| 1 |
14 |
dgisselq |
//
|
| 2 |
|
|
// Filename: ifft_tb.cpp
|
| 3 |
|
|
//
|
| 4 |
|
|
// Project: A Doubletime Pipelined FFT
|
| 5 |
|
|
//
|
| 6 |
|
|
// Purpose: A test-bench for the combined work of both fftmain.v and
|
| 7 |
|
|
// ifftmain.v. If they work together, in concert like they should,
|
| 8 |
|
|
// then the operation of both in series should yield an identity.
|
| 9 |
|
|
// This program attempts to check that identity with various
|
| 10 |
|
|
// inputs given to it.
|
| 11 |
|
|
//
|
| 12 |
|
|
// This file has a variety of dependencies, not the least of which
|
| 13 |
|
|
// are verilator, ifftmain.v and fftmain.v (both produced by
|
| 14 |
|
|
// fftgen), but also on the ifft_tb.v verilog test bench found
|
| 15 |
|
|
// within this directory.
|
| 16 |
|
|
//
|
| 17 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
| 18 |
|
|
// Gisselquist Tecnology, LLC
|
| 19 |
|
|
//
|
| 20 |
|
|
///////////////////////////////////////////////////////////////////////////
|
| 21 |
|
|
//
|
| 22 |
|
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
| 23 |
|
|
//
|
| 24 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
| 25 |
|
|
// modify it under the terms of the GNU General Public License as published
|
| 26 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
| 27 |
|
|
// your option) any later version.
|
| 28 |
|
|
//
|
| 29 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
| 30 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
| 31 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 32 |
|
|
// for more details.
|
| 33 |
|
|
//
|
| 34 |
|
|
// You should have received a copy of the GNU General Public License along
|
| 35 |
|
|
// with this program. (It's in the $(ROOT)/doc directory, run make with no
|
| 36 |
|
|
// target there if the PDF file isn't present.) If not, see
|
| 37 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
| 38 |
|
|
//
|
| 39 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
| 40 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
| 41 |
|
|
//
|
| 42 |
|
|
//
|
| 43 |
|
|
///////////////////////////////////////////////////////////////////////////
|
| 44 |
|
|
#include <stdio.h>
|
| 45 |
|
|
#include <math.h>
|
| 46 |
|
|
#include <assert.h>
|
| 47 |
|
|
|
| 48 |
|
|
#include "verilated.h"
|
| 49 |
|
|
#include "Vifft_tb.h"
|
| 50 |
|
|
|
| 51 |
|
|
#define LGWIDTH 11
|
| 52 |
|
|
#define IWIDTH 16
|
| 53 |
|
|
#define MWIDTH 22
|
| 54 |
|
|
#define OWIDTH 28
|
| 55 |
|
|
|
| 56 |
|
|
#define FFTLEN (1<<LGWIDTH)
|
| 57 |
|
|
|
| 58 |
|
|
class IFFT_TB {
|
| 59 |
|
|
public:
|
| 60 |
|
|
Vifft_tb *m_tb;
|
| 61 |
|
|
unsigned int m_log[8*FFTLEN];
|
| 62 |
|
|
long m_data[2*FFTLEN];
|
| 63 |
|
|
int m_iaddr, m_oaddr, m_offset;
|
| 64 |
|
|
FILE *m_dumpfp;
|
| 65 |
|
|
// double *m_tb_buf;
|
| 66 |
|
|
// int m_ntest;
|
| 67 |
|
|
bool m_syncd;
|
| 68 |
|
|
|
| 69 |
|
|
IFFT_TB(void) {
|
| 70 |
|
|
m_tb = new Vifft_tb;
|
| 71 |
|
|
m_iaddr = m_oaddr = 0;
|
| 72 |
|
|
m_dumpfp = NULL;
|
| 73 |
|
|
|
| 74 |
|
|
m_syncd = false;
|
| 75 |
|
|
// m_ntest = 0;
|
| 76 |
|
|
}
|
| 77 |
|
|
|
| 78 |
|
|
void tick(void) {
|
| 79 |
|
|
m_tb->i_clk = 0;
|
| 80 |
|
|
m_tb->eval();
|
| 81 |
|
|
m_tb->i_clk = 1;
|
| 82 |
|
|
m_tb->eval();
|
| 83 |
|
|
}
|
| 84 |
|
|
|
| 85 |
|
|
void reset(void) {
|
| 86 |
|
|
m_tb->i_ce = 0;
|
| 87 |
|
|
m_tb->i_rst = 1;
|
| 88 |
|
|
tick();
|
| 89 |
|
|
m_tb->i_rst = 0;
|
| 90 |
|
|
tick();
|
| 91 |
|
|
|
| 92 |
|
|
m_iaddr = m_oaddr = 0;
|
| 93 |
|
|
m_syncd = false;
|
| 94 |
|
|
}
|
| 95 |
|
|
|
| 96 |
|
|
long twos_complement(const long val, const int bits) {
|
| 97 |
|
|
long r;
|
| 98 |
|
|
|
| 99 |
|
|
r = val & ((1l<<bits)-1);
|
| 100 |
|
|
if (r & (1l << (bits-1)))
|
| 101 |
|
|
r |= (-1l << bits);
|
| 102 |
|
|
return r;
|
| 103 |
|
|
}
|
| 104 |
|
|
|
| 105 |
|
|
void checkresults(void) {
|
| 106 |
|
|
/*
|
| 107 |
|
|
double *dp, *sp; // Complex array
|
| 108 |
|
|
double vout[FFTLEN*2];
|
| 109 |
|
|
double isq=0.0, osq = 0.0;
|
| 110 |
|
|
long *lp;
|
| 111 |
|
|
|
| 112 |
|
|
// Fill up our test array from the log array
|
| 113 |
|
|
printf("%3d : CHECK: %8d %5x\n", m_ntest, m_iaddr, m_iaddr);
|
| 114 |
|
|
dp = m_tb_buf; lp = &m_log[(m_iaddr-FFTLEN*3)&((4*FFTLEN-1)&(-FFTLEN))];
|
| 115 |
|
|
for(int i=0; i<FFTLEN; i++) {
|
| 116 |
|
|
long tv = *lp++;
|
| 117 |
|
|
|
| 118 |
|
|
dp[0] = twos_complement(tv >> IWIDTH, IWIDTH);
|
| 119 |
|
|
dp[1] = twos_complement(tv, IWIDTH);
|
| 120 |
|
|
|
| 121 |
|
|
printf("IN[%4d = %4x] = %9.1f %9.1f\n",
|
| 122 |
|
|
i+((m_iaddr-FFTLEN*3)&((4*FFTLEN-1)&(-FFTLEN))),
|
| 123 |
|
|
i+((m_iaddr-FFTLEN*3)&((4*FFTLEN-1)&(-FFTLEN))),
|
| 124 |
|
|
dp[0], dp[1]);
|
| 125 |
|
|
dp += 2;
|
| 126 |
|
|
}
|
| 127 |
|
|
|
| 128 |
|
|
// Let's measure ... are we the zero vector? If not, how close?
|
| 129 |
|
|
dp = m_tb_buf;
|
| 130 |
|
|
for(int i=0; i<FFTLEN; i++)
|
| 131 |
|
|
isq += (*dp) * (*dp);
|
| 132 |
|
|
|
| 133 |
|
|
fftw_execute(m_plan);
|
| 134 |
|
|
|
| 135 |
|
|
// Let's load up the output we received into vout
|
| 136 |
|
|
dp = vout;
|
| 137 |
|
|
for(int i=0; i<FFTLEN; i++) {
|
| 138 |
|
|
long tv = m_data[i];
|
| 139 |
|
|
|
| 140 |
|
|
printf("OUT[%4d = %4x] = ", i, i);
|
| 141 |
|
|
printf("%16lx = ", tv);
|
| 142 |
|
|
*dp = twos_complement(tv >> OWIDTH, OWIDTH);
|
| 143 |
|
|
printf("%12.1f + ", *dp);
|
| 144 |
|
|
osq += (*dp) * (*dp); dp++;
|
| 145 |
|
|
*dp = twos_complement(tv, OWIDTH);
|
| 146 |
|
|
printf("%12.1f j", *dp);
|
| 147 |
|
|
osq += (*dp) * (*dp); dp++;
|
| 148 |
|
|
printf(" <-> %12.1f %12.1f\n", m_tb_buf[2*i], m_fft_buf[2*i+1]);
|
| 149 |
|
|
}
|
| 150 |
|
|
|
| 151 |
|
|
|
| 152 |
|
|
// Let's figure out if there's a scale factor difference ...
|
| 153 |
|
|
double scale = 0.0, wt = 0.0;
|
| 154 |
|
|
sp = m_tb_buf; dp = vout;
|
| 155 |
|
|
for(int i=0; i<FFTLEN*2; i++) {
|
| 156 |
|
|
scale += (*sp) * (*dp++);
|
| 157 |
|
|
wt += (*sp) * (*sp); sp++;
|
| 158 |
|
|
} scale = scale / wt;
|
| 159 |
|
|
|
| 160 |
|
|
if (wt == 0.0) scale = 1.0;
|
| 161 |
|
|
|
| 162 |
|
|
double xisq = 0.0;
|
| 163 |
|
|
sp = m_tb_buf; dp = vout;
|
| 164 |
|
|
for(int i=0; i<FFTLEN*2; i++) {
|
| 165 |
|
|
double vl = (*sp++) * scale - (*dp++);
|
| 166 |
|
|
xisq += vl * vl;
|
| 167 |
|
|
}
|
| 168 |
|
|
|
| 169 |
|
|
printf("%3d : SCALE = %12.6f, WT = %18.1f, ISQ = %15.1f, ",
|
| 170 |
|
|
m_ntest, scale, wt, isq);
|
| 171 |
|
|
printf("OSQ = %18.1f, ", osq);
|
| 172 |
|
|
printf("XISQ = %18.1f\n", xisq);
|
| 173 |
|
|
m_ntest++;
|
| 174 |
|
|
*/
|
| 175 |
|
|
}
|
| 176 |
|
|
|
| 177 |
|
|
bool test(int lft, int rht) {
|
| 178 |
|
|
m_tb->i_ce = 1;
|
| 179 |
|
|
m_tb->i_rst = 0;
|
| 180 |
|
|
m_tb->i_left = lft;
|
| 181 |
|
|
m_tb->i_right = rht;
|
| 182 |
|
|
|
| 183 |
|
|
m_log[(m_iaddr++)&(8*FFTLEN-1)] = lft;
|
| 184 |
|
|
m_log[(m_iaddr++)&(8*FFTLEN-1)] = rht;
|
| 185 |
|
|
|
| 186 |
|
|
tick();
|
| 187 |
|
|
|
| 188 |
|
|
if ((m_tb->o_sync)&&(!m_syncd)) {
|
| 189 |
|
|
m_offset = m_iaddr;
|
| 190 |
|
|
m_oaddr = 0;
|
| 191 |
|
|
m_syncd = true;
|
| 192 |
|
|
}
|
| 193 |
|
|
|
| 194 |
|
|
m_data[(m_oaddr++)&(FFTLEN-1)] = m_tb->o_left;
|
| 195 |
|
|
m_data[(m_oaddr++)&(FFTLEN-1)] = m_tb->o_right;
|
| 196 |
|
|
|
| 197 |
|
|
if ((m_syncd)&&((m_oaddr&(FFTLEN-1)) == 0)) {
|
| 198 |
|
|
dumpwrite();
|
| 199 |
|
|
// checkresults();
|
| 200 |
|
|
}
|
| 201 |
|
|
|
| 202 |
|
|
return (m_tb->o_sync);
|
| 203 |
|
|
}
|
| 204 |
|
|
|
| 205 |
|
|
bool test(double lft_r, double lft_i, double rht_r, double rht_i) {
|
| 206 |
|
|
int ilft, irht, ilft_r, ilft_i, irht_r, irht_i;
|
| 207 |
|
|
|
| 208 |
|
|
assert(2*IWIDTH <= 32);
|
| 209 |
|
|
ilft_r = (int)(lft_r) & ((1<<IWIDTH)-1);
|
| 210 |
|
|
ilft_i = (int)(lft_i) & ((1<<IWIDTH)-1);
|
| 211 |
|
|
irht_r = (int)(rht_r) & ((1<<IWIDTH)-1);
|
| 212 |
|
|
irht_i = (int)(rht_i) & ((1<<IWIDTH)-1);
|
| 213 |
|
|
|
| 214 |
|
|
ilft = (ilft_r << IWIDTH) | ilft_i;
|
| 215 |
|
|
irht = (irht_r << IWIDTH) | irht_i;
|
| 216 |
|
|
|
| 217 |
|
|
return test(ilft, irht);
|
| 218 |
|
|
}
|
| 219 |
|
|
|
| 220 |
|
|
double rdata(int addr) {
|
| 221 |
|
|
long ivl = m_data[addr & (FFTLEN-1)];
|
| 222 |
|
|
|
| 223 |
|
|
ivl = twos_complement(ivl >> OWIDTH, OWIDTH);
|
| 224 |
|
|
return (double)ivl;
|
| 225 |
|
|
}
|
| 226 |
|
|
|
| 227 |
|
|
double idata(int addr) {
|
| 228 |
|
|
long ivl = m_data[addr & (FFTLEN-1)];
|
| 229 |
|
|
|
| 230 |
|
|
ivl = twos_complement(ivl, OWIDTH);
|
| 231 |
|
|
return (double)ivl;
|
| 232 |
|
|
}
|
| 233 |
|
|
|
| 234 |
|
|
void dump(FILE *fp) {
|
| 235 |
|
|
m_dumpfp = fp;
|
| 236 |
|
|
}
|
| 237 |
|
|
|
| 238 |
|
|
void dumpwrite(void) {
|
| 239 |
|
|
if (!m_dumpfp)
|
| 240 |
|
|
return;
|
| 241 |
|
|
|
| 242 |
|
|
double *buf;
|
| 243 |
|
|
|
| 244 |
|
|
buf = new double[FFTLEN * 2];
|
| 245 |
|
|
for(int i=0; i<FFTLEN; i++) {
|
| 246 |
|
|
buf[i*2] = rdata(i);
|
| 247 |
|
|
buf[i*2+1] = idata(i);
|
| 248 |
|
|
}
|
| 249 |
|
|
|
| 250 |
|
|
fwrite(buf, sizeof(double), FFTLEN*2, m_dumpfp);
|
| 251 |
|
|
delete[] buf;
|
| 252 |
|
|
}
|
| 253 |
|
|
};
|
| 254 |
|
|
|
| 255 |
|
|
|
| 256 |
|
|
int main(int argc, char **argv, char **envp) {
|
| 257 |
|
|
Verilated::commandArgs(argc, argv);
|
| 258 |
|
|
IFFT_TB *tb = new IFFT_TB;
|
| 259 |
|
|
FILE *fpout;
|
| 260 |
|
|
|
| 261 |
|
|
fpout = fopen("ifft_tb.dbl", "w");
|
| 262 |
|
|
if (NULL == fpout) {
|
| 263 |
|
|
fprintf(stderr, "Cannot write output file, fft_tb.dbl\n");
|
| 264 |
|
|
exit(-1);
|
| 265 |
|
|
}
|
| 266 |
|
|
|
| 267 |
|
|
tb->reset();
|
| 268 |
|
|
tb->dump(fpout);
|
| 269 |
|
|
|
| 270 |
|
|
// 1 -> 0x0001
|
| 271 |
|
|
// 2 -> 0x0002
|
| 272 |
|
|
// 4 -> 0x0004
|
| 273 |
|
|
// 8 -> 0x0008
|
| 274 |
|
|
// 16 -> 0x0010
|
| 275 |
|
|
// 32 -> 0x0020
|
| 276 |
|
|
// 64 -> 0x0040
|
| 277 |
|
|
// 128 -> 0x0080
|
| 278 |
|
|
// 256 -> 0x0100
|
| 279 |
|
|
// 512 -> 0x0200
|
| 280 |
|
|
// 1024 -> 0x0400
|
| 281 |
|
|
// 2048 -> 0x0800
|
| 282 |
|
|
// 4096 -> 0x1000
|
| 283 |
|
|
// 8192 -> 0x2000
|
| 284 |
|
|
// 16384 -> 0x4000
|
| 285 |
|
|
for(int v=1; v<32768; v<<=1) for(int k=0; k<FFTLEN/2; k++)
|
| 286 |
|
|
tb->test((double)v,0.0,(double)v,0.0);
|
| 287 |
|
|
// 1 -> 0xffff
|
| 288 |
|
|
// 2 -> 0xfffe
|
| 289 |
|
|
// 4 -> 0xfffc
|
| 290 |
|
|
// 8 -> 0xfff8
|
| 291 |
|
|
// 16 -> 0xfff0
|
| 292 |
|
|
// 32 -> 0xffe0
|
| 293 |
|
|
// 64 -> 0xffc0
|
| 294 |
|
|
// 128 -> 0xff80
|
| 295 |
|
|
// 256 -> 0xff00
|
| 296 |
|
|
// 512 -> 0xfe00
|
| 297 |
|
|
// 1024 -> 0xfc00
|
| 298 |
|
|
// 2048 -> 0xf800
|
| 299 |
|
|
// 4096 -> 0xf000
|
| 300 |
|
|
// 8192 -> 0xe000
|
| 301 |
|
|
// 16384 -> 0xc000
|
| 302 |
|
|
// 32768 -> 0x8000
|
| 303 |
|
|
for(int v=1; v<=32768; v<<=1) for(int k=0; k<FFTLEN/2; k++)
|
| 304 |
|
|
tb->test(-(double)v,0.0,-(double)v,0.0);
|
| 305 |
|
|
// 1 -> 0x000040 CORRECT!!
|
| 306 |
|
|
// 2 -> 0x000080
|
| 307 |
|
|
// 4 -> 0x000100
|
| 308 |
|
|
// 8 -> 0x000200
|
| 309 |
|
|
// 16 -> 0x000400
|
| 310 |
|
|
// 32 -> 0x000800
|
| 311 |
|
|
// 64 -> 0x001000
|
| 312 |
|
|
// 128 -> 0x002000
|
| 313 |
|
|
// 256 -> 0x004000
|
| 314 |
|
|
// 512 -> 0x008000
|
| 315 |
|
|
// 1024 -> 0x010000
|
| 316 |
|
|
// 2048 -> 0x020000
|
| 317 |
|
|
// 4096 -> 0x040000
|
| 318 |
|
|
// 8192 -> 0x080000
|
| 319 |
|
|
// 16384 -> 0x100000
|
| 320 |
|
|
for(int v=1; v<32768; v<<=1) for(int k=0; k<FFTLEN/2; k++)
|
| 321 |
|
|
tb->test(0.0,(double)v,0.0,(double)v);
|
| 322 |
|
|
// 1 -> 0x3fffc0
|
| 323 |
|
|
// 2 -> 0x3fff80
|
| 324 |
|
|
// 4 -> 0x3fff00
|
| 325 |
|
|
// 8 -> 0x3ffe00
|
| 326 |
|
|
// 16 -> 0x3ffc00
|
| 327 |
|
|
// 32 -> 0x3ff800
|
| 328 |
|
|
// 64 -> 0x3ff000
|
| 329 |
|
|
// 128 -> 0x3fe000
|
| 330 |
|
|
// 256 -> 0x3fc000
|
| 331 |
|
|
// 512 -> 0x3f8000
|
| 332 |
|
|
// 1024 -> 0x3f0000
|
| 333 |
|
|
// 2048 -> 0x3e0000
|
| 334 |
|
|
// 4096 -> 0x3c0000
|
| 335 |
|
|
// 8192 -> 0x380000
|
| 336 |
|
|
// 16384 -> 0x300000
|
| 337 |
|
|
for(int v=1; v<32768; v<<=1) for(int k=0; k<FFTLEN/2; k++)
|
| 338 |
|
|
tb->test(0.0,-(double)v,0.0,-(double)v);
|
| 339 |
|
|
|
| 340 |
|
|
// 61. Now, how about the smallest alternating real signal
|
| 341 |
|
|
for(int k=0; k<FFTLEN/2; k++)
|
| 342 |
|
|
tb->test(2.0,0.0,0.0,0.0); // Don't forget to expect a bias!
|
| 343 |
|
|
// 62. Now, how about the smallest alternating imaginary signal
|
| 344 |
|
|
for(int k=0; k<FFTLEN/2; k++)
|
| 345 |
|
|
tb->test(0.0,2.0,0.0,0.0); // Don't forget to expect a bias!
|
| 346 |
|
|
// 63. Now, how about the smallest alternating real signal,2nd phase
|
| 347 |
|
|
for(int k=0; k<FFTLEN/2; k++)
|
| 348 |
|
|
tb->test(0.0,0.0,2.0,0.0); // Don't forget to expect a bias!
|
| 349 |
|
|
// 64.Now, how about the smallest alternating imaginary signal,2nd phase
|
| 350 |
|
|
for(int k=0; k<FFTLEN/2; k++)
|
| 351 |
|
|
tb->test(0.0,0.0,0.0,2.0); // Don't forget to expect a bias!
|
| 352 |
|
|
|
| 353 |
|
|
// 65.
|
| 354 |
|
|
for(int k=0; k<FFTLEN/2; k++)
|
| 355 |
|
|
tb->test(32767.0,0.0,-32767.0,0.0);
|
| 356 |
|
|
// 66.
|
| 357 |
|
|
for(int k=0; k<FFTLEN/2; k++)
|
| 358 |
|
|
tb->test(0.0,-32767.0,0.0,32767.0);
|
| 359 |
|
|
// 67.
|
| 360 |
|
|
for(int k=0; k<FFTLEN/2; k++)
|
| 361 |
|
|
tb->test(-32768.0,-32768.0,-32768.0,-32768.0);
|
| 362 |
|
|
// 68.
|
| 363 |
|
|
for(int k=0; k<FFTLEN/2; k++)
|
| 364 |
|
|
tb->test(0.0,-32767.0,0.0,32767.0);
|
| 365 |
|
|
// 69.
|
| 366 |
|
|
for(int k=0; k<FFTLEN/2; k++)
|
| 367 |
|
|
tb->test(0.0,32767.0,0.0,-32767.0);
|
| 368 |
|
|
// 70.
|
| 369 |
|
|
for(int k=0; k<FFTLEN/2; k++)
|
| 370 |
|
|
tb->test(-32768.0,-32768.0,-32768.0,-32768.0);
|
| 371 |
|
|
|
| 372 |
|
|
// 71. Now let's go for an impulse (SUCCESS)
|
| 373 |
|
|
tb->test(16384.0, 0.0, 0.0, 0.0);
|
| 374 |
|
|
for(int k=0; k<FFTLEN/2-1; k++)
|
| 375 |
|
|
tb->test(0.0,0.0,0.0,0.0);
|
| 376 |
|
|
|
| 377 |
|
|
// 72. And another one on the next clock (FAILS, ugly)
|
| 378 |
|
|
// Lot's of roundoff error, or some error in small bits
|
| 379 |
|
|
tb->test(0.0, 0.0, 16384.0, 0.0);
|
| 380 |
|
|
for(int k=0; k<FFTLEN/2-1; k++)
|
| 381 |
|
|
tb->test(0.0,0.0,0.0,0.0);
|
| 382 |
|
|
|
| 383 |
|
|
// 73. And an imaginary one on the second clock
|
| 384 |
|
|
// Much roundoff error, as in last test
|
| 385 |
|
|
tb->test(0.0, 0.0, 0.0, 16384.0);
|
| 386 |
|
|
for(int k=0; k<FFTLEN/2-1; k++)
|
| 387 |
|
|
tb->test(0.0,0.0,0.0,0.0);
|
| 388 |
|
|
|
| 389 |
|
|
// 74. Likewise the next clock
|
| 390 |
|
|
// Much roundoff error, as in last test
|
| 391 |
|
|
tb->test(0.0,0.0,0.0,0.0);
|
| 392 |
|
|
tb->test(16384.0, 0.0, 0.0, 0.0);
|
| 393 |
|
|
for(int k=0; k<FFTLEN/2-2; k++)
|
| 394 |
|
|
tb->test(0.0,0.0,0.0,0.0);
|
| 395 |
|
|
|
| 396 |
|
|
// 75. And it's imaginary counterpart
|
| 397 |
|
|
// Much roundoff error, as in last test
|
| 398 |
|
|
tb->test(0.0,0.0,0.0,0.0);
|
| 399 |
|
|
tb->test(0.0, 16384.0, 0.0, 0.0);
|
| 400 |
|
|
for(int k=0; k<FFTLEN/2-2; k++)
|
| 401 |
|
|
tb->test(0.0,0.0,0.0,0.0);
|
| 402 |
|
|
|
| 403 |
|
|
// 76. Likewise the next clock
|
| 404 |
|
|
// Much roundoff error, as in last test
|
| 405 |
|
|
tb->test(0.0,0.0,0.0,0.0);
|
| 406 |
|
|
tb->test(0.0, 0.0, 16384.0, 0.0);
|
| 407 |
|
|
for(int k=0; k<FFTLEN/2-2; k++)
|
| 408 |
|
|
tb->test(0.0,0.0,0.0,0.0);
|
| 409 |
|
|
|
| 410 |
|
|
// 77. And it's imaginary counterpart
|
| 411 |
|
|
// Much roundoff error, as in last test
|
| 412 |
|
|
tb->test(0.0,0.0,0.0,0.0);
|
| 413 |
|
|
tb->test(0.0, 0.0, 0.0, 16384.0);
|
| 414 |
|
|
for(int k=0; k<FFTLEN/2-2; k++)
|
| 415 |
|
|
tb->test(0.0,0.0,0.0,0.0);
|
| 416 |
|
|
|
| 417 |
|
|
|
| 418 |
|
|
// 78. Now let's try some exponentials
|
| 419 |
|
|
for(int k=0; k<FFTLEN/2; k++) {
|
| 420 |
|
|
double cl, cr, sl, sr, W;
|
| 421 |
|
|
W = - 2.0 * M_PI / FFTLEN;
|
| 422 |
|
|
cl = cos(W * (2*k )) * 16383.0;
|
| 423 |
|
|
sl = sin(W * (2*k )) * 16383.0;
|
| 424 |
|
|
cr = cos(W * (2*k+1)) * 16383.0;
|
| 425 |
|
|
sr = sin(W * (2*k+1)) * 16383.0;
|
| 426 |
|
|
tb->test(cl, sl, cr, sr);
|
| 427 |
|
|
}
|
| 428 |
|
|
|
| 429 |
|
|
// 79.
|
| 430 |
|
|
for(int k=0; k<FFTLEN/2; k++) {
|
| 431 |
|
|
double cl, cr, sl, sr, W;
|
| 432 |
|
|
W = - 2.0 * M_PI / FFTLEN * 5;
|
| 433 |
|
|
cl = cos(W * (2*k )) * 16383.0;
|
| 434 |
|
|
sl = sin(W * (2*k )) * 16383.0;
|
| 435 |
|
|
cr = cos(W * (2*k+1)) * 16383.0;
|
| 436 |
|
|
sr = sin(W * (2*k+1)) * 16383.0;
|
| 437 |
|
|
tb->test(cl, sl, cr, sr);
|
| 438 |
|
|
}
|
| 439 |
|
|
|
| 440 |
|
|
// 80.
|
| 441 |
|
|
for(int k=0; k<FFTLEN/2; k++) {
|
| 442 |
|
|
double cl, cr, sl, sr, W;
|
| 443 |
|
|
W = - 2.0 * M_PI / FFTLEN * 8;
|
| 444 |
|
|
cl = cos(W * (2*k )) * 8190.0;
|
| 445 |
|
|
sl = sin(W * (2*k )) * 8190.0;
|
| 446 |
|
|
cr = cos(W * (2*k+1)) * 8190.0;
|
| 447 |
|
|
sr = sin(W * (2*k+1)) * 8190.0;
|
| 448 |
|
|
tb->test(cl, sl, cr, sr);
|
| 449 |
|
|
}
|
| 450 |
|
|
|
| 451 |
|
|
// 81.
|
| 452 |
|
|
for(int k=0; k<FFTLEN/2; k++) {
|
| 453 |
|
|
double cl, cr, sl, sr, W;
|
| 454 |
|
|
W = - 2.0 * M_PI / FFTLEN * 25;
|
| 455 |
|
|
cl = cos(W * (2*k )) * 4.0;
|
| 456 |
|
|
sl = sin(W * (2*k )) * 4.0;
|
| 457 |
|
|
cr = cos(W * (2*k+1)) * 4.0;
|
| 458 |
|
|
sr = sin(W * (2*k+1)) * 4.0;
|
| 459 |
|
|
tb->test(cl, sl, cr, sr);
|
| 460 |
|
|
}
|
| 461 |
|
|
|
| 462 |
|
|
// 19.--24. And finally, let's clear out our results / buffer
|
| 463 |
|
|
for(int k=0; k<(FFTLEN/2) * 5; k++)
|
| 464 |
|
|
tb->test(0.0,0.0,0.0,0.0);
|
| 465 |
|
|
|
| 466 |
|
|
fclose(fpout);
|
| 467 |
|
|
}
|
| 468 |
|
|
|
| 469 |
|
|
|