1 |
2 |
jsauermann |
-------------------------------------------------------------------------------
|
2 |
|
|
--
|
3 |
|
|
-- Copyright (C) 2009, 2010 Dr. Juergen Sauermann
|
4 |
|
|
--
|
5 |
|
|
-- This code is free software: you can redistribute it and/or modify
|
6 |
|
|
-- it under the terms of the GNU General Public License as published by
|
7 |
|
|
-- the Free Software Foundation, either version 3 of the License, or
|
8 |
|
|
-- (at your option) any later version.
|
9 |
|
|
--
|
10 |
|
|
-- This code is distributed in the hope that it will be useful,
|
11 |
|
|
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
|
|
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
|
|
-- GNU General Public License for more details.
|
14 |
|
|
--
|
15 |
|
|
-- You should have received a copy of the GNU General Public License
|
16 |
|
|
-- along with this code (see the file named COPYING).
|
17 |
|
|
-- If not, see http://www.gnu.org/licenses/.
|
18 |
|
|
--
|
19 |
|
|
-------------------------------------------------------------------------------
|
20 |
|
|
-------------------------------------------------------------------------------
|
21 |
|
|
--
|
22 |
|
|
-- Module Name: data_mem - Behavioral
|
23 |
|
|
-- Create Date: 14:09:04 10/30/2009
|
24 |
|
|
-- Description: the data mempry of a CPU.
|
25 |
|
|
--
|
26 |
|
|
-------------------------------------------------------------------------------
|
27 |
|
|
--
|
28 |
|
|
library IEEE;
|
29 |
|
|
use IEEE.STD_LOGIC_1164.ALL;
|
30 |
|
|
use IEEE.STD_LOGIC_ARITH.ALL;
|
31 |
|
|
use IEEE.STD_LOGIC_UNSIGNED.ALL;
|
32 |
|
|
|
33 |
|
|
entity data_mem is
|
34 |
|
|
port ( I_CLK : in std_logic;
|
35 |
|
|
|
36 |
|
|
I_ADR : in std_logic_vector(10 downto 0);
|
37 |
|
|
I_DIN : in std_logic_vector(15 downto 0);
|
38 |
|
|
I_WE : in std_logic_vector( 1 downto 0);
|
39 |
|
|
|
40 |
|
|
Q_DOUT : out std_logic_vector(15 downto 0));
|
41 |
|
|
end data_mem;
|
42 |
|
|
|
43 |
|
|
architecture Behavioral of data_mem is
|
44 |
|
|
|
45 |
|
|
constant zero_256 : bit_vector := X"00000000000000000000000000000000"
|
46 |
|
|
& X"00000000000000000000000000000000";
|
47 |
|
|
constant nine_256 : bit_vector := X"99999999999999999999999999999999"
|
48 |
|
|
& X"99999999999999999999999999999999";
|
49 |
|
|
|
50 |
|
|
component RAMB4_S4_S4
|
51 |
|
|
generic(INIT_00 : bit_vector := zero_256;
|
52 |
|
|
INIT_01 : bit_vector := zero_256;
|
53 |
|
|
INIT_02 : bit_vector := zero_256;
|
54 |
|
|
INIT_03 : bit_vector := zero_256;
|
55 |
|
|
INIT_04 : bit_vector := zero_256;
|
56 |
|
|
INIT_05 : bit_vector := zero_256;
|
57 |
|
|
INIT_06 : bit_vector := zero_256;
|
58 |
|
|
INIT_07 : bit_vector := zero_256;
|
59 |
|
|
INIT_08 : bit_vector := zero_256;
|
60 |
|
|
INIT_09 : bit_vector := zero_256;
|
61 |
|
|
INIT_0A : bit_vector := zero_256;
|
62 |
|
|
INIT_0B : bit_vector := zero_256;
|
63 |
|
|
INIT_0C : bit_vector := zero_256;
|
64 |
|
|
INIT_0D : bit_vector := zero_256;
|
65 |
|
|
INIT_0E : bit_vector := zero_256;
|
66 |
|
|
INIT_0F : bit_vector := zero_256);
|
67 |
|
|
|
68 |
|
|
port( DOA : out std_logic_vector(3 downto 0);
|
69 |
|
|
DOB : out std_logic_vector(3 downto 0);
|
70 |
|
|
ADDRA : in std_logic_vector(9 downto 0);
|
71 |
|
|
ADDRB : in std_logic_vector(9 downto 0);
|
72 |
|
|
CLKA : in std_ulogic;
|
73 |
|
|
CLKB : in std_ulogic;
|
74 |
|
|
DIA : in std_logic_vector(3 downto 0);
|
75 |
|
|
DIB : in std_logic_vector(3 downto 0);
|
76 |
|
|
ENA : in std_ulogic;
|
77 |
|
|
ENB : in std_ulogic;
|
78 |
|
|
RSTA : in std_ulogic;
|
79 |
|
|
RSTB : in std_ulogic;
|
80 |
|
|
WEA : in std_ulogic;
|
81 |
|
|
WEB : in std_ulogic);
|
82 |
|
|
end component;
|
83 |
|
|
|
84 |
|
|
signal L_ADR_0 : std_logic;
|
85 |
|
|
signal L_ADR_E : std_logic_vector(10 downto 1);
|
86 |
|
|
signal L_ADR_O : std_logic_vector(10 downto 1);
|
87 |
|
|
signal L_DIN_E : std_logic_vector( 7 downto 0);
|
88 |
|
|
signal L_DIN_O : std_logic_vector( 7 downto 0);
|
89 |
|
|
signal L_DOUT_E : std_logic_vector( 7 downto 0);
|
90 |
|
|
signal L_DOUT_O : std_logic_vector( 7 downto 0);
|
91 |
|
|
signal L_WE_E : std_logic;
|
92 |
|
|
signal L_WE_O : std_logic;
|
93 |
|
|
|
94 |
|
|
begin
|
95 |
|
|
|
96 |
|
|
sr_0 : RAMB4_S4_S4 ---------------------------------------------------------
|
97 |
|
|
generic map(INIT_00 => nine_256, INIT_01 => nine_256, INIT_02 => nine_256,
|
98 |
|
|
INIT_03 => nine_256, INIT_04 => nine_256, INIT_05 => nine_256,
|
99 |
|
|
INIT_06 => nine_256, INIT_07 => nine_256, INIT_08 => nine_256,
|
100 |
|
|
INIT_09 => nine_256, INIT_0A => nine_256, INIT_0B => nine_256,
|
101 |
|
|
INIT_0C => nine_256, INIT_0D => nine_256, INIT_0E => nine_256,
|
102 |
|
|
INIT_0F => nine_256)
|
103 |
|
|
|
104 |
|
|
port map( ADDRA => L_ADR_E, ADDRB => "0000000000",
|
105 |
|
|
CLKA => I_CLK, CLKB => I_CLK,
|
106 |
|
|
DIA => L_DIN_E(3 downto 0), DIB => "0000",
|
107 |
|
|
ENA => '1', ENB => '0',
|
108 |
|
|
RSTA => '0', RSTB => '0',
|
109 |
|
|
WEA => L_WE_E, WEB => '0',
|
110 |
|
|
DOA => L_DOUT_E(3 downto 0), DOB => open);
|
111 |
|
|
|
112 |
|
|
sr_1 : RAMB4_S4_S4 ---------------------------------------------------------
|
113 |
|
|
generic map(INIT_00 => nine_256, INIT_01 => nine_256, INIT_02 => nine_256,
|
114 |
|
|
INIT_03 => nine_256, INIT_04 => nine_256, INIT_05 => nine_256,
|
115 |
|
|
INIT_06 => nine_256, INIT_07 => nine_256, INIT_08 => nine_256,
|
116 |
|
|
INIT_09 => nine_256, INIT_0A => nine_256, INIT_0B => nine_256,
|
117 |
|
|
INIT_0C => nine_256, INIT_0D => nine_256, INIT_0E => nine_256,
|
118 |
|
|
INIT_0F => nine_256)
|
119 |
|
|
|
120 |
|
|
port map( ADDRA => L_ADR_E, ADDRB => "0000000000",
|
121 |
|
|
CLKA => I_CLK, CLKB => I_CLK,
|
122 |
|
|
DIA => L_DIN_E(7 downto 4), DIB => "0000",
|
123 |
|
|
ENA => '1', ENB => '0',
|
124 |
|
|
RSTA => '0', RSTB => '0',
|
125 |
|
|
WEA => L_WE_E, WEB => '0',
|
126 |
|
|
DOA => L_DOUT_E(7 downto 4), DOB => open);
|
127 |
|
|
|
128 |
|
|
sr_2 : RAMB4_S4_S4 ---------------------------------------------------------
|
129 |
|
|
generic map(INIT_00 => nine_256, INIT_01 => nine_256, INIT_02 => nine_256,
|
130 |
|
|
INIT_03 => nine_256, INIT_04 => nine_256, INIT_05 => nine_256,
|
131 |
|
|
INIT_06 => nine_256, INIT_07 => nine_256, INIT_08 => nine_256,
|
132 |
|
|
INIT_09 => nine_256, INIT_0A => nine_256, INIT_0B => nine_256,
|
133 |
|
|
INIT_0C => nine_256, INIT_0D => nine_256, INIT_0E => nine_256,
|
134 |
|
|
INIT_0F => nine_256)
|
135 |
|
|
|
136 |
|
|
port map( ADDRA => L_ADR_O, ADDRB => "0000000000",
|
137 |
|
|
CLKA => I_CLK, CLKB => I_CLK,
|
138 |
|
|
DIA => L_DIN_O(3 downto 0), DIB => "0000",
|
139 |
|
|
ENA => '1', ENB => '0',
|
140 |
|
|
RSTA => '0', RSTB => '0',
|
141 |
|
|
WEA => L_WE_O, WEB => '0',
|
142 |
|
|
DOA => L_DOUT_O(3 downto 0), DOB => open);
|
143 |
|
|
|
144 |
|
|
sr_3 : RAMB4_S4_S4 ---------------------------------------------------------
|
145 |
|
|
generic map(INIT_00 => nine_256, INIT_01 => nine_256, INIT_02 => nine_256,
|
146 |
|
|
INIT_03 => nine_256, INIT_04 => nine_256, INIT_05 => nine_256,
|
147 |
|
|
INIT_06 => nine_256, INIT_07 => nine_256, INIT_08 => nine_256,
|
148 |
|
|
INIT_09 => nine_256, INIT_0A => nine_256, INIT_0B => nine_256,
|
149 |
|
|
INIT_0C => nine_256, INIT_0D => nine_256, INIT_0E => nine_256,
|
150 |
|
|
INIT_0F => nine_256)
|
151 |
|
|
|
152 |
|
|
port map( ADDRA => L_ADR_O, ADDRB => "0000000000",
|
153 |
|
|
CLKA => I_CLK, CLKB => I_CLK,
|
154 |
|
|
DIA => L_DIN_O(7 downto 4), DIB => "0000",
|
155 |
|
|
ENA => '1', ENB => '0',
|
156 |
|
|
RSTA => '0', RSTB => '0',
|
157 |
|
|
WEA => L_WE_O, WEB => '0',
|
158 |
|
|
DOA => L_DOUT_O(7 downto 4), DOB => open);
|
159 |
|
|
|
160 |
|
|
|
161 |
|
|
-- remember ADR(0)
|
162 |
|
|
--
|
163 |
|
|
adr0: process(I_CLK)
|
164 |
|
|
begin
|
165 |
|
|
if (rising_edge(I_CLK)) then
|
166 |
|
|
L_ADR_0 <= I_ADR(0);
|
167 |
|
|
end if;
|
168 |
|
|
end process;
|
169 |
|
|
|
170 |
|
|
-- we use two memory blocks _E and _O (even and odd).
|
171 |
|
|
-- This gives us a memory with ADR and ADR + 1 at th same time.
|
172 |
|
|
-- The second port is currently unused, but may be used later,
|
173 |
|
|
-- e.g. for DMA.
|
174 |
|
|
--
|
175 |
|
|
|
176 |
|
|
L_ADR_O <= I_ADR(10 downto 1);
|
177 |
|
|
L_ADR_E <= I_ADR(10 downto 1) + ("000000000" & I_ADR(0));
|
178 |
|
|
|
179 |
|
|
L_DIN_E <= I_DIN( 7 downto 0) when (I_ADR(0) = '0') else I_DIN(15 downto 8);
|
180 |
|
|
L_DIN_O <= I_DIN( 7 downto 0) when (I_ADR(0) = '1') else I_DIN(15 downto 8);
|
181 |
|
|
|
182 |
|
|
L_WE_E <= I_WE(1) or (I_WE(0) and not I_ADR(0));
|
183 |
|
|
L_WE_O <= I_WE(1) or (I_WE(0) and I_ADR(0));
|
184 |
|
|
|
185 |
|
|
Q_DOUT( 7 downto 0) <= L_DOUT_E when (L_ADR_0 = '0') else L_DOUT_O;
|
186 |
|
|
Q_DOUT(15 downto 8) <= L_DOUT_E when (L_ADR_0 = '1') else L_DOUT_O;
|
187 |
|
|
|
188 |
|
|
end Behavioral;
|
189 |
|
|
|