pre>
|
422 |
|
|
<P>
|
423 |
|
|
|
424 |
|
|
<P><br>
|
425 |
|
|
|
426 |
|
|
<H3><A NAME="section_1_7_3">8.7.3 The UART Receiver</A></H3>
|
427 |
|
|
|
428 |
|
|
<P>The UART transmitter runs synchronously with the CPU clock; but the UART
|
429 |
|
|
receiver does not. We therefore clock the receiver input twice
|
430 |
|
|
in order to synchronize it with the CPU clock:
|
431 |
|
|
|
432 |
|
|
<P><br>
|
433 |
|
|
|
434 |
|
|
<pre class="vhdl">
|
435 |
|
|
|
436 |
|
|
56 process(I_CLK)
|
437 |
|
|
57 begin
|
438 |
|
|
58 if (rising_edge(I_CLK)) then
|
439 |
|
|
59 if (I_CLR = '1') then
|
440 |
|
|
60 L_SERIN <= '1';
|
441 |
|
|
61 L_SER_HOT <= '1';
|
442 |
|
|
62 else
|
443 |
|
|
63 L_SERIN <= I_RX;
|
444 |
|
|
64 L_SER_HOT <= L_SERIN;
|
445 |
|
|
65 end if;
|
446 |
|
|
66 end if;
|
447 |
|
|
67 end process;
|
448 |
|
|
<pre class="filename">
|
449 |
|
|
src/uart_rx.vhd
|
450 |
|
|
</pre></pre>
|
451 |
|
|
<P>
|
452 |
|
|
|
453 |
|
|
<P><br>
|
454 |
|
|
|
455 |
|
|
<P>The key signal in the UART receiver is <STRONG>POSITION</STRONG> which is the current
|
456 |
|
|
position within the received character in units if 1/16 bit time. When the
|
457 |
|
|
receiver is idle and a start bit is received, then <STRONG>POSITION</STRONG> is reset to
|
458 |
|
|
1:
|
459 |
|
|
|
460 |
|
|
<P><br>
|
461 |
|
|
|
462 |
|
|
<pre class="vhdl">
|
463 |
|
|
|
464 |
|
|
86 if (L_POSITION = X"00") then -- uart idle
|
465 |
|
|
87 L_BUF <= "1111111111";
|
466 |
|
|
88 if (L_SER_HOT = '0') then -- start bit received
|
467 |
|
|
89 L_POSITION <= X"01";
|
468 |
|
|
90 end if;
|
469 |
|
|
<pre class="filename">
|
470 |
|
|
src/uart_rx.vhd
|
471 |
|
|
</pre></pre>
|
472 |
|
|
<P>
|
473 |
|
|
|
474 |
|
|
<P><br>
|
475 |
|
|
|
476 |
|
|
<P>At every subsequent edge of the 16x baud rate, <STRONG>POSITION</STRONG> is incremented
|
477 |
|
|
and the receiver input (<STRONG>SER_HOT</STRONG>) input is checked at the middle of each
|
478 |
|
|
bit (i.e. when <STRONG>POSITION[3:0]</STRONG> = "0111").
|
479 |
|
|
If the start bit has disappeared at the middle of the bit, then this is
|
480 |
|
|
considered noise on the line rather than a valid start bit:
|
481 |
|
|
|
482 |
|
|
<P><br>
|
483 |
|
|
|
484 |
|
|
<pre class="vhdl">
|
485 |
|
|
|
486 |
|
|
93 if (L_POSITION(3 downto 0) = "0111") then -- 1/2 bit
|
487 |
|
|
94 L_BUF <= L_SER_HOT & L_BUF(9 downto 1); -- sample data
|
488 |
|
|
95 --
|
489 |
|
|
96 -- validate start bit
|
490 |
|
|
97 --
|
491 |
|
|
98 if (START_BIT and L_SER_HOT = '1') then -- 1/2 start bit
|
492 |
|
|
99 L_POSITION <= X"00";
|
493 |
|
|
100 end if;
|
494 |
|
|
101
|
495 |
|
|
102 if (STOP_BIT) then -- 1/2 stop bit
|
496 |
|
|
103 Q_DATA <= L_BUF(9 downto 2);
|
497 |
|
|
104 end if;
|
498 |
|
|
<pre class="filename">
|
499 |
|
|
src/uart_rx.vhd
|
500 |
|
|
</pre></pre>
|
501 |
|
|
<P>
|
502 |
|
|
|
503 |
|
|
<P><br>
|
504 |
|
|
|
505 |
|
|
<P>Reception of a byte already finishes at 3/4 of the stop bit. This is to
|
506 |
|
|
allow for cumulated baud rate errors of 1/4 bit time (or about 2.5 %
|
507 |
|
|
baud rate error for 10 bit (1 start, 8 data, and 1 stop bit) transmissions).
|
508 |
|
|
The received data is stored in <STRONG>DATA</STRONG>:
|
509 |
|
|
|
510 |
|
|
<P><br>
|
511 |
|
|
|
512 |
|
|
<pre class="vhdl">
|
513 |
|
|
|
514 |
|
|
105 elsif (STOP_POS) then -- 3/4 stop bit
|
515 |
|
|
106 L_FLAG <= L_FLAG xor (L_BUF(9) and not L_BUF(0));
|
516 |
|
|
107 L_POSITION <= X"00";
|
517 |
|
|
<pre class="filename">
|
518 |
|
|
src/uart_rx.vhd
|
519 |
|
|
</pre></pre>
|
520 |
|
|
<P>
|
521 |
|
|
|
522 |
|
|
<P><br>
|
523 |
|
|
|
524 |
|
|
<P>If a greater tolerance against baud rate errors is needed, then one can
|
525 |
|
|
decrease <STRONG>STOP_POS</STRONG> a little, but generally it would be safer to use 2
|
526 |
|
|
stop bits on the sender side.
|
527 |
|
|
|
528 |
|
|
<P>This finalizes the description of the FPGA. We will proceed with the
|
529 |
|
|
design flow in the next lesson.
|
530 |
|
|
|
531 |
|
|
<P><hr><BR>
|
532 |
|
|
<table class="ttop"><th class="tpre"><a href="07_Opcode_Decoder.html">Previous Lesson</a></th><th class="ttop"><a href="toc.html">Table of Content</a></th><th class="tnxt"><a href="09_Toolchain_Setup.html">Next Lesson</a></th></table>
|
533 |
|
|
</BODY>
|
534 |
|
|
</HTML>
|